Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: None
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     real *           vdwgridioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     int              nvdwtype;
92     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
96     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
97     __m256           c6grid_00;
98     real             *vdwgridparam;
99     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
100     __m256           one_half  = _mm256_set1_ps(0.5);
101     __m256           minus_one = _mm256_set1_ps(-1.0);
102     __m256           dummy_mask,cutoff_mask;
103     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
104     __m256           one     = _mm256_set1_ps(1.0);
105     __m256           two     = _mm256_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120     vdwgridparam     = fr->ljpme_c6grid;
121     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
122     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
123     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
124
125     rcutoff_scalar   = fr->ic->rvdw;
126     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
130     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138     j_coord_offsetE = 0;
139     j_coord_offsetF = 0;
140     j_coord_offsetG = 0;
141     j_coord_offsetH = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm256_setzero_ps();
169         fiy0             = _mm256_setzero_ps();
170         fiz0             = _mm256_setzero_ps();
171
172         /* Load parameters for i particles */
173         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
174         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         vvdwsum          = _mm256_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             jnrE             = jjnr[jidx+4];
189             jnrF             = jjnr[jidx+5];
190             jnrG             = jjnr[jidx+6];
191             jnrH             = jjnr[jidx+7];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196             j_coord_offsetE  = DIM*jnrE;
197             j_coord_offsetF  = DIM*jnrF;
198             j_coord_offsetG  = DIM*jnrG;
199             j_coord_offsetH  = DIM*jnrH;
200
201             /* load j atom coordinates */
202             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
203                                                  x+j_coord_offsetC,x+j_coord_offsetD,
204                                                  x+j_coord_offsetE,x+j_coord_offsetF,
205                                                  x+j_coord_offsetG,x+j_coord_offsetH,
206                                                  &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm256_sub_ps(ix0,jx0);
210             dy00             = _mm256_sub_ps(iy0,jy0);
211             dz00             = _mm256_sub_ps(iz0,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
215
216             rinv00           = avx256_invsqrt_f(rsq00);
217
218             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
219
220             /* Load parameters for j particles */
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223             vdwjidx0C        = 2*vdwtype[jnrC+0];
224             vdwjidx0D        = 2*vdwtype[jnrD+0];
225             vdwjidx0E        = 2*vdwtype[jnrE+0];
226             vdwjidx0F        = 2*vdwtype[jnrF+0];
227             vdwjidx0G        = 2*vdwtype[jnrG+0];
228             vdwjidx0H        = 2*vdwtype[jnrH+0];
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             if (gmx_mm256_any_lt(rsq00,rcutoff2))
235             {
236
237             r00              = _mm256_mul_ps(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
241                                             vdwioffsetptr0+vdwjidx0B,
242                                             vdwioffsetptr0+vdwjidx0C,
243                                             vdwioffsetptr0+vdwjidx0D,
244                                             vdwioffsetptr0+vdwjidx0E,
245                                             vdwioffsetptr0+vdwjidx0F,
246                                             vdwioffsetptr0+vdwjidx0G,
247                                             vdwioffsetptr0+vdwjidx0H,
248                                             &c6_00,&c12_00);
249
250             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
251                                                                   vdwgridioffsetptr0+vdwjidx0B,
252                                                                   vdwgridioffsetptr0+vdwjidx0C,
253                                                                   vdwgridioffsetptr0+vdwjidx0D,
254                                                                   vdwgridioffsetptr0+vdwjidx0E,
255                                                                   vdwgridioffsetptr0+vdwjidx0F,
256                                                                   vdwgridioffsetptr0+vdwjidx0G,
257                                                                   vdwgridioffsetptr0+vdwjidx0H);
258
259             /* Analytical LJ-PME */
260             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
261             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
262             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
263             exponent         = avx256_exp_f(ewcljrsq);
264             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
265             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
266             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
267             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
268             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
269             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
270                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
271             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
272             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
273
274             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
278             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
279
280             fscal            = fvdw;
281
282             fscal            = _mm256_and_ps(fscal,cutoff_mask);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm256_mul_ps(fscal,dx00);
286             ty               = _mm256_mul_ps(fscal,dy00);
287             tz               = _mm256_mul_ps(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm256_add_ps(fix0,tx);
291             fiy0             = _mm256_add_ps(fiy0,ty);
292             fiz0             = _mm256_add_ps(fiz0,tz);
293
294             fjptrA             = f+j_coord_offsetA;
295             fjptrB             = f+j_coord_offsetB;
296             fjptrC             = f+j_coord_offsetC;
297             fjptrD             = f+j_coord_offsetD;
298             fjptrE             = f+j_coord_offsetE;
299             fjptrF             = f+j_coord_offsetF;
300             fjptrG             = f+j_coord_offsetG;
301             fjptrH             = f+j_coord_offsetH;
302             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
303
304             }
305
306             /* Inner loop uses 62 flops */
307         }
308
309         if(jidx<j_index_end)
310         {
311
312             /* Get j neighbor index, and coordinate index */
313             jnrlistA         = jjnr[jidx];
314             jnrlistB         = jjnr[jidx+1];
315             jnrlistC         = jjnr[jidx+2];
316             jnrlistD         = jjnr[jidx+3];
317             jnrlistE         = jjnr[jidx+4];
318             jnrlistF         = jjnr[jidx+5];
319             jnrlistG         = jjnr[jidx+6];
320             jnrlistH         = jjnr[jidx+7];
321             /* Sign of each element will be negative for non-real atoms.
322              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
323              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
324              */
325             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
326                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
327                                             
328             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
329             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
330             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
331             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
332             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
333             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
334             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
335             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
336             j_coord_offsetA  = DIM*jnrA;
337             j_coord_offsetB  = DIM*jnrB;
338             j_coord_offsetC  = DIM*jnrC;
339             j_coord_offsetD  = DIM*jnrD;
340             j_coord_offsetE  = DIM*jnrE;
341             j_coord_offsetF  = DIM*jnrF;
342             j_coord_offsetG  = DIM*jnrG;
343             j_coord_offsetH  = DIM*jnrH;
344
345             /* load j atom coordinates */
346             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
347                                                  x+j_coord_offsetC,x+j_coord_offsetD,
348                                                  x+j_coord_offsetE,x+j_coord_offsetF,
349                                                  x+j_coord_offsetG,x+j_coord_offsetH,
350                                                  &jx0,&jy0,&jz0);
351
352             /* Calculate displacement vector */
353             dx00             = _mm256_sub_ps(ix0,jx0);
354             dy00             = _mm256_sub_ps(iy0,jy0);
355             dz00             = _mm256_sub_ps(iz0,jz0);
356
357             /* Calculate squared distance and things based on it */
358             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
359
360             rinv00           = avx256_invsqrt_f(rsq00);
361
362             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
363
364             /* Load parameters for j particles */
365             vdwjidx0A        = 2*vdwtype[jnrA+0];
366             vdwjidx0B        = 2*vdwtype[jnrB+0];
367             vdwjidx0C        = 2*vdwtype[jnrC+0];
368             vdwjidx0D        = 2*vdwtype[jnrD+0];
369             vdwjidx0E        = 2*vdwtype[jnrE+0];
370             vdwjidx0F        = 2*vdwtype[jnrF+0];
371             vdwjidx0G        = 2*vdwtype[jnrG+0];
372             vdwjidx0H        = 2*vdwtype[jnrH+0];
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             if (gmx_mm256_any_lt(rsq00,rcutoff2))
379             {
380
381             r00              = _mm256_mul_ps(rsq00,rinv00);
382             r00              = _mm256_andnot_ps(dummy_mask,r00);
383
384             /* Compute parameters for interactions between i and j atoms */
385             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
386                                             vdwioffsetptr0+vdwjidx0B,
387                                             vdwioffsetptr0+vdwjidx0C,
388                                             vdwioffsetptr0+vdwjidx0D,
389                                             vdwioffsetptr0+vdwjidx0E,
390                                             vdwioffsetptr0+vdwjidx0F,
391                                             vdwioffsetptr0+vdwjidx0G,
392                                             vdwioffsetptr0+vdwjidx0H,
393                                             &c6_00,&c12_00);
394
395             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
396                                                                   vdwgridioffsetptr0+vdwjidx0B,
397                                                                   vdwgridioffsetptr0+vdwjidx0C,
398                                                                   vdwgridioffsetptr0+vdwjidx0D,
399                                                                   vdwgridioffsetptr0+vdwjidx0E,
400                                                                   vdwgridioffsetptr0+vdwjidx0F,
401                                                                   vdwgridioffsetptr0+vdwjidx0G,
402                                                                   vdwgridioffsetptr0+vdwjidx0H);
403
404             /* Analytical LJ-PME */
405             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
406             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
407             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
408             exponent         = avx256_exp_f(ewcljrsq);
409             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
410             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
411             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
412             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
413             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
414             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
415                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
416             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
417             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
418
419             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
420
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
423             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
424             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
425
426             fscal            = fvdw;
427
428             fscal            = _mm256_and_ps(fscal,cutoff_mask);
429
430             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm256_mul_ps(fscal,dx00);
434             ty               = _mm256_mul_ps(fscal,dy00);
435             tz               = _mm256_mul_ps(fscal,dz00);
436
437             /* Update vectorial force */
438             fix0             = _mm256_add_ps(fix0,tx);
439             fiy0             = _mm256_add_ps(fiy0,ty);
440             fiz0             = _mm256_add_ps(fiz0,tz);
441
442             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
443             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
444             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
445             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
446             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
447             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
448             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
449             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
450             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
451
452             }
453
454             /* Inner loop uses 63 flops */
455         }
456
457         /* End of innermost loop */
458
459         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
460                                                  f+i_coord_offset,fshift+i_shift_offset);
461
462         ggid                        = gid[iidx];
463         /* Update potential energies */
464         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
465
466         /* Increment number of inner iterations */
467         inneriter                  += j_index_end - j_index_start;
468
469         /* Outer loop uses 7 flops */
470     }
471
472     /* Increment number of outer iterations */
473     outeriter        += nri;
474
475     /* Update outer/inner flops */
476
477     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
478 }
479 /*
480  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_avx_256_single
481  * Electrostatics interaction: None
482  * VdW interaction:            LJEwald
483  * Geometry:                   Particle-Particle
484  * Calculate force/pot:        Force
485  */
486 void
487 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_avx_256_single
488                     (t_nblist                    * gmx_restrict       nlist,
489                      rvec                        * gmx_restrict          xx,
490                      rvec                        * gmx_restrict          ff,
491                      struct t_forcerec           * gmx_restrict          fr,
492                      t_mdatoms                   * gmx_restrict     mdatoms,
493                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
494                      t_nrnb                      * gmx_restrict        nrnb)
495 {
496     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
497      * just 0 for non-waters.
498      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
499      * jnr indices corresponding to data put in the four positions in the SIMD register.
500      */
501     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
502     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
503     int              jnrA,jnrB,jnrC,jnrD;
504     int              jnrE,jnrF,jnrG,jnrH;
505     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
506     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
507     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
508     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
509     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
510     real             rcutoff_scalar;
511     real             *shiftvec,*fshift,*x,*f;
512     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
513     real             scratch[4*DIM];
514     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
515     real *           vdwioffsetptr0;
516     real *           vdwgridioffsetptr0;
517     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
518     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
519     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
520     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
521     int              nvdwtype;
522     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
523     int              *vdwtype;
524     real             *vdwparam;
525     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
526     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
527     __m256           c6grid_00;
528     real             *vdwgridparam;
529     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
530     __m256           one_half  = _mm256_set1_ps(0.5);
531     __m256           minus_one = _mm256_set1_ps(-1.0);
532     __m256           dummy_mask,cutoff_mask;
533     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
534     __m256           one     = _mm256_set1_ps(1.0);
535     __m256           two     = _mm256_set1_ps(2.0);
536     x                = xx[0];
537     f                = ff[0];
538
539     nri              = nlist->nri;
540     iinr             = nlist->iinr;
541     jindex           = nlist->jindex;
542     jjnr             = nlist->jjnr;
543     shiftidx         = nlist->shift;
544     gid              = nlist->gid;
545     shiftvec         = fr->shift_vec[0];
546     fshift           = fr->fshift[0];
547     nvdwtype         = fr->ntype;
548     vdwparam         = fr->nbfp;
549     vdwtype          = mdatoms->typeA;
550     vdwgridparam     = fr->ljpme_c6grid;
551     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
552     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
553     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
554
555     rcutoff_scalar   = fr->ic->rvdw;
556     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
557     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
558
559     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
560     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
561
562     /* Avoid stupid compiler warnings */
563     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
564     j_coord_offsetA = 0;
565     j_coord_offsetB = 0;
566     j_coord_offsetC = 0;
567     j_coord_offsetD = 0;
568     j_coord_offsetE = 0;
569     j_coord_offsetF = 0;
570     j_coord_offsetG = 0;
571     j_coord_offsetH = 0;
572
573     outeriter        = 0;
574     inneriter        = 0;
575
576     for(iidx=0;iidx<4*DIM;iidx++)
577     {
578         scratch[iidx] = 0.0;
579     }
580
581     /* Start outer loop over neighborlists */
582     for(iidx=0; iidx<nri; iidx++)
583     {
584         /* Load shift vector for this list */
585         i_shift_offset   = DIM*shiftidx[iidx];
586
587         /* Load limits for loop over neighbors */
588         j_index_start    = jindex[iidx];
589         j_index_end      = jindex[iidx+1];
590
591         /* Get outer coordinate index */
592         inr              = iinr[iidx];
593         i_coord_offset   = DIM*inr;
594
595         /* Load i particle coords and add shift vector */
596         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
597
598         fix0             = _mm256_setzero_ps();
599         fiy0             = _mm256_setzero_ps();
600         fiz0             = _mm256_setzero_ps();
601
602         /* Load parameters for i particles */
603         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
604         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
605
606         /* Start inner kernel loop */
607         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
608         {
609
610             /* Get j neighbor index, and coordinate index */
611             jnrA             = jjnr[jidx];
612             jnrB             = jjnr[jidx+1];
613             jnrC             = jjnr[jidx+2];
614             jnrD             = jjnr[jidx+3];
615             jnrE             = jjnr[jidx+4];
616             jnrF             = jjnr[jidx+5];
617             jnrG             = jjnr[jidx+6];
618             jnrH             = jjnr[jidx+7];
619             j_coord_offsetA  = DIM*jnrA;
620             j_coord_offsetB  = DIM*jnrB;
621             j_coord_offsetC  = DIM*jnrC;
622             j_coord_offsetD  = DIM*jnrD;
623             j_coord_offsetE  = DIM*jnrE;
624             j_coord_offsetF  = DIM*jnrF;
625             j_coord_offsetG  = DIM*jnrG;
626             j_coord_offsetH  = DIM*jnrH;
627
628             /* load j atom coordinates */
629             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
630                                                  x+j_coord_offsetC,x+j_coord_offsetD,
631                                                  x+j_coord_offsetE,x+j_coord_offsetF,
632                                                  x+j_coord_offsetG,x+j_coord_offsetH,
633                                                  &jx0,&jy0,&jz0);
634
635             /* Calculate displacement vector */
636             dx00             = _mm256_sub_ps(ix0,jx0);
637             dy00             = _mm256_sub_ps(iy0,jy0);
638             dz00             = _mm256_sub_ps(iz0,jz0);
639
640             /* Calculate squared distance and things based on it */
641             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
642
643             rinv00           = avx256_invsqrt_f(rsq00);
644
645             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
646
647             /* Load parameters for j particles */
648             vdwjidx0A        = 2*vdwtype[jnrA+0];
649             vdwjidx0B        = 2*vdwtype[jnrB+0];
650             vdwjidx0C        = 2*vdwtype[jnrC+0];
651             vdwjidx0D        = 2*vdwtype[jnrD+0];
652             vdwjidx0E        = 2*vdwtype[jnrE+0];
653             vdwjidx0F        = 2*vdwtype[jnrF+0];
654             vdwjidx0G        = 2*vdwtype[jnrG+0];
655             vdwjidx0H        = 2*vdwtype[jnrH+0];
656
657             /**************************
658              * CALCULATE INTERACTIONS *
659              **************************/
660
661             if (gmx_mm256_any_lt(rsq00,rcutoff2))
662             {
663
664             r00              = _mm256_mul_ps(rsq00,rinv00);
665
666             /* Compute parameters for interactions between i and j atoms */
667             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
668                                             vdwioffsetptr0+vdwjidx0B,
669                                             vdwioffsetptr0+vdwjidx0C,
670                                             vdwioffsetptr0+vdwjidx0D,
671                                             vdwioffsetptr0+vdwjidx0E,
672                                             vdwioffsetptr0+vdwjidx0F,
673                                             vdwioffsetptr0+vdwjidx0G,
674                                             vdwioffsetptr0+vdwjidx0H,
675                                             &c6_00,&c12_00);
676
677             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
678                                                                   vdwgridioffsetptr0+vdwjidx0B,
679                                                                   vdwgridioffsetptr0+vdwjidx0C,
680                                                                   vdwgridioffsetptr0+vdwjidx0D,
681                                                                   vdwgridioffsetptr0+vdwjidx0E,
682                                                                   vdwgridioffsetptr0+vdwjidx0F,
683                                                                   vdwgridioffsetptr0+vdwjidx0G,
684                                                                   vdwgridioffsetptr0+vdwjidx0H);
685
686             /* Analytical LJ-PME */
687             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
688             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
689             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
690             exponent         = avx256_exp_f(ewcljrsq);
691             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
692             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
693             /* f6A = 6 * C6grid * (1 - poly) */
694             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
695             /* f6B = C6grid * exponent * beta^6 */
696             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
697             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
698             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
699
700             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
701
702             fscal            = fvdw;
703
704             fscal            = _mm256_and_ps(fscal,cutoff_mask);
705
706             /* Calculate temporary vectorial force */
707             tx               = _mm256_mul_ps(fscal,dx00);
708             ty               = _mm256_mul_ps(fscal,dy00);
709             tz               = _mm256_mul_ps(fscal,dz00);
710
711             /* Update vectorial force */
712             fix0             = _mm256_add_ps(fix0,tx);
713             fiy0             = _mm256_add_ps(fiy0,ty);
714             fiz0             = _mm256_add_ps(fiz0,tz);
715
716             fjptrA             = f+j_coord_offsetA;
717             fjptrB             = f+j_coord_offsetB;
718             fjptrC             = f+j_coord_offsetC;
719             fjptrD             = f+j_coord_offsetD;
720             fjptrE             = f+j_coord_offsetE;
721             fjptrF             = f+j_coord_offsetF;
722             fjptrG             = f+j_coord_offsetG;
723             fjptrH             = f+j_coord_offsetH;
724             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
725
726             }
727
728             /* Inner loop uses 49 flops */
729         }
730
731         if(jidx<j_index_end)
732         {
733
734             /* Get j neighbor index, and coordinate index */
735             jnrlistA         = jjnr[jidx];
736             jnrlistB         = jjnr[jidx+1];
737             jnrlistC         = jjnr[jidx+2];
738             jnrlistD         = jjnr[jidx+3];
739             jnrlistE         = jjnr[jidx+4];
740             jnrlistF         = jjnr[jidx+5];
741             jnrlistG         = jjnr[jidx+6];
742             jnrlistH         = jjnr[jidx+7];
743             /* Sign of each element will be negative for non-real atoms.
744              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
745              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
746              */
747             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
748                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
749                                             
750             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
751             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
752             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
753             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
754             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
755             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
756             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
757             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
758             j_coord_offsetA  = DIM*jnrA;
759             j_coord_offsetB  = DIM*jnrB;
760             j_coord_offsetC  = DIM*jnrC;
761             j_coord_offsetD  = DIM*jnrD;
762             j_coord_offsetE  = DIM*jnrE;
763             j_coord_offsetF  = DIM*jnrF;
764             j_coord_offsetG  = DIM*jnrG;
765             j_coord_offsetH  = DIM*jnrH;
766
767             /* load j atom coordinates */
768             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
769                                                  x+j_coord_offsetC,x+j_coord_offsetD,
770                                                  x+j_coord_offsetE,x+j_coord_offsetF,
771                                                  x+j_coord_offsetG,x+j_coord_offsetH,
772                                                  &jx0,&jy0,&jz0);
773
774             /* Calculate displacement vector */
775             dx00             = _mm256_sub_ps(ix0,jx0);
776             dy00             = _mm256_sub_ps(iy0,jy0);
777             dz00             = _mm256_sub_ps(iz0,jz0);
778
779             /* Calculate squared distance and things based on it */
780             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
781
782             rinv00           = avx256_invsqrt_f(rsq00);
783
784             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
785
786             /* Load parameters for j particles */
787             vdwjidx0A        = 2*vdwtype[jnrA+0];
788             vdwjidx0B        = 2*vdwtype[jnrB+0];
789             vdwjidx0C        = 2*vdwtype[jnrC+0];
790             vdwjidx0D        = 2*vdwtype[jnrD+0];
791             vdwjidx0E        = 2*vdwtype[jnrE+0];
792             vdwjidx0F        = 2*vdwtype[jnrF+0];
793             vdwjidx0G        = 2*vdwtype[jnrG+0];
794             vdwjidx0H        = 2*vdwtype[jnrH+0];
795
796             /**************************
797              * CALCULATE INTERACTIONS *
798              **************************/
799
800             if (gmx_mm256_any_lt(rsq00,rcutoff2))
801             {
802
803             r00              = _mm256_mul_ps(rsq00,rinv00);
804             r00              = _mm256_andnot_ps(dummy_mask,r00);
805
806             /* Compute parameters for interactions between i and j atoms */
807             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
808                                             vdwioffsetptr0+vdwjidx0B,
809                                             vdwioffsetptr0+vdwjidx0C,
810                                             vdwioffsetptr0+vdwjidx0D,
811                                             vdwioffsetptr0+vdwjidx0E,
812                                             vdwioffsetptr0+vdwjidx0F,
813                                             vdwioffsetptr0+vdwjidx0G,
814                                             vdwioffsetptr0+vdwjidx0H,
815                                             &c6_00,&c12_00);
816
817             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
818                                                                   vdwgridioffsetptr0+vdwjidx0B,
819                                                                   vdwgridioffsetptr0+vdwjidx0C,
820                                                                   vdwgridioffsetptr0+vdwjidx0D,
821                                                                   vdwgridioffsetptr0+vdwjidx0E,
822                                                                   vdwgridioffsetptr0+vdwjidx0F,
823                                                                   vdwgridioffsetptr0+vdwjidx0G,
824                                                                   vdwgridioffsetptr0+vdwjidx0H);
825
826             /* Analytical LJ-PME */
827             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
828             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
829             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
830             exponent         = avx256_exp_f(ewcljrsq);
831             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
832             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
833             /* f6A = 6 * C6grid * (1 - poly) */
834             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
835             /* f6B = C6grid * exponent * beta^6 */
836             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
837             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
838             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
839
840             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
841
842             fscal            = fvdw;
843
844             fscal            = _mm256_and_ps(fscal,cutoff_mask);
845
846             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
847
848             /* Calculate temporary vectorial force */
849             tx               = _mm256_mul_ps(fscal,dx00);
850             ty               = _mm256_mul_ps(fscal,dy00);
851             tz               = _mm256_mul_ps(fscal,dz00);
852
853             /* Update vectorial force */
854             fix0             = _mm256_add_ps(fix0,tx);
855             fiy0             = _mm256_add_ps(fiy0,ty);
856             fiz0             = _mm256_add_ps(fiz0,tz);
857
858             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
859             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
860             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
861             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
862             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
863             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
864             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
865             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
866             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
867
868             }
869
870             /* Inner loop uses 50 flops */
871         }
872
873         /* End of innermost loop */
874
875         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
876                                                  f+i_coord_offset,fshift+i_shift_offset);
877
878         /* Increment number of inner iterations */
879         inneriter                  += j_index_end - j_index_start;
880
881         /* Outer loop uses 6 flops */
882     }
883
884     /* Increment number of outer iterations */
885     outeriter        += nri;
886
887     /* Update outer/inner flops */
888
889     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*50);
890 }