cc578326cbaf5f866583e88d8d62119cda24c241
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: None
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     int              nvdwtype;
92     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
96     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
97     __m256i          vfitab;
98     __m128i          vfitab_lo,vfitab_hi;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m256           dummy_mask,cutoff_mask;
103     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
104     __m256           one     = _mm256_set1_ps(1.0);
105     __m256           two     = _mm256_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130     j_coord_offsetE = 0;
131     j_coord_offsetF = 0;
132     j_coord_offsetG = 0;
133     j_coord_offsetH = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
159
160         fix0             = _mm256_setzero_ps();
161         fiy0             = _mm256_setzero_ps();
162         fiz0             = _mm256_setzero_ps();
163
164         /* Load parameters for i particles */
165         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         vvdwsum          = _mm256_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             jnrE             = jjnr[jidx+4];
180             jnrF             = jjnr[jidx+5];
181             jnrG             = jjnr[jidx+6];
182             jnrH             = jjnr[jidx+7];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187             j_coord_offsetE  = DIM*jnrE;
188             j_coord_offsetF  = DIM*jnrF;
189             j_coord_offsetG  = DIM*jnrG;
190             j_coord_offsetH  = DIM*jnrH;
191
192             /* load j atom coordinates */
193             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                                  x+j_coord_offsetC,x+j_coord_offsetD,
195                                                  x+j_coord_offsetE,x+j_coord_offsetF,
196                                                  x+j_coord_offsetG,x+j_coord_offsetH,
197                                                  &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm256_sub_ps(ix0,jx0);
201             dy00             = _mm256_sub_ps(iy0,jy0);
202             dz00             = _mm256_sub_ps(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
206
207             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
208
209             /* Load parameters for j particles */
210             vdwjidx0A        = 2*vdwtype[jnrA+0];
211             vdwjidx0B        = 2*vdwtype[jnrB+0];
212             vdwjidx0C        = 2*vdwtype[jnrC+0];
213             vdwjidx0D        = 2*vdwtype[jnrD+0];
214             vdwjidx0E        = 2*vdwtype[jnrE+0];
215             vdwjidx0F        = 2*vdwtype[jnrF+0];
216             vdwjidx0G        = 2*vdwtype[jnrG+0];
217             vdwjidx0H        = 2*vdwtype[jnrH+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm256_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
227                                             vdwioffsetptr0+vdwjidx0B,
228                                             vdwioffsetptr0+vdwjidx0C,
229                                             vdwioffsetptr0+vdwjidx0D,
230                                             vdwioffsetptr0+vdwjidx0E,
231                                             vdwioffsetptr0+vdwjidx0F,
232                                             vdwioffsetptr0+vdwjidx0G,
233                                             vdwioffsetptr0+vdwjidx0H,
234                                             &c6_00,&c12_00);
235
236             /* Calculate table index by multiplying r with table scale and truncate to integer */
237             rt               = _mm256_mul_ps(r00,vftabscale);
238             vfitab           = _mm256_cvttps_epi32(rt);
239             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
240             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
241             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
242             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
243             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
244             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
245
246             /* CUBIC SPLINE TABLE DISPERSION */
247             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
248                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
249             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
250                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
251             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
252                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
253             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
254                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
255             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
256             Heps             = _mm256_mul_ps(vfeps,H);
257             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
258             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
259             vvdw6            = _mm256_mul_ps(c6_00,VV);
260             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
261             fvdw6            = _mm256_mul_ps(c6_00,FF);
262
263             /* CUBIC SPLINE TABLE REPULSION */
264             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
265             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
266             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
267                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
268             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
269                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
270             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
271                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
272             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
273                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
274             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
275             Heps             = _mm256_mul_ps(vfeps,H);
276             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
277             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
278             vvdw12           = _mm256_mul_ps(c12_00,VV);
279             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
280             fvdw12           = _mm256_mul_ps(c12_00,FF);
281             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
282             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
286
287             fscal            = fvdw;
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm256_mul_ps(fscal,dx00);
291             ty               = _mm256_mul_ps(fscal,dy00);
292             tz               = _mm256_mul_ps(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm256_add_ps(fix0,tx);
296             fiy0             = _mm256_add_ps(fiy0,ty);
297             fiz0             = _mm256_add_ps(fiz0,tz);
298
299             fjptrA             = f+j_coord_offsetA;
300             fjptrB             = f+j_coord_offsetB;
301             fjptrC             = f+j_coord_offsetC;
302             fjptrD             = f+j_coord_offsetD;
303             fjptrE             = f+j_coord_offsetE;
304             fjptrF             = f+j_coord_offsetF;
305             fjptrG             = f+j_coord_offsetG;
306             fjptrH             = f+j_coord_offsetH;
307             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
308
309             /* Inner loop uses 56 flops */
310         }
311
312         if(jidx<j_index_end)
313         {
314
315             /* Get j neighbor index, and coordinate index */
316             jnrlistA         = jjnr[jidx];
317             jnrlistB         = jjnr[jidx+1];
318             jnrlistC         = jjnr[jidx+2];
319             jnrlistD         = jjnr[jidx+3];
320             jnrlistE         = jjnr[jidx+4];
321             jnrlistF         = jjnr[jidx+5];
322             jnrlistG         = jjnr[jidx+6];
323             jnrlistH         = jjnr[jidx+7];
324             /* Sign of each element will be negative for non-real atoms.
325              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
326              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
327              */
328             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
329                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
330                                             
331             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
332             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
333             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
334             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
335             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
336             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
337             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
338             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
339             j_coord_offsetA  = DIM*jnrA;
340             j_coord_offsetB  = DIM*jnrB;
341             j_coord_offsetC  = DIM*jnrC;
342             j_coord_offsetD  = DIM*jnrD;
343             j_coord_offsetE  = DIM*jnrE;
344             j_coord_offsetF  = DIM*jnrF;
345             j_coord_offsetG  = DIM*jnrG;
346             j_coord_offsetH  = DIM*jnrH;
347
348             /* load j atom coordinates */
349             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
350                                                  x+j_coord_offsetC,x+j_coord_offsetD,
351                                                  x+j_coord_offsetE,x+j_coord_offsetF,
352                                                  x+j_coord_offsetG,x+j_coord_offsetH,
353                                                  &jx0,&jy0,&jz0);
354
355             /* Calculate displacement vector */
356             dx00             = _mm256_sub_ps(ix0,jx0);
357             dy00             = _mm256_sub_ps(iy0,jy0);
358             dz00             = _mm256_sub_ps(iz0,jz0);
359
360             /* Calculate squared distance and things based on it */
361             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
362
363             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
364
365             /* Load parameters for j particles */
366             vdwjidx0A        = 2*vdwtype[jnrA+0];
367             vdwjidx0B        = 2*vdwtype[jnrB+0];
368             vdwjidx0C        = 2*vdwtype[jnrC+0];
369             vdwjidx0D        = 2*vdwtype[jnrD+0];
370             vdwjidx0E        = 2*vdwtype[jnrE+0];
371             vdwjidx0F        = 2*vdwtype[jnrF+0];
372             vdwjidx0G        = 2*vdwtype[jnrG+0];
373             vdwjidx0H        = 2*vdwtype[jnrH+0];
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             r00              = _mm256_mul_ps(rsq00,rinv00);
380             r00              = _mm256_andnot_ps(dummy_mask,r00);
381
382             /* Compute parameters for interactions between i and j atoms */
383             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
384                                             vdwioffsetptr0+vdwjidx0B,
385                                             vdwioffsetptr0+vdwjidx0C,
386                                             vdwioffsetptr0+vdwjidx0D,
387                                             vdwioffsetptr0+vdwjidx0E,
388                                             vdwioffsetptr0+vdwjidx0F,
389                                             vdwioffsetptr0+vdwjidx0G,
390                                             vdwioffsetptr0+vdwjidx0H,
391                                             &c6_00,&c12_00);
392
393             /* Calculate table index by multiplying r with table scale and truncate to integer */
394             rt               = _mm256_mul_ps(r00,vftabscale);
395             vfitab           = _mm256_cvttps_epi32(rt);
396             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
397             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
398             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
399             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
400             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
401             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
402
403             /* CUBIC SPLINE TABLE DISPERSION */
404             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
405                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
406             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
407                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
408             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
409                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
410             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
411                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
412             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
413             Heps             = _mm256_mul_ps(vfeps,H);
414             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
415             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
416             vvdw6            = _mm256_mul_ps(c6_00,VV);
417             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
418             fvdw6            = _mm256_mul_ps(c6_00,FF);
419
420             /* CUBIC SPLINE TABLE REPULSION */
421             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
422             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
423             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
424                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
425             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
426                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
427             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
428                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
429             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
430                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
431             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
432             Heps             = _mm256_mul_ps(vfeps,H);
433             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
434             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
435             vvdw12           = _mm256_mul_ps(c12_00,VV);
436             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
437             fvdw12           = _mm256_mul_ps(c12_00,FF);
438             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
439             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
440
441             /* Update potential sum for this i atom from the interaction with this j atom. */
442             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
443             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
444
445             fscal            = fvdw;
446
447             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
448
449             /* Calculate temporary vectorial force */
450             tx               = _mm256_mul_ps(fscal,dx00);
451             ty               = _mm256_mul_ps(fscal,dy00);
452             tz               = _mm256_mul_ps(fscal,dz00);
453
454             /* Update vectorial force */
455             fix0             = _mm256_add_ps(fix0,tx);
456             fiy0             = _mm256_add_ps(fiy0,ty);
457             fiz0             = _mm256_add_ps(fiz0,tz);
458
459             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
460             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
461             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
462             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
463             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
464             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
465             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
466             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
467             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
468
469             /* Inner loop uses 57 flops */
470         }
471
472         /* End of innermost loop */
473
474         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
475                                                  f+i_coord_offset,fshift+i_shift_offset);
476
477         ggid                        = gid[iidx];
478         /* Update potential energies */
479         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
480
481         /* Increment number of inner iterations */
482         inneriter                  += j_index_end - j_index_start;
483
484         /* Outer loop uses 7 flops */
485     }
486
487     /* Increment number of outer iterations */
488     outeriter        += nri;
489
490     /* Update outer/inner flops */
491
492     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*57);
493 }
494 /*
495  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_single
496  * Electrostatics interaction: None
497  * VdW interaction:            CubicSplineTable
498  * Geometry:                   Particle-Particle
499  * Calculate force/pot:        Force
500  */
501 void
502 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_single
503                     (t_nblist                    * gmx_restrict       nlist,
504                      rvec                        * gmx_restrict          xx,
505                      rvec                        * gmx_restrict          ff,
506                      t_forcerec                  * gmx_restrict          fr,
507                      t_mdatoms                   * gmx_restrict     mdatoms,
508                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
509                      t_nrnb                      * gmx_restrict        nrnb)
510 {
511     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
512      * just 0 for non-waters.
513      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
514      * jnr indices corresponding to data put in the four positions in the SIMD register.
515      */
516     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
517     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
518     int              jnrA,jnrB,jnrC,jnrD;
519     int              jnrE,jnrF,jnrG,jnrH;
520     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
521     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
522     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
523     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
524     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
525     real             rcutoff_scalar;
526     real             *shiftvec,*fshift,*x,*f;
527     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
528     real             scratch[4*DIM];
529     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
530     real *           vdwioffsetptr0;
531     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
532     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
533     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
534     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
535     int              nvdwtype;
536     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
537     int              *vdwtype;
538     real             *vdwparam;
539     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
540     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
541     __m256i          vfitab;
542     __m128i          vfitab_lo,vfitab_hi;
543     __m128i          ifour       = _mm_set1_epi32(4);
544     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
545     real             *vftab;
546     __m256           dummy_mask,cutoff_mask;
547     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
548     __m256           one     = _mm256_set1_ps(1.0);
549     __m256           two     = _mm256_set1_ps(2.0);
550     x                = xx[0];
551     f                = ff[0];
552
553     nri              = nlist->nri;
554     iinr             = nlist->iinr;
555     jindex           = nlist->jindex;
556     jjnr             = nlist->jjnr;
557     shiftidx         = nlist->shift;
558     gid              = nlist->gid;
559     shiftvec         = fr->shift_vec[0];
560     fshift           = fr->fshift[0];
561     nvdwtype         = fr->ntype;
562     vdwparam         = fr->nbfp;
563     vdwtype          = mdatoms->typeA;
564
565     vftab            = kernel_data->table_vdw->data;
566     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
567
568     /* Avoid stupid compiler warnings */
569     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
570     j_coord_offsetA = 0;
571     j_coord_offsetB = 0;
572     j_coord_offsetC = 0;
573     j_coord_offsetD = 0;
574     j_coord_offsetE = 0;
575     j_coord_offsetF = 0;
576     j_coord_offsetG = 0;
577     j_coord_offsetH = 0;
578
579     outeriter        = 0;
580     inneriter        = 0;
581
582     for(iidx=0;iidx<4*DIM;iidx++)
583     {
584         scratch[iidx] = 0.0;
585     }
586
587     /* Start outer loop over neighborlists */
588     for(iidx=0; iidx<nri; iidx++)
589     {
590         /* Load shift vector for this list */
591         i_shift_offset   = DIM*shiftidx[iidx];
592
593         /* Load limits for loop over neighbors */
594         j_index_start    = jindex[iidx];
595         j_index_end      = jindex[iidx+1];
596
597         /* Get outer coordinate index */
598         inr              = iinr[iidx];
599         i_coord_offset   = DIM*inr;
600
601         /* Load i particle coords and add shift vector */
602         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
603
604         fix0             = _mm256_setzero_ps();
605         fiy0             = _mm256_setzero_ps();
606         fiz0             = _mm256_setzero_ps();
607
608         /* Load parameters for i particles */
609         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
610
611         /* Start inner kernel loop */
612         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
613         {
614
615             /* Get j neighbor index, and coordinate index */
616             jnrA             = jjnr[jidx];
617             jnrB             = jjnr[jidx+1];
618             jnrC             = jjnr[jidx+2];
619             jnrD             = jjnr[jidx+3];
620             jnrE             = jjnr[jidx+4];
621             jnrF             = jjnr[jidx+5];
622             jnrG             = jjnr[jidx+6];
623             jnrH             = jjnr[jidx+7];
624             j_coord_offsetA  = DIM*jnrA;
625             j_coord_offsetB  = DIM*jnrB;
626             j_coord_offsetC  = DIM*jnrC;
627             j_coord_offsetD  = DIM*jnrD;
628             j_coord_offsetE  = DIM*jnrE;
629             j_coord_offsetF  = DIM*jnrF;
630             j_coord_offsetG  = DIM*jnrG;
631             j_coord_offsetH  = DIM*jnrH;
632
633             /* load j atom coordinates */
634             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
635                                                  x+j_coord_offsetC,x+j_coord_offsetD,
636                                                  x+j_coord_offsetE,x+j_coord_offsetF,
637                                                  x+j_coord_offsetG,x+j_coord_offsetH,
638                                                  &jx0,&jy0,&jz0);
639
640             /* Calculate displacement vector */
641             dx00             = _mm256_sub_ps(ix0,jx0);
642             dy00             = _mm256_sub_ps(iy0,jy0);
643             dz00             = _mm256_sub_ps(iz0,jz0);
644
645             /* Calculate squared distance and things based on it */
646             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
647
648             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
649
650             /* Load parameters for j particles */
651             vdwjidx0A        = 2*vdwtype[jnrA+0];
652             vdwjidx0B        = 2*vdwtype[jnrB+0];
653             vdwjidx0C        = 2*vdwtype[jnrC+0];
654             vdwjidx0D        = 2*vdwtype[jnrD+0];
655             vdwjidx0E        = 2*vdwtype[jnrE+0];
656             vdwjidx0F        = 2*vdwtype[jnrF+0];
657             vdwjidx0G        = 2*vdwtype[jnrG+0];
658             vdwjidx0H        = 2*vdwtype[jnrH+0];
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             r00              = _mm256_mul_ps(rsq00,rinv00);
665
666             /* Compute parameters for interactions between i and j atoms */
667             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
668                                             vdwioffsetptr0+vdwjidx0B,
669                                             vdwioffsetptr0+vdwjidx0C,
670                                             vdwioffsetptr0+vdwjidx0D,
671                                             vdwioffsetptr0+vdwjidx0E,
672                                             vdwioffsetptr0+vdwjidx0F,
673                                             vdwioffsetptr0+vdwjidx0G,
674                                             vdwioffsetptr0+vdwjidx0H,
675                                             &c6_00,&c12_00);
676
677             /* Calculate table index by multiplying r with table scale and truncate to integer */
678             rt               = _mm256_mul_ps(r00,vftabscale);
679             vfitab           = _mm256_cvttps_epi32(rt);
680             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
681             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
682             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
683             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
684             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
685             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
686
687             /* CUBIC SPLINE TABLE DISPERSION */
688             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
689                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
690             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
691                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
692             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
693                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
694             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
695                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
696             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
697             Heps             = _mm256_mul_ps(vfeps,H);
698             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
699             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
700             fvdw6            = _mm256_mul_ps(c6_00,FF);
701
702             /* CUBIC SPLINE TABLE REPULSION */
703             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
704             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
705             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
706                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
707             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
708                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
709             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
710                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
711             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
712                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
713             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
714             Heps             = _mm256_mul_ps(vfeps,H);
715             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
716             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
717             fvdw12           = _mm256_mul_ps(c12_00,FF);
718             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
719
720             fscal            = fvdw;
721
722             /* Calculate temporary vectorial force */
723             tx               = _mm256_mul_ps(fscal,dx00);
724             ty               = _mm256_mul_ps(fscal,dy00);
725             tz               = _mm256_mul_ps(fscal,dz00);
726
727             /* Update vectorial force */
728             fix0             = _mm256_add_ps(fix0,tx);
729             fiy0             = _mm256_add_ps(fiy0,ty);
730             fiz0             = _mm256_add_ps(fiz0,tz);
731
732             fjptrA             = f+j_coord_offsetA;
733             fjptrB             = f+j_coord_offsetB;
734             fjptrC             = f+j_coord_offsetC;
735             fjptrD             = f+j_coord_offsetD;
736             fjptrE             = f+j_coord_offsetE;
737             fjptrF             = f+j_coord_offsetF;
738             fjptrG             = f+j_coord_offsetG;
739             fjptrH             = f+j_coord_offsetH;
740             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
741
742             /* Inner loop uses 48 flops */
743         }
744
745         if(jidx<j_index_end)
746         {
747
748             /* Get j neighbor index, and coordinate index */
749             jnrlistA         = jjnr[jidx];
750             jnrlistB         = jjnr[jidx+1];
751             jnrlistC         = jjnr[jidx+2];
752             jnrlistD         = jjnr[jidx+3];
753             jnrlistE         = jjnr[jidx+4];
754             jnrlistF         = jjnr[jidx+5];
755             jnrlistG         = jjnr[jidx+6];
756             jnrlistH         = jjnr[jidx+7];
757             /* Sign of each element will be negative for non-real atoms.
758              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
759              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
760              */
761             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
762                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
763                                             
764             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
765             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
766             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
767             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
768             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
769             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
770             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
771             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
772             j_coord_offsetA  = DIM*jnrA;
773             j_coord_offsetB  = DIM*jnrB;
774             j_coord_offsetC  = DIM*jnrC;
775             j_coord_offsetD  = DIM*jnrD;
776             j_coord_offsetE  = DIM*jnrE;
777             j_coord_offsetF  = DIM*jnrF;
778             j_coord_offsetG  = DIM*jnrG;
779             j_coord_offsetH  = DIM*jnrH;
780
781             /* load j atom coordinates */
782             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
783                                                  x+j_coord_offsetC,x+j_coord_offsetD,
784                                                  x+j_coord_offsetE,x+j_coord_offsetF,
785                                                  x+j_coord_offsetG,x+j_coord_offsetH,
786                                                  &jx0,&jy0,&jz0);
787
788             /* Calculate displacement vector */
789             dx00             = _mm256_sub_ps(ix0,jx0);
790             dy00             = _mm256_sub_ps(iy0,jy0);
791             dz00             = _mm256_sub_ps(iz0,jz0);
792
793             /* Calculate squared distance and things based on it */
794             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
795
796             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
797
798             /* Load parameters for j particles */
799             vdwjidx0A        = 2*vdwtype[jnrA+0];
800             vdwjidx0B        = 2*vdwtype[jnrB+0];
801             vdwjidx0C        = 2*vdwtype[jnrC+0];
802             vdwjidx0D        = 2*vdwtype[jnrD+0];
803             vdwjidx0E        = 2*vdwtype[jnrE+0];
804             vdwjidx0F        = 2*vdwtype[jnrF+0];
805             vdwjidx0G        = 2*vdwtype[jnrG+0];
806             vdwjidx0H        = 2*vdwtype[jnrH+0];
807
808             /**************************
809              * CALCULATE INTERACTIONS *
810              **************************/
811
812             r00              = _mm256_mul_ps(rsq00,rinv00);
813             r00              = _mm256_andnot_ps(dummy_mask,r00);
814
815             /* Compute parameters for interactions between i and j atoms */
816             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
817                                             vdwioffsetptr0+vdwjidx0B,
818                                             vdwioffsetptr0+vdwjidx0C,
819                                             vdwioffsetptr0+vdwjidx0D,
820                                             vdwioffsetptr0+vdwjidx0E,
821                                             vdwioffsetptr0+vdwjidx0F,
822                                             vdwioffsetptr0+vdwjidx0G,
823                                             vdwioffsetptr0+vdwjidx0H,
824                                             &c6_00,&c12_00);
825
826             /* Calculate table index by multiplying r with table scale and truncate to integer */
827             rt               = _mm256_mul_ps(r00,vftabscale);
828             vfitab           = _mm256_cvttps_epi32(rt);
829             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
830             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
831             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
832             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
833             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
834             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
835
836             /* CUBIC SPLINE TABLE DISPERSION */
837             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
838                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
839             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
840                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
841             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
842                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
843             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
844                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
845             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
846             Heps             = _mm256_mul_ps(vfeps,H);
847             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
848             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
849             fvdw6            = _mm256_mul_ps(c6_00,FF);
850
851             /* CUBIC SPLINE TABLE REPULSION */
852             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
853             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
854             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
855                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
856             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
857                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
858             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
859                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
860             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
861                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
862             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
863             Heps             = _mm256_mul_ps(vfeps,H);
864             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
865             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
866             fvdw12           = _mm256_mul_ps(c12_00,FF);
867             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
868
869             fscal            = fvdw;
870
871             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
872
873             /* Calculate temporary vectorial force */
874             tx               = _mm256_mul_ps(fscal,dx00);
875             ty               = _mm256_mul_ps(fscal,dy00);
876             tz               = _mm256_mul_ps(fscal,dz00);
877
878             /* Update vectorial force */
879             fix0             = _mm256_add_ps(fix0,tx);
880             fiy0             = _mm256_add_ps(fiy0,ty);
881             fiz0             = _mm256_add_ps(fiz0,tz);
882
883             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
884             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
885             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
886             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
887             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
888             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
889             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
890             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
891             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
892
893             /* Inner loop uses 49 flops */
894         }
895
896         /* End of innermost loop */
897
898         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
899                                                  f+i_coord_offset,fshift+i_shift_offset);
900
901         /* Increment number of inner iterations */
902         inneriter                  += j_index_end - j_index_start;
903
904         /* Outer loop uses 6 flops */
905     }
906
907     /* Increment number of outer iterations */
908     outeriter        += nri;
909
910     /* Update outer/inner flops */
911
912     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*49);
913 }