Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: None
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256i          vfitab;
100     __m128i          vfitab_lo,vfitab_hi;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
103     real             *vftab;
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132     j_coord_offsetE = 0;
133     j_coord_offsetF = 0;
134     j_coord_offsetG = 0;
135     j_coord_offsetH = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161
162         fix0             = _mm256_setzero_ps();
163         fiy0             = _mm256_setzero_ps();
164         fiz0             = _mm256_setzero_ps();
165
166         /* Load parameters for i particles */
167         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
168
169         /* Reset potential sums */
170         vvdwsum          = _mm256_setzero_ps();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181             jnrE             = jjnr[jidx+4];
182             jnrF             = jjnr[jidx+5];
183             jnrG             = jjnr[jidx+6];
184             jnrH             = jjnr[jidx+7];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189             j_coord_offsetE  = DIM*jnrE;
190             j_coord_offsetF  = DIM*jnrF;
191             j_coord_offsetG  = DIM*jnrG;
192             j_coord_offsetH  = DIM*jnrH;
193
194             /* load j atom coordinates */
195             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                                  x+j_coord_offsetC,x+j_coord_offsetD,
197                                                  x+j_coord_offsetE,x+j_coord_offsetF,
198                                                  x+j_coord_offsetG,x+j_coord_offsetH,
199                                                  &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm256_sub_ps(ix0,jx0);
203             dy00             = _mm256_sub_ps(iy0,jy0);
204             dz00             = _mm256_sub_ps(iz0,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
208
209             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
210
211             /* Load parameters for j particles */
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214             vdwjidx0C        = 2*vdwtype[jnrC+0];
215             vdwjidx0D        = 2*vdwtype[jnrD+0];
216             vdwjidx0E        = 2*vdwtype[jnrE+0];
217             vdwjidx0F        = 2*vdwtype[jnrF+0];
218             vdwjidx0G        = 2*vdwtype[jnrG+0];
219             vdwjidx0H        = 2*vdwtype[jnrH+0];
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm256_mul_ps(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
229                                             vdwioffsetptr0+vdwjidx0B,
230                                             vdwioffsetptr0+vdwjidx0C,
231                                             vdwioffsetptr0+vdwjidx0D,
232                                             vdwioffsetptr0+vdwjidx0E,
233                                             vdwioffsetptr0+vdwjidx0F,
234                                             vdwioffsetptr0+vdwjidx0G,
235                                             vdwioffsetptr0+vdwjidx0H,
236                                             &c6_00,&c12_00);
237
238             /* Calculate table index by multiplying r with table scale and truncate to integer */
239             rt               = _mm256_mul_ps(r00,vftabscale);
240             vfitab           = _mm256_cvttps_epi32(rt);
241             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
242             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
243             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
244             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
245             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
246             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
247
248             /* CUBIC SPLINE TABLE DISPERSION */
249             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
250                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
251             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
252                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
253             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
254                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
255             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
256                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
257             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
258             Heps             = _mm256_mul_ps(vfeps,H);
259             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
260             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
261             vvdw6            = _mm256_mul_ps(c6_00,VV);
262             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
263             fvdw6            = _mm256_mul_ps(c6_00,FF);
264
265             /* CUBIC SPLINE TABLE REPULSION */
266             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
267             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
268             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
269                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
270             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
271                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
272             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
273                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
274             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
275                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
276             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
277             Heps             = _mm256_mul_ps(vfeps,H);
278             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
279             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
280             vvdw12           = _mm256_mul_ps(c12_00,VV);
281             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
282             fvdw12           = _mm256_mul_ps(c12_00,FF);
283             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
284             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
288
289             fscal            = fvdw;
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm256_mul_ps(fscal,dx00);
293             ty               = _mm256_mul_ps(fscal,dy00);
294             tz               = _mm256_mul_ps(fscal,dz00);
295
296             /* Update vectorial force */
297             fix0             = _mm256_add_ps(fix0,tx);
298             fiy0             = _mm256_add_ps(fiy0,ty);
299             fiz0             = _mm256_add_ps(fiz0,tz);
300
301             fjptrA             = f+j_coord_offsetA;
302             fjptrB             = f+j_coord_offsetB;
303             fjptrC             = f+j_coord_offsetC;
304             fjptrD             = f+j_coord_offsetD;
305             fjptrE             = f+j_coord_offsetE;
306             fjptrF             = f+j_coord_offsetF;
307             fjptrG             = f+j_coord_offsetG;
308             fjptrH             = f+j_coord_offsetH;
309             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
310
311             /* Inner loop uses 56 flops */
312         }
313
314         if(jidx<j_index_end)
315         {
316
317             /* Get j neighbor index, and coordinate index */
318             jnrlistA         = jjnr[jidx];
319             jnrlistB         = jjnr[jidx+1];
320             jnrlistC         = jjnr[jidx+2];
321             jnrlistD         = jjnr[jidx+3];
322             jnrlistE         = jjnr[jidx+4];
323             jnrlistF         = jjnr[jidx+5];
324             jnrlistG         = jjnr[jidx+6];
325             jnrlistH         = jjnr[jidx+7];
326             /* Sign of each element will be negative for non-real atoms.
327              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
328              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
329              */
330             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
331                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
332                                             
333             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
334             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
335             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
336             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
337             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
338             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
339             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
340             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
341             j_coord_offsetA  = DIM*jnrA;
342             j_coord_offsetB  = DIM*jnrB;
343             j_coord_offsetC  = DIM*jnrC;
344             j_coord_offsetD  = DIM*jnrD;
345             j_coord_offsetE  = DIM*jnrE;
346             j_coord_offsetF  = DIM*jnrF;
347             j_coord_offsetG  = DIM*jnrG;
348             j_coord_offsetH  = DIM*jnrH;
349
350             /* load j atom coordinates */
351             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
352                                                  x+j_coord_offsetC,x+j_coord_offsetD,
353                                                  x+j_coord_offsetE,x+j_coord_offsetF,
354                                                  x+j_coord_offsetG,x+j_coord_offsetH,
355                                                  &jx0,&jy0,&jz0);
356
357             /* Calculate displacement vector */
358             dx00             = _mm256_sub_ps(ix0,jx0);
359             dy00             = _mm256_sub_ps(iy0,jy0);
360             dz00             = _mm256_sub_ps(iz0,jz0);
361
362             /* Calculate squared distance and things based on it */
363             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
364
365             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
366
367             /* Load parameters for j particles */
368             vdwjidx0A        = 2*vdwtype[jnrA+0];
369             vdwjidx0B        = 2*vdwtype[jnrB+0];
370             vdwjidx0C        = 2*vdwtype[jnrC+0];
371             vdwjidx0D        = 2*vdwtype[jnrD+0];
372             vdwjidx0E        = 2*vdwtype[jnrE+0];
373             vdwjidx0F        = 2*vdwtype[jnrF+0];
374             vdwjidx0G        = 2*vdwtype[jnrG+0];
375             vdwjidx0H        = 2*vdwtype[jnrH+0];
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             r00              = _mm256_mul_ps(rsq00,rinv00);
382             r00              = _mm256_andnot_ps(dummy_mask,r00);
383
384             /* Compute parameters for interactions between i and j atoms */
385             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
386                                             vdwioffsetptr0+vdwjidx0B,
387                                             vdwioffsetptr0+vdwjidx0C,
388                                             vdwioffsetptr0+vdwjidx0D,
389                                             vdwioffsetptr0+vdwjidx0E,
390                                             vdwioffsetptr0+vdwjidx0F,
391                                             vdwioffsetptr0+vdwjidx0G,
392                                             vdwioffsetptr0+vdwjidx0H,
393                                             &c6_00,&c12_00);
394
395             /* Calculate table index by multiplying r with table scale and truncate to integer */
396             rt               = _mm256_mul_ps(r00,vftabscale);
397             vfitab           = _mm256_cvttps_epi32(rt);
398             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
399             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
400             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
401             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
402             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
403             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
404
405             /* CUBIC SPLINE TABLE DISPERSION */
406             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
407                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
408             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
409                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
410             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
411                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
412             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
413                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
414             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
415             Heps             = _mm256_mul_ps(vfeps,H);
416             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
417             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
418             vvdw6            = _mm256_mul_ps(c6_00,VV);
419             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
420             fvdw6            = _mm256_mul_ps(c6_00,FF);
421
422             /* CUBIC SPLINE TABLE REPULSION */
423             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
424             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
425             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
426                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
427             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
428                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
429             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
430                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
431             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
432                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
433             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
434             Heps             = _mm256_mul_ps(vfeps,H);
435             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
436             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
437             vvdw12           = _mm256_mul_ps(c12_00,VV);
438             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
439             fvdw12           = _mm256_mul_ps(c12_00,FF);
440             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
441             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
445             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
446
447             fscal            = fvdw;
448
449             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
450
451             /* Calculate temporary vectorial force */
452             tx               = _mm256_mul_ps(fscal,dx00);
453             ty               = _mm256_mul_ps(fscal,dy00);
454             tz               = _mm256_mul_ps(fscal,dz00);
455
456             /* Update vectorial force */
457             fix0             = _mm256_add_ps(fix0,tx);
458             fiy0             = _mm256_add_ps(fiy0,ty);
459             fiz0             = _mm256_add_ps(fiz0,tz);
460
461             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
462             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
463             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
464             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
465             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
466             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
467             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
468             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
469             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
470
471             /* Inner loop uses 57 flops */
472         }
473
474         /* End of innermost loop */
475
476         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
477                                                  f+i_coord_offset,fshift+i_shift_offset);
478
479         ggid                        = gid[iidx];
480         /* Update potential energies */
481         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
482
483         /* Increment number of inner iterations */
484         inneriter                  += j_index_end - j_index_start;
485
486         /* Outer loop uses 7 flops */
487     }
488
489     /* Increment number of outer iterations */
490     outeriter        += nri;
491
492     /* Update outer/inner flops */
493
494     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*57);
495 }
496 /*
497  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_single
498  * Electrostatics interaction: None
499  * VdW interaction:            CubicSplineTable
500  * Geometry:                   Particle-Particle
501  * Calculate force/pot:        Force
502  */
503 void
504 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_single
505                     (t_nblist                    * gmx_restrict       nlist,
506                      rvec                        * gmx_restrict          xx,
507                      rvec                        * gmx_restrict          ff,
508                      t_forcerec                  * gmx_restrict          fr,
509                      t_mdatoms                   * gmx_restrict     mdatoms,
510                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
511                      t_nrnb                      * gmx_restrict        nrnb)
512 {
513     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
514      * just 0 for non-waters.
515      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
516      * jnr indices corresponding to data put in the four positions in the SIMD register.
517      */
518     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
519     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
520     int              jnrA,jnrB,jnrC,jnrD;
521     int              jnrE,jnrF,jnrG,jnrH;
522     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
523     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
524     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
525     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
526     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
527     real             rcutoff_scalar;
528     real             *shiftvec,*fshift,*x,*f;
529     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
530     real             scratch[4*DIM];
531     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
532     real *           vdwioffsetptr0;
533     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
534     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
535     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
536     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
537     int              nvdwtype;
538     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
539     int              *vdwtype;
540     real             *vdwparam;
541     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
542     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
543     __m256i          vfitab;
544     __m128i          vfitab_lo,vfitab_hi;
545     __m128i          ifour       = _mm_set1_epi32(4);
546     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
547     real             *vftab;
548     __m256           dummy_mask,cutoff_mask;
549     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
550     __m256           one     = _mm256_set1_ps(1.0);
551     __m256           two     = _mm256_set1_ps(2.0);
552     x                = xx[0];
553     f                = ff[0];
554
555     nri              = nlist->nri;
556     iinr             = nlist->iinr;
557     jindex           = nlist->jindex;
558     jjnr             = nlist->jjnr;
559     shiftidx         = nlist->shift;
560     gid              = nlist->gid;
561     shiftvec         = fr->shift_vec[0];
562     fshift           = fr->fshift[0];
563     nvdwtype         = fr->ntype;
564     vdwparam         = fr->nbfp;
565     vdwtype          = mdatoms->typeA;
566
567     vftab            = kernel_data->table_vdw->data;
568     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
569
570     /* Avoid stupid compiler warnings */
571     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
572     j_coord_offsetA = 0;
573     j_coord_offsetB = 0;
574     j_coord_offsetC = 0;
575     j_coord_offsetD = 0;
576     j_coord_offsetE = 0;
577     j_coord_offsetF = 0;
578     j_coord_offsetG = 0;
579     j_coord_offsetH = 0;
580
581     outeriter        = 0;
582     inneriter        = 0;
583
584     for(iidx=0;iidx<4*DIM;iidx++)
585     {
586         scratch[iidx] = 0.0;
587     }
588
589     /* Start outer loop over neighborlists */
590     for(iidx=0; iidx<nri; iidx++)
591     {
592         /* Load shift vector for this list */
593         i_shift_offset   = DIM*shiftidx[iidx];
594
595         /* Load limits for loop over neighbors */
596         j_index_start    = jindex[iidx];
597         j_index_end      = jindex[iidx+1];
598
599         /* Get outer coordinate index */
600         inr              = iinr[iidx];
601         i_coord_offset   = DIM*inr;
602
603         /* Load i particle coords and add shift vector */
604         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
605
606         fix0             = _mm256_setzero_ps();
607         fiy0             = _mm256_setzero_ps();
608         fiz0             = _mm256_setzero_ps();
609
610         /* Load parameters for i particles */
611         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
612
613         /* Start inner kernel loop */
614         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
615         {
616
617             /* Get j neighbor index, and coordinate index */
618             jnrA             = jjnr[jidx];
619             jnrB             = jjnr[jidx+1];
620             jnrC             = jjnr[jidx+2];
621             jnrD             = jjnr[jidx+3];
622             jnrE             = jjnr[jidx+4];
623             jnrF             = jjnr[jidx+5];
624             jnrG             = jjnr[jidx+6];
625             jnrH             = jjnr[jidx+7];
626             j_coord_offsetA  = DIM*jnrA;
627             j_coord_offsetB  = DIM*jnrB;
628             j_coord_offsetC  = DIM*jnrC;
629             j_coord_offsetD  = DIM*jnrD;
630             j_coord_offsetE  = DIM*jnrE;
631             j_coord_offsetF  = DIM*jnrF;
632             j_coord_offsetG  = DIM*jnrG;
633             j_coord_offsetH  = DIM*jnrH;
634
635             /* load j atom coordinates */
636             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
637                                                  x+j_coord_offsetC,x+j_coord_offsetD,
638                                                  x+j_coord_offsetE,x+j_coord_offsetF,
639                                                  x+j_coord_offsetG,x+j_coord_offsetH,
640                                                  &jx0,&jy0,&jz0);
641
642             /* Calculate displacement vector */
643             dx00             = _mm256_sub_ps(ix0,jx0);
644             dy00             = _mm256_sub_ps(iy0,jy0);
645             dz00             = _mm256_sub_ps(iz0,jz0);
646
647             /* Calculate squared distance and things based on it */
648             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
649
650             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
651
652             /* Load parameters for j particles */
653             vdwjidx0A        = 2*vdwtype[jnrA+0];
654             vdwjidx0B        = 2*vdwtype[jnrB+0];
655             vdwjidx0C        = 2*vdwtype[jnrC+0];
656             vdwjidx0D        = 2*vdwtype[jnrD+0];
657             vdwjidx0E        = 2*vdwtype[jnrE+0];
658             vdwjidx0F        = 2*vdwtype[jnrF+0];
659             vdwjidx0G        = 2*vdwtype[jnrG+0];
660             vdwjidx0H        = 2*vdwtype[jnrH+0];
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             r00              = _mm256_mul_ps(rsq00,rinv00);
667
668             /* Compute parameters for interactions between i and j atoms */
669             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
670                                             vdwioffsetptr0+vdwjidx0B,
671                                             vdwioffsetptr0+vdwjidx0C,
672                                             vdwioffsetptr0+vdwjidx0D,
673                                             vdwioffsetptr0+vdwjidx0E,
674                                             vdwioffsetptr0+vdwjidx0F,
675                                             vdwioffsetptr0+vdwjidx0G,
676                                             vdwioffsetptr0+vdwjidx0H,
677                                             &c6_00,&c12_00);
678
679             /* Calculate table index by multiplying r with table scale and truncate to integer */
680             rt               = _mm256_mul_ps(r00,vftabscale);
681             vfitab           = _mm256_cvttps_epi32(rt);
682             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
683             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
684             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
685             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
686             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
687             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
688
689             /* CUBIC SPLINE TABLE DISPERSION */
690             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
691                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
692             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
693                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
694             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
695                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
696             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
697                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
698             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
699             Heps             = _mm256_mul_ps(vfeps,H);
700             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
701             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
702             fvdw6            = _mm256_mul_ps(c6_00,FF);
703
704             /* CUBIC SPLINE TABLE REPULSION */
705             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
706             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
707             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
708                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
709             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
710                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
711             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
712                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
713             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
714                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
715             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
716             Heps             = _mm256_mul_ps(vfeps,H);
717             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
718             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
719             fvdw12           = _mm256_mul_ps(c12_00,FF);
720             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
721
722             fscal            = fvdw;
723
724             /* Calculate temporary vectorial force */
725             tx               = _mm256_mul_ps(fscal,dx00);
726             ty               = _mm256_mul_ps(fscal,dy00);
727             tz               = _mm256_mul_ps(fscal,dz00);
728
729             /* Update vectorial force */
730             fix0             = _mm256_add_ps(fix0,tx);
731             fiy0             = _mm256_add_ps(fiy0,ty);
732             fiz0             = _mm256_add_ps(fiz0,tz);
733
734             fjptrA             = f+j_coord_offsetA;
735             fjptrB             = f+j_coord_offsetB;
736             fjptrC             = f+j_coord_offsetC;
737             fjptrD             = f+j_coord_offsetD;
738             fjptrE             = f+j_coord_offsetE;
739             fjptrF             = f+j_coord_offsetF;
740             fjptrG             = f+j_coord_offsetG;
741             fjptrH             = f+j_coord_offsetH;
742             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
743
744             /* Inner loop uses 48 flops */
745         }
746
747         if(jidx<j_index_end)
748         {
749
750             /* Get j neighbor index, and coordinate index */
751             jnrlistA         = jjnr[jidx];
752             jnrlistB         = jjnr[jidx+1];
753             jnrlistC         = jjnr[jidx+2];
754             jnrlistD         = jjnr[jidx+3];
755             jnrlistE         = jjnr[jidx+4];
756             jnrlistF         = jjnr[jidx+5];
757             jnrlistG         = jjnr[jidx+6];
758             jnrlistH         = jjnr[jidx+7];
759             /* Sign of each element will be negative for non-real atoms.
760              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
761              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
762              */
763             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
764                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
765                                             
766             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
767             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
768             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
769             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
770             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
771             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
772             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
773             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
774             j_coord_offsetA  = DIM*jnrA;
775             j_coord_offsetB  = DIM*jnrB;
776             j_coord_offsetC  = DIM*jnrC;
777             j_coord_offsetD  = DIM*jnrD;
778             j_coord_offsetE  = DIM*jnrE;
779             j_coord_offsetF  = DIM*jnrF;
780             j_coord_offsetG  = DIM*jnrG;
781             j_coord_offsetH  = DIM*jnrH;
782
783             /* load j atom coordinates */
784             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
785                                                  x+j_coord_offsetC,x+j_coord_offsetD,
786                                                  x+j_coord_offsetE,x+j_coord_offsetF,
787                                                  x+j_coord_offsetG,x+j_coord_offsetH,
788                                                  &jx0,&jy0,&jz0);
789
790             /* Calculate displacement vector */
791             dx00             = _mm256_sub_ps(ix0,jx0);
792             dy00             = _mm256_sub_ps(iy0,jy0);
793             dz00             = _mm256_sub_ps(iz0,jz0);
794
795             /* Calculate squared distance and things based on it */
796             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
797
798             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
799
800             /* Load parameters for j particles */
801             vdwjidx0A        = 2*vdwtype[jnrA+0];
802             vdwjidx0B        = 2*vdwtype[jnrB+0];
803             vdwjidx0C        = 2*vdwtype[jnrC+0];
804             vdwjidx0D        = 2*vdwtype[jnrD+0];
805             vdwjidx0E        = 2*vdwtype[jnrE+0];
806             vdwjidx0F        = 2*vdwtype[jnrF+0];
807             vdwjidx0G        = 2*vdwtype[jnrG+0];
808             vdwjidx0H        = 2*vdwtype[jnrH+0];
809
810             /**************************
811              * CALCULATE INTERACTIONS *
812              **************************/
813
814             r00              = _mm256_mul_ps(rsq00,rinv00);
815             r00              = _mm256_andnot_ps(dummy_mask,r00);
816
817             /* Compute parameters for interactions between i and j atoms */
818             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
819                                             vdwioffsetptr0+vdwjidx0B,
820                                             vdwioffsetptr0+vdwjidx0C,
821                                             vdwioffsetptr0+vdwjidx0D,
822                                             vdwioffsetptr0+vdwjidx0E,
823                                             vdwioffsetptr0+vdwjidx0F,
824                                             vdwioffsetptr0+vdwjidx0G,
825                                             vdwioffsetptr0+vdwjidx0H,
826                                             &c6_00,&c12_00);
827
828             /* Calculate table index by multiplying r with table scale and truncate to integer */
829             rt               = _mm256_mul_ps(r00,vftabscale);
830             vfitab           = _mm256_cvttps_epi32(rt);
831             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
832             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
833             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
834             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
835             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
836             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
837
838             /* CUBIC SPLINE TABLE DISPERSION */
839             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
840                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
841             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
842                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
843             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
844                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
845             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
846                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
847             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
848             Heps             = _mm256_mul_ps(vfeps,H);
849             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
850             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
851             fvdw6            = _mm256_mul_ps(c6_00,FF);
852
853             /* CUBIC SPLINE TABLE REPULSION */
854             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
855             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
856             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
857                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
858             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
859                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
860             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
861                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
862             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
863                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
864             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
865             Heps             = _mm256_mul_ps(vfeps,H);
866             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
867             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
868             fvdw12           = _mm256_mul_ps(c12_00,FF);
869             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
870
871             fscal            = fvdw;
872
873             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
874
875             /* Calculate temporary vectorial force */
876             tx               = _mm256_mul_ps(fscal,dx00);
877             ty               = _mm256_mul_ps(fscal,dy00);
878             tz               = _mm256_mul_ps(fscal,dz00);
879
880             /* Update vectorial force */
881             fix0             = _mm256_add_ps(fix0,tx);
882             fiy0             = _mm256_add_ps(fiy0,ty);
883             fiz0             = _mm256_add_ps(fiz0,tz);
884
885             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
886             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
887             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
888             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
889             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
890             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
891             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
892             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
893             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
894
895             /* Inner loop uses 49 flops */
896         }
897
898         /* End of innermost loop */
899
900         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
901                                                  f+i_coord_offset,fshift+i_shift_offset);
902
903         /* Increment number of inner iterations */
904         inneriter                  += j_index_end - j_index_start;
905
906         /* Outer loop uses 6 flops */
907     }
908
909     /* Increment number of outer iterations */
910     outeriter        += nri;
911
912     /* Update outer/inner flops */
913
914     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*49);
915 }