Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256i          gbitab;
94     __m128i          gbitab_lo,gbitab_hi;
95     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
96     __m256           minushalf = _mm256_set1_ps(-0.5);
97     real             *invsqrta,*dvda,*gbtab;
98     __m256i          vfitab;
99     __m128i          vfitab_lo,vfitab_hi;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m256           dummy_mask,cutoff_mask;
104     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
105     __m256           one     = _mm256_set1_ps(1.0);
106     __m256           two     = _mm256_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm256_set1_ps(fr->epsfac);
119     charge           = mdatoms->chargeA;
120
121     invsqrta         = fr->invsqrta;
122     dvda             = fr->dvda;
123     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
124     gbtab            = fr->gbtab.data;
125     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133     j_coord_offsetE = 0;
134     j_coord_offsetF = 0;
135     j_coord_offsetG = 0;
136     j_coord_offsetH = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm256_setzero_ps();
164         fiy0             = _mm256_setzero_ps();
165         fiz0             = _mm256_setzero_ps();
166
167         /* Load parameters for i particles */
168         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
169         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
170
171         /* Reset potential sums */
172         velecsum         = _mm256_setzero_ps();
173         vgbsum           = _mm256_setzero_ps();
174         dvdasum          = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_ps(ix0,jx0);
207             dy00             = _mm256_sub_ps(iy0,jy0);
208             dz00             = _mm256_sub_ps(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
217                                                                  charge+jnrC+0,charge+jnrD+0,
218                                                                  charge+jnrE+0,charge+jnrF+0,
219                                                                  charge+jnrG+0,charge+jnrH+0);
220             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
221                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
222                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
223                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             r00              = _mm256_mul_ps(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm256_mul_ps(iq0,jq0);
233
234             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
235             isaprod          = _mm256_mul_ps(isai0,isaj0);
236             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
237             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
238
239             /* Calculate generalized born table index - this is a separate table from the normal one,
240              * but we use the same procedure by multiplying r with scale and truncating to integer.
241              */
242             rt               = _mm256_mul_ps(r00,gbscale);
243             gbitab           = _mm256_cvttps_epi32(rt);
244             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
245             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
246             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
247             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
248             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
249             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
250             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
251                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
252             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
253                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
254             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
255                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
256             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
257                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
258             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
259             Heps             = _mm256_mul_ps(gbeps,H);
260             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
261             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
262             vgb              = _mm256_mul_ps(gbqqfactor,VV);
263
264             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
265             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
266             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
267             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
268             fjptrA           = dvda+jnrA;
269             fjptrB           = dvda+jnrB;
270             fjptrC           = dvda+jnrC;
271             fjptrD           = dvda+jnrD;
272             fjptrE           = dvda+jnrE;
273             fjptrF           = dvda+jnrF;
274             fjptrG           = dvda+jnrG;
275             fjptrH           = dvda+jnrH;
276             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
277                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
278             velec            = _mm256_mul_ps(qq00,rinv00);
279             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm256_add_ps(velecsum,velec);
283             vgbsum           = _mm256_add_ps(vgbsum,vgb);
284
285             fscal            = felec;
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm256_mul_ps(fscal,dx00);
289             ty               = _mm256_mul_ps(fscal,dy00);
290             tz               = _mm256_mul_ps(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm256_add_ps(fix0,tx);
294             fiy0             = _mm256_add_ps(fiy0,ty);
295             fiz0             = _mm256_add_ps(fiz0,tz);
296
297             fjptrA             = f+j_coord_offsetA;
298             fjptrB             = f+j_coord_offsetB;
299             fjptrC             = f+j_coord_offsetC;
300             fjptrD             = f+j_coord_offsetD;
301             fjptrE             = f+j_coord_offsetE;
302             fjptrF             = f+j_coord_offsetF;
303             fjptrG             = f+j_coord_offsetG;
304             fjptrH             = f+j_coord_offsetH;
305             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
306
307             /* Inner loop uses 57 flops */
308         }
309
310         if(jidx<j_index_end)
311         {
312
313             /* Get j neighbor index, and coordinate index */
314             jnrlistA         = jjnr[jidx];
315             jnrlistB         = jjnr[jidx+1];
316             jnrlistC         = jjnr[jidx+2];
317             jnrlistD         = jjnr[jidx+3];
318             jnrlistE         = jjnr[jidx+4];
319             jnrlistF         = jjnr[jidx+5];
320             jnrlistG         = jjnr[jidx+6];
321             jnrlistH         = jjnr[jidx+7];
322             /* Sign of each element will be negative for non-real atoms.
323              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
324              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
325              */
326             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
327                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
328                                             
329             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
330             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
331             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
332             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
333             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
334             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
335             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
336             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
337             j_coord_offsetA  = DIM*jnrA;
338             j_coord_offsetB  = DIM*jnrB;
339             j_coord_offsetC  = DIM*jnrC;
340             j_coord_offsetD  = DIM*jnrD;
341             j_coord_offsetE  = DIM*jnrE;
342             j_coord_offsetF  = DIM*jnrF;
343             j_coord_offsetG  = DIM*jnrG;
344             j_coord_offsetH  = DIM*jnrH;
345
346             /* load j atom coordinates */
347             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
348                                                  x+j_coord_offsetC,x+j_coord_offsetD,
349                                                  x+j_coord_offsetE,x+j_coord_offsetF,
350                                                  x+j_coord_offsetG,x+j_coord_offsetH,
351                                                  &jx0,&jy0,&jz0);
352
353             /* Calculate displacement vector */
354             dx00             = _mm256_sub_ps(ix0,jx0);
355             dy00             = _mm256_sub_ps(iy0,jy0);
356             dz00             = _mm256_sub_ps(iz0,jz0);
357
358             /* Calculate squared distance and things based on it */
359             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
360
361             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
362
363             /* Load parameters for j particles */
364             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
365                                                                  charge+jnrC+0,charge+jnrD+0,
366                                                                  charge+jnrE+0,charge+jnrF+0,
367                                                                  charge+jnrG+0,charge+jnrH+0);
368             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
369                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
370                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
371                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             r00              = _mm256_mul_ps(rsq00,rinv00);
378             r00              = _mm256_andnot_ps(dummy_mask,r00);
379
380             /* Compute parameters for interactions between i and j atoms */
381             qq00             = _mm256_mul_ps(iq0,jq0);
382
383             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
384             isaprod          = _mm256_mul_ps(isai0,isaj0);
385             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
386             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
387
388             /* Calculate generalized born table index - this is a separate table from the normal one,
389              * but we use the same procedure by multiplying r with scale and truncating to integer.
390              */
391             rt               = _mm256_mul_ps(r00,gbscale);
392             gbitab           = _mm256_cvttps_epi32(rt);
393             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
394             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
395             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
396             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
397             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
398             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
399             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
400                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
401             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
402                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
403             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
404                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
405             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
406                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
407             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
408             Heps             = _mm256_mul_ps(gbeps,H);
409             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
410             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
411             vgb              = _mm256_mul_ps(gbqqfactor,VV);
412
413             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
414             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
415             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
416             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
417             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
418             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
419             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
420             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
421             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
422             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
423             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
424             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
425             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
426             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
427             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
428                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
429             velec            = _mm256_mul_ps(qq00,rinv00);
430             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm256_andnot_ps(dummy_mask,velec);
434             velecsum         = _mm256_add_ps(velecsum,velec);
435             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
436             vgbsum           = _mm256_add_ps(vgbsum,vgb);
437
438             fscal            = felec;
439
440             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
441
442             /* Calculate temporary vectorial force */
443             tx               = _mm256_mul_ps(fscal,dx00);
444             ty               = _mm256_mul_ps(fscal,dy00);
445             tz               = _mm256_mul_ps(fscal,dz00);
446
447             /* Update vectorial force */
448             fix0             = _mm256_add_ps(fix0,tx);
449             fiy0             = _mm256_add_ps(fiy0,ty);
450             fiz0             = _mm256_add_ps(fiz0,tz);
451
452             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
453             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
454             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
455             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
456             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
457             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
458             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
459             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
460             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
461
462             /* Inner loop uses 58 flops */
463         }
464
465         /* End of innermost loop */
466
467         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
468                                                  f+i_coord_offset,fshift+i_shift_offset);
469
470         ggid                        = gid[iidx];
471         /* Update potential energies */
472         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
473         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
474         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
475         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
476
477         /* Increment number of inner iterations */
478         inneriter                  += j_index_end - j_index_start;
479
480         /* Outer loop uses 9 flops */
481     }
482
483     /* Increment number of outer iterations */
484     outeriter        += nri;
485
486     /* Update outer/inner flops */
487
488     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
489 }
490 /*
491  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_single
492  * Electrostatics interaction: GeneralizedBorn
493  * VdW interaction:            None
494  * Geometry:                   Particle-Particle
495  * Calculate force/pot:        Force
496  */
497 void
498 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_single
499                     (t_nblist                    * gmx_restrict       nlist,
500                      rvec                        * gmx_restrict          xx,
501                      rvec                        * gmx_restrict          ff,
502                      t_forcerec                  * gmx_restrict          fr,
503                      t_mdatoms                   * gmx_restrict     mdatoms,
504                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
505                      t_nrnb                      * gmx_restrict        nrnb)
506 {
507     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
508      * just 0 for non-waters.
509      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
510      * jnr indices corresponding to data put in the four positions in the SIMD register.
511      */
512     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
513     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
514     int              jnrA,jnrB,jnrC,jnrD;
515     int              jnrE,jnrF,jnrG,jnrH;
516     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
517     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
518     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
519     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
520     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
521     real             rcutoff_scalar;
522     real             *shiftvec,*fshift,*x,*f;
523     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
524     real             scratch[4*DIM];
525     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
526     real *           vdwioffsetptr0;
527     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
528     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
529     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
530     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
531     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
532     real             *charge;
533     __m256i          gbitab;
534     __m128i          gbitab_lo,gbitab_hi;
535     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
536     __m256           minushalf = _mm256_set1_ps(-0.5);
537     real             *invsqrta,*dvda,*gbtab;
538     __m256i          vfitab;
539     __m128i          vfitab_lo,vfitab_hi;
540     __m128i          ifour       = _mm_set1_epi32(4);
541     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
542     real             *vftab;
543     __m256           dummy_mask,cutoff_mask;
544     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
545     __m256           one     = _mm256_set1_ps(1.0);
546     __m256           two     = _mm256_set1_ps(2.0);
547     x                = xx[0];
548     f                = ff[0];
549
550     nri              = nlist->nri;
551     iinr             = nlist->iinr;
552     jindex           = nlist->jindex;
553     jjnr             = nlist->jjnr;
554     shiftidx         = nlist->shift;
555     gid              = nlist->gid;
556     shiftvec         = fr->shift_vec[0];
557     fshift           = fr->fshift[0];
558     facel            = _mm256_set1_ps(fr->epsfac);
559     charge           = mdatoms->chargeA;
560
561     invsqrta         = fr->invsqrta;
562     dvda             = fr->dvda;
563     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
564     gbtab            = fr->gbtab.data;
565     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
566
567     /* Avoid stupid compiler warnings */
568     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
569     j_coord_offsetA = 0;
570     j_coord_offsetB = 0;
571     j_coord_offsetC = 0;
572     j_coord_offsetD = 0;
573     j_coord_offsetE = 0;
574     j_coord_offsetF = 0;
575     j_coord_offsetG = 0;
576     j_coord_offsetH = 0;
577
578     outeriter        = 0;
579     inneriter        = 0;
580
581     for(iidx=0;iidx<4*DIM;iidx++)
582     {
583         scratch[iidx] = 0.0;
584     }
585
586     /* Start outer loop over neighborlists */
587     for(iidx=0; iidx<nri; iidx++)
588     {
589         /* Load shift vector for this list */
590         i_shift_offset   = DIM*shiftidx[iidx];
591
592         /* Load limits for loop over neighbors */
593         j_index_start    = jindex[iidx];
594         j_index_end      = jindex[iidx+1];
595
596         /* Get outer coordinate index */
597         inr              = iinr[iidx];
598         i_coord_offset   = DIM*inr;
599
600         /* Load i particle coords and add shift vector */
601         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
602
603         fix0             = _mm256_setzero_ps();
604         fiy0             = _mm256_setzero_ps();
605         fiz0             = _mm256_setzero_ps();
606
607         /* Load parameters for i particles */
608         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
609         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
610
611         dvdasum          = _mm256_setzero_ps();
612
613         /* Start inner kernel loop */
614         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
615         {
616
617             /* Get j neighbor index, and coordinate index */
618             jnrA             = jjnr[jidx];
619             jnrB             = jjnr[jidx+1];
620             jnrC             = jjnr[jidx+2];
621             jnrD             = jjnr[jidx+3];
622             jnrE             = jjnr[jidx+4];
623             jnrF             = jjnr[jidx+5];
624             jnrG             = jjnr[jidx+6];
625             jnrH             = jjnr[jidx+7];
626             j_coord_offsetA  = DIM*jnrA;
627             j_coord_offsetB  = DIM*jnrB;
628             j_coord_offsetC  = DIM*jnrC;
629             j_coord_offsetD  = DIM*jnrD;
630             j_coord_offsetE  = DIM*jnrE;
631             j_coord_offsetF  = DIM*jnrF;
632             j_coord_offsetG  = DIM*jnrG;
633             j_coord_offsetH  = DIM*jnrH;
634
635             /* load j atom coordinates */
636             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
637                                                  x+j_coord_offsetC,x+j_coord_offsetD,
638                                                  x+j_coord_offsetE,x+j_coord_offsetF,
639                                                  x+j_coord_offsetG,x+j_coord_offsetH,
640                                                  &jx0,&jy0,&jz0);
641
642             /* Calculate displacement vector */
643             dx00             = _mm256_sub_ps(ix0,jx0);
644             dy00             = _mm256_sub_ps(iy0,jy0);
645             dz00             = _mm256_sub_ps(iz0,jz0);
646
647             /* Calculate squared distance and things based on it */
648             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
649
650             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
651
652             /* Load parameters for j particles */
653             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
654                                                                  charge+jnrC+0,charge+jnrD+0,
655                                                                  charge+jnrE+0,charge+jnrF+0,
656                                                                  charge+jnrG+0,charge+jnrH+0);
657             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
658                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
659                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
660                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             r00              = _mm256_mul_ps(rsq00,rinv00);
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq00             = _mm256_mul_ps(iq0,jq0);
670
671             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
672             isaprod          = _mm256_mul_ps(isai0,isaj0);
673             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
674             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
675
676             /* Calculate generalized born table index - this is a separate table from the normal one,
677              * but we use the same procedure by multiplying r with scale and truncating to integer.
678              */
679             rt               = _mm256_mul_ps(r00,gbscale);
680             gbitab           = _mm256_cvttps_epi32(rt);
681             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
682             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
683             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
684             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
685             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
686             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
687             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
688                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
689             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
690                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
691             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
692                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
693             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
694                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
695             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
696             Heps             = _mm256_mul_ps(gbeps,H);
697             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
698             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
699             vgb              = _mm256_mul_ps(gbqqfactor,VV);
700
701             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
702             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
703             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
704             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
705             fjptrA           = dvda+jnrA;
706             fjptrB           = dvda+jnrB;
707             fjptrC           = dvda+jnrC;
708             fjptrD           = dvda+jnrD;
709             fjptrE           = dvda+jnrE;
710             fjptrF           = dvda+jnrF;
711             fjptrG           = dvda+jnrG;
712             fjptrH           = dvda+jnrH;
713             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
714                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
715             velec            = _mm256_mul_ps(qq00,rinv00);
716             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
717
718             fscal            = felec;
719
720             /* Calculate temporary vectorial force */
721             tx               = _mm256_mul_ps(fscal,dx00);
722             ty               = _mm256_mul_ps(fscal,dy00);
723             tz               = _mm256_mul_ps(fscal,dz00);
724
725             /* Update vectorial force */
726             fix0             = _mm256_add_ps(fix0,tx);
727             fiy0             = _mm256_add_ps(fiy0,ty);
728             fiz0             = _mm256_add_ps(fiz0,tz);
729
730             fjptrA             = f+j_coord_offsetA;
731             fjptrB             = f+j_coord_offsetB;
732             fjptrC             = f+j_coord_offsetC;
733             fjptrD             = f+j_coord_offsetD;
734             fjptrE             = f+j_coord_offsetE;
735             fjptrF             = f+j_coord_offsetF;
736             fjptrG             = f+j_coord_offsetG;
737             fjptrH             = f+j_coord_offsetH;
738             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
739
740             /* Inner loop uses 55 flops */
741         }
742
743         if(jidx<j_index_end)
744         {
745
746             /* Get j neighbor index, and coordinate index */
747             jnrlistA         = jjnr[jidx];
748             jnrlistB         = jjnr[jidx+1];
749             jnrlistC         = jjnr[jidx+2];
750             jnrlistD         = jjnr[jidx+3];
751             jnrlistE         = jjnr[jidx+4];
752             jnrlistF         = jjnr[jidx+5];
753             jnrlistG         = jjnr[jidx+6];
754             jnrlistH         = jjnr[jidx+7];
755             /* Sign of each element will be negative for non-real atoms.
756              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
757              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
758              */
759             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
760                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
761                                             
762             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
763             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
764             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
765             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
766             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
767             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
768             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
769             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
770             j_coord_offsetA  = DIM*jnrA;
771             j_coord_offsetB  = DIM*jnrB;
772             j_coord_offsetC  = DIM*jnrC;
773             j_coord_offsetD  = DIM*jnrD;
774             j_coord_offsetE  = DIM*jnrE;
775             j_coord_offsetF  = DIM*jnrF;
776             j_coord_offsetG  = DIM*jnrG;
777             j_coord_offsetH  = DIM*jnrH;
778
779             /* load j atom coordinates */
780             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
781                                                  x+j_coord_offsetC,x+j_coord_offsetD,
782                                                  x+j_coord_offsetE,x+j_coord_offsetF,
783                                                  x+j_coord_offsetG,x+j_coord_offsetH,
784                                                  &jx0,&jy0,&jz0);
785
786             /* Calculate displacement vector */
787             dx00             = _mm256_sub_ps(ix0,jx0);
788             dy00             = _mm256_sub_ps(iy0,jy0);
789             dz00             = _mm256_sub_ps(iz0,jz0);
790
791             /* Calculate squared distance and things based on it */
792             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
793
794             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
795
796             /* Load parameters for j particles */
797             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
798                                                                  charge+jnrC+0,charge+jnrD+0,
799                                                                  charge+jnrE+0,charge+jnrF+0,
800                                                                  charge+jnrG+0,charge+jnrH+0);
801             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
802                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
803                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
804                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
805
806             /**************************
807              * CALCULATE INTERACTIONS *
808              **************************/
809
810             r00              = _mm256_mul_ps(rsq00,rinv00);
811             r00              = _mm256_andnot_ps(dummy_mask,r00);
812
813             /* Compute parameters for interactions between i and j atoms */
814             qq00             = _mm256_mul_ps(iq0,jq0);
815
816             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
817             isaprod          = _mm256_mul_ps(isai0,isaj0);
818             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
819             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
820
821             /* Calculate generalized born table index - this is a separate table from the normal one,
822              * but we use the same procedure by multiplying r with scale and truncating to integer.
823              */
824             rt               = _mm256_mul_ps(r00,gbscale);
825             gbitab           = _mm256_cvttps_epi32(rt);
826             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
827             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
828             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
829             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
830             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
831             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
832             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
833                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
834             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
835                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
836             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
837                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
838             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
839                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
840             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
841             Heps             = _mm256_mul_ps(gbeps,H);
842             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
843             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
844             vgb              = _mm256_mul_ps(gbqqfactor,VV);
845
846             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
847             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
848             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
849             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
850             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
851             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
852             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
853             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
854             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
855             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
856             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
857             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
858             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
859             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
860             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
861                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
862             velec            = _mm256_mul_ps(qq00,rinv00);
863             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
864
865             fscal            = felec;
866
867             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
868
869             /* Calculate temporary vectorial force */
870             tx               = _mm256_mul_ps(fscal,dx00);
871             ty               = _mm256_mul_ps(fscal,dy00);
872             tz               = _mm256_mul_ps(fscal,dz00);
873
874             /* Update vectorial force */
875             fix0             = _mm256_add_ps(fix0,tx);
876             fiy0             = _mm256_add_ps(fiy0,ty);
877             fiz0             = _mm256_add_ps(fiz0,tz);
878
879             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
880             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
881             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
882             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
883             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
884             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
885             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
886             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
887             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
888
889             /* Inner loop uses 56 flops */
890         }
891
892         /* End of innermost loop */
893
894         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
895                                                  f+i_coord_offset,fshift+i_shift_offset);
896
897         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
898         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
899
900         /* Increment number of inner iterations */
901         inneriter                  += j_index_end - j_index_start;
902
903         /* Outer loop uses 7 flops */
904     }
905
906     /* Increment number of outer iterations */
907     outeriter        += nri;
908
909     /* Update outer/inner flops */
910
911     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
912 }