Remove topology support for implicit solvation
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m256i          gbitab;
93     __m128i          gbitab_lo,gbitab_hi;
94     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
95     __m256           minushalf = _mm256_set1_ps(-0.5);
96     real             *invsqrta,*dvda,*gbtab;
97     __m256i          vfitab;
98     __m128i          vfitab_lo,vfitab_hi;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m256           dummy_mask,cutoff_mask;
103     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
104     __m256           one     = _mm256_set1_ps(1.0);
105     __m256           two     = _mm256_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_ps(fr->ic->epsfac);
118     charge           = mdatoms->chargeA;
119
120     invsqrta         = fr->invsqrta;
121     dvda             = fr->dvda;
122     gbtabscale       = _mm256_set1_ps(fr->gbtab->scale);
123     gbtab            = fr->gbtab->data;
124     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132     j_coord_offsetE = 0;
133     j_coord_offsetF = 0;
134     j_coord_offsetG = 0;
135     j_coord_offsetH = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161
162         fix0             = _mm256_setzero_ps();
163         fiy0             = _mm256_setzero_ps();
164         fiz0             = _mm256_setzero_ps();
165
166         /* Load parameters for i particles */
167         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
168         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
169
170         /* Reset potential sums */
171         velecsum         = _mm256_setzero_ps();
172         vgbsum           = _mm256_setzero_ps();
173         dvdasum          = _mm256_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             jnrE             = jjnr[jidx+4];
185             jnrF             = jjnr[jidx+5];
186             jnrG             = jjnr[jidx+6];
187             jnrH             = jjnr[jidx+7];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192             j_coord_offsetE  = DIM*jnrE;
193             j_coord_offsetF  = DIM*jnrF;
194             j_coord_offsetG  = DIM*jnrG;
195             j_coord_offsetH  = DIM*jnrH;
196
197             /* load j atom coordinates */
198             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                                  x+j_coord_offsetC,x+j_coord_offsetD,
200                                                  x+j_coord_offsetE,x+j_coord_offsetF,
201                                                  x+j_coord_offsetG,x+j_coord_offsetH,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm256_sub_ps(ix0,jx0);
206             dy00             = _mm256_sub_ps(iy0,jy0);
207             dz00             = _mm256_sub_ps(iz0,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
211
212             rinv00           = avx256_invsqrt_f(rsq00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                                  charge+jnrC+0,charge+jnrD+0,
217                                                                  charge+jnrE+0,charge+jnrF+0,
218                                                                  charge+jnrG+0,charge+jnrH+0);
219             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
220                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
221                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
222                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _mm256_mul_ps(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm256_mul_ps(iq0,jq0);
232
233             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
234             isaprod          = _mm256_mul_ps(isai0,isaj0);
235             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
236             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
237
238             /* Calculate generalized born table index - this is a separate table from the normal one,
239              * but we use the same procedure by multiplying r with scale and truncating to integer.
240              */
241             rt               = _mm256_mul_ps(r00,gbscale);
242             gbitab           = _mm256_cvttps_epi32(rt);
243             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
244             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
245             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
246             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
247             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
248             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
249             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
250                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
251             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
252                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
253             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
254                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
255             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
256                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
257             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
258             Heps             = _mm256_mul_ps(gbeps,H);
259             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
260             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
261             vgb              = _mm256_mul_ps(gbqqfactor,VV);
262
263             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
264             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
265             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
266             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
267             fjptrA           = dvda+jnrA;
268             fjptrB           = dvda+jnrB;
269             fjptrC           = dvda+jnrC;
270             fjptrD           = dvda+jnrD;
271             fjptrE           = dvda+jnrE;
272             fjptrF           = dvda+jnrF;
273             fjptrG           = dvda+jnrG;
274             fjptrH           = dvda+jnrH;
275             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
276                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
277             velec            = _mm256_mul_ps(qq00,rinv00);
278             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm256_add_ps(velecsum,velec);
282             vgbsum           = _mm256_add_ps(vgbsum,vgb);
283
284             fscal            = felec;
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm256_mul_ps(fscal,dx00);
288             ty               = _mm256_mul_ps(fscal,dy00);
289             tz               = _mm256_mul_ps(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm256_add_ps(fix0,tx);
293             fiy0             = _mm256_add_ps(fiy0,ty);
294             fiz0             = _mm256_add_ps(fiz0,tz);
295
296             fjptrA             = f+j_coord_offsetA;
297             fjptrB             = f+j_coord_offsetB;
298             fjptrC             = f+j_coord_offsetC;
299             fjptrD             = f+j_coord_offsetD;
300             fjptrE             = f+j_coord_offsetE;
301             fjptrF             = f+j_coord_offsetF;
302             fjptrG             = f+j_coord_offsetG;
303             fjptrH             = f+j_coord_offsetH;
304             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
305
306             /* Inner loop uses 57 flops */
307         }
308
309         if(jidx<j_index_end)
310         {
311
312             /* Get j neighbor index, and coordinate index */
313             jnrlistA         = jjnr[jidx];
314             jnrlistB         = jjnr[jidx+1];
315             jnrlistC         = jjnr[jidx+2];
316             jnrlistD         = jjnr[jidx+3];
317             jnrlistE         = jjnr[jidx+4];
318             jnrlistF         = jjnr[jidx+5];
319             jnrlistG         = jjnr[jidx+6];
320             jnrlistH         = jjnr[jidx+7];
321             /* Sign of each element will be negative for non-real atoms.
322              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
323              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
324              */
325             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
326                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
327                                             
328             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
329             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
330             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
331             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
332             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
333             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
334             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
335             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
336             j_coord_offsetA  = DIM*jnrA;
337             j_coord_offsetB  = DIM*jnrB;
338             j_coord_offsetC  = DIM*jnrC;
339             j_coord_offsetD  = DIM*jnrD;
340             j_coord_offsetE  = DIM*jnrE;
341             j_coord_offsetF  = DIM*jnrF;
342             j_coord_offsetG  = DIM*jnrG;
343             j_coord_offsetH  = DIM*jnrH;
344
345             /* load j atom coordinates */
346             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
347                                                  x+j_coord_offsetC,x+j_coord_offsetD,
348                                                  x+j_coord_offsetE,x+j_coord_offsetF,
349                                                  x+j_coord_offsetG,x+j_coord_offsetH,
350                                                  &jx0,&jy0,&jz0);
351
352             /* Calculate displacement vector */
353             dx00             = _mm256_sub_ps(ix0,jx0);
354             dy00             = _mm256_sub_ps(iy0,jy0);
355             dz00             = _mm256_sub_ps(iz0,jz0);
356
357             /* Calculate squared distance and things based on it */
358             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
359
360             rinv00           = avx256_invsqrt_f(rsq00);
361
362             /* Load parameters for j particles */
363             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
364                                                                  charge+jnrC+0,charge+jnrD+0,
365                                                                  charge+jnrE+0,charge+jnrF+0,
366                                                                  charge+jnrG+0,charge+jnrH+0);
367             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
368                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
369                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
370                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             r00              = _mm256_mul_ps(rsq00,rinv00);
377             r00              = _mm256_andnot_ps(dummy_mask,r00);
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq00             = _mm256_mul_ps(iq0,jq0);
381
382             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
383             isaprod          = _mm256_mul_ps(isai0,isaj0);
384             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
385             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
386
387             /* Calculate generalized born table index - this is a separate table from the normal one,
388              * but we use the same procedure by multiplying r with scale and truncating to integer.
389              */
390             rt               = _mm256_mul_ps(r00,gbscale);
391             gbitab           = _mm256_cvttps_epi32(rt);
392             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
393             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
394             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
395             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
396             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
397             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
398             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
399                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
400             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
401                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
402             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
403                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
404             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
405                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
406             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
407             Heps             = _mm256_mul_ps(gbeps,H);
408             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
409             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
410             vgb              = _mm256_mul_ps(gbqqfactor,VV);
411
412             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
413             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
414             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
415             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
416             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
417             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
418             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
419             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
420             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
421             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
422             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
423             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
424             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
425             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
426             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
427                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
428             velec            = _mm256_mul_ps(qq00,rinv00);
429             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velec            = _mm256_andnot_ps(dummy_mask,velec);
433             velecsum         = _mm256_add_ps(velecsum,velec);
434             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
435             vgbsum           = _mm256_add_ps(vgbsum,vgb);
436
437             fscal            = felec;
438
439             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
440
441             /* Calculate temporary vectorial force */
442             tx               = _mm256_mul_ps(fscal,dx00);
443             ty               = _mm256_mul_ps(fscal,dy00);
444             tz               = _mm256_mul_ps(fscal,dz00);
445
446             /* Update vectorial force */
447             fix0             = _mm256_add_ps(fix0,tx);
448             fiy0             = _mm256_add_ps(fiy0,ty);
449             fiz0             = _mm256_add_ps(fiz0,tz);
450
451             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
452             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
453             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
454             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
455             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
456             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
457             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
458             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
459             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
460
461             /* Inner loop uses 58 flops */
462         }
463
464         /* End of innermost loop */
465
466         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
467                                                  f+i_coord_offset,fshift+i_shift_offset);
468
469         ggid                        = gid[iidx];
470         /* Update potential energies */
471         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
472         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
473         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
474         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
475
476         /* Increment number of inner iterations */
477         inneriter                  += j_index_end - j_index_start;
478
479         /* Outer loop uses 9 flops */
480     }
481
482     /* Increment number of outer iterations */
483     outeriter        += nri;
484
485     /* Update outer/inner flops */
486
487     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
488 }
489 /*
490  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_single
491  * Electrostatics interaction: GeneralizedBorn
492  * VdW interaction:            None
493  * Geometry:                   Particle-Particle
494  * Calculate force/pot:        Force
495  */
496 void
497 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_single
498                     (t_nblist                    * gmx_restrict       nlist,
499                      rvec                        * gmx_restrict          xx,
500                      rvec                        * gmx_restrict          ff,
501                      struct t_forcerec           * gmx_restrict          fr,
502                      t_mdatoms                   * gmx_restrict     mdatoms,
503                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
504                      t_nrnb                      * gmx_restrict        nrnb)
505 {
506     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
507      * just 0 for non-waters.
508      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
509      * jnr indices corresponding to data put in the four positions in the SIMD register.
510      */
511     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
512     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
513     int              jnrA,jnrB,jnrC,jnrD;
514     int              jnrE,jnrF,jnrG,jnrH;
515     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
516     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
517     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
518     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
519     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
520     real             rcutoff_scalar;
521     real             *shiftvec,*fshift,*x,*f;
522     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
523     real             scratch[4*DIM];
524     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
525     real *           vdwioffsetptr0;
526     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
527     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
528     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
529     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
530     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
531     real             *charge;
532     __m256i          gbitab;
533     __m128i          gbitab_lo,gbitab_hi;
534     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
535     __m256           minushalf = _mm256_set1_ps(-0.5);
536     real             *invsqrta,*dvda,*gbtab;
537     __m256i          vfitab;
538     __m128i          vfitab_lo,vfitab_hi;
539     __m128i          ifour       = _mm_set1_epi32(4);
540     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
541     real             *vftab;
542     __m256           dummy_mask,cutoff_mask;
543     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
544     __m256           one     = _mm256_set1_ps(1.0);
545     __m256           two     = _mm256_set1_ps(2.0);
546     x                = xx[0];
547     f                = ff[0];
548
549     nri              = nlist->nri;
550     iinr             = nlist->iinr;
551     jindex           = nlist->jindex;
552     jjnr             = nlist->jjnr;
553     shiftidx         = nlist->shift;
554     gid              = nlist->gid;
555     shiftvec         = fr->shift_vec[0];
556     fshift           = fr->fshift[0];
557     facel            = _mm256_set1_ps(fr->ic->epsfac);
558     charge           = mdatoms->chargeA;
559
560     invsqrta         = fr->invsqrta;
561     dvda             = fr->dvda;
562     gbtabscale       = _mm256_set1_ps(fr->gbtab->scale);
563     gbtab            = fr->gbtab->data;
564     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
565
566     /* Avoid stupid compiler warnings */
567     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
568     j_coord_offsetA = 0;
569     j_coord_offsetB = 0;
570     j_coord_offsetC = 0;
571     j_coord_offsetD = 0;
572     j_coord_offsetE = 0;
573     j_coord_offsetF = 0;
574     j_coord_offsetG = 0;
575     j_coord_offsetH = 0;
576
577     outeriter        = 0;
578     inneriter        = 0;
579
580     for(iidx=0;iidx<4*DIM;iidx++)
581     {
582         scratch[iidx] = 0.0;
583     }
584
585     /* Start outer loop over neighborlists */
586     for(iidx=0; iidx<nri; iidx++)
587     {
588         /* Load shift vector for this list */
589         i_shift_offset   = DIM*shiftidx[iidx];
590
591         /* Load limits for loop over neighbors */
592         j_index_start    = jindex[iidx];
593         j_index_end      = jindex[iidx+1];
594
595         /* Get outer coordinate index */
596         inr              = iinr[iidx];
597         i_coord_offset   = DIM*inr;
598
599         /* Load i particle coords and add shift vector */
600         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
601
602         fix0             = _mm256_setzero_ps();
603         fiy0             = _mm256_setzero_ps();
604         fiz0             = _mm256_setzero_ps();
605
606         /* Load parameters for i particles */
607         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
608         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
609
610         dvdasum          = _mm256_setzero_ps();
611
612         /* Start inner kernel loop */
613         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
614         {
615
616             /* Get j neighbor index, and coordinate index */
617             jnrA             = jjnr[jidx];
618             jnrB             = jjnr[jidx+1];
619             jnrC             = jjnr[jidx+2];
620             jnrD             = jjnr[jidx+3];
621             jnrE             = jjnr[jidx+4];
622             jnrF             = jjnr[jidx+5];
623             jnrG             = jjnr[jidx+6];
624             jnrH             = jjnr[jidx+7];
625             j_coord_offsetA  = DIM*jnrA;
626             j_coord_offsetB  = DIM*jnrB;
627             j_coord_offsetC  = DIM*jnrC;
628             j_coord_offsetD  = DIM*jnrD;
629             j_coord_offsetE  = DIM*jnrE;
630             j_coord_offsetF  = DIM*jnrF;
631             j_coord_offsetG  = DIM*jnrG;
632             j_coord_offsetH  = DIM*jnrH;
633
634             /* load j atom coordinates */
635             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
636                                                  x+j_coord_offsetC,x+j_coord_offsetD,
637                                                  x+j_coord_offsetE,x+j_coord_offsetF,
638                                                  x+j_coord_offsetG,x+j_coord_offsetH,
639                                                  &jx0,&jy0,&jz0);
640
641             /* Calculate displacement vector */
642             dx00             = _mm256_sub_ps(ix0,jx0);
643             dy00             = _mm256_sub_ps(iy0,jy0);
644             dz00             = _mm256_sub_ps(iz0,jz0);
645
646             /* Calculate squared distance and things based on it */
647             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
648
649             rinv00           = avx256_invsqrt_f(rsq00);
650
651             /* Load parameters for j particles */
652             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
653                                                                  charge+jnrC+0,charge+jnrD+0,
654                                                                  charge+jnrE+0,charge+jnrF+0,
655                                                                  charge+jnrG+0,charge+jnrH+0);
656             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
657                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
658                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
659                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             r00              = _mm256_mul_ps(rsq00,rinv00);
666
667             /* Compute parameters for interactions between i and j atoms */
668             qq00             = _mm256_mul_ps(iq0,jq0);
669
670             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
671             isaprod          = _mm256_mul_ps(isai0,isaj0);
672             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
673             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
674
675             /* Calculate generalized born table index - this is a separate table from the normal one,
676              * but we use the same procedure by multiplying r with scale and truncating to integer.
677              */
678             rt               = _mm256_mul_ps(r00,gbscale);
679             gbitab           = _mm256_cvttps_epi32(rt);
680             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
681             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
682             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
683             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
684             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
685             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
686             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
687                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
688             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
689                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
690             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
691                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
692             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
693                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
694             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
695             Heps             = _mm256_mul_ps(gbeps,H);
696             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
697             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
698             vgb              = _mm256_mul_ps(gbqqfactor,VV);
699
700             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
701             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
702             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
703             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
704             fjptrA           = dvda+jnrA;
705             fjptrB           = dvda+jnrB;
706             fjptrC           = dvda+jnrC;
707             fjptrD           = dvda+jnrD;
708             fjptrE           = dvda+jnrE;
709             fjptrF           = dvda+jnrF;
710             fjptrG           = dvda+jnrG;
711             fjptrH           = dvda+jnrH;
712             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
713                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
714             velec            = _mm256_mul_ps(qq00,rinv00);
715             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
716
717             fscal            = felec;
718
719             /* Calculate temporary vectorial force */
720             tx               = _mm256_mul_ps(fscal,dx00);
721             ty               = _mm256_mul_ps(fscal,dy00);
722             tz               = _mm256_mul_ps(fscal,dz00);
723
724             /* Update vectorial force */
725             fix0             = _mm256_add_ps(fix0,tx);
726             fiy0             = _mm256_add_ps(fiy0,ty);
727             fiz0             = _mm256_add_ps(fiz0,tz);
728
729             fjptrA             = f+j_coord_offsetA;
730             fjptrB             = f+j_coord_offsetB;
731             fjptrC             = f+j_coord_offsetC;
732             fjptrD             = f+j_coord_offsetD;
733             fjptrE             = f+j_coord_offsetE;
734             fjptrF             = f+j_coord_offsetF;
735             fjptrG             = f+j_coord_offsetG;
736             fjptrH             = f+j_coord_offsetH;
737             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
738
739             /* Inner loop uses 55 flops */
740         }
741
742         if(jidx<j_index_end)
743         {
744
745             /* Get j neighbor index, and coordinate index */
746             jnrlistA         = jjnr[jidx];
747             jnrlistB         = jjnr[jidx+1];
748             jnrlistC         = jjnr[jidx+2];
749             jnrlistD         = jjnr[jidx+3];
750             jnrlistE         = jjnr[jidx+4];
751             jnrlistF         = jjnr[jidx+5];
752             jnrlistG         = jjnr[jidx+6];
753             jnrlistH         = jjnr[jidx+7];
754             /* Sign of each element will be negative for non-real atoms.
755              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
756              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
757              */
758             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
759                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
760                                             
761             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
762             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
763             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
764             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
765             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
766             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
767             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
768             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
769             j_coord_offsetA  = DIM*jnrA;
770             j_coord_offsetB  = DIM*jnrB;
771             j_coord_offsetC  = DIM*jnrC;
772             j_coord_offsetD  = DIM*jnrD;
773             j_coord_offsetE  = DIM*jnrE;
774             j_coord_offsetF  = DIM*jnrF;
775             j_coord_offsetG  = DIM*jnrG;
776             j_coord_offsetH  = DIM*jnrH;
777
778             /* load j atom coordinates */
779             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
780                                                  x+j_coord_offsetC,x+j_coord_offsetD,
781                                                  x+j_coord_offsetE,x+j_coord_offsetF,
782                                                  x+j_coord_offsetG,x+j_coord_offsetH,
783                                                  &jx0,&jy0,&jz0);
784
785             /* Calculate displacement vector */
786             dx00             = _mm256_sub_ps(ix0,jx0);
787             dy00             = _mm256_sub_ps(iy0,jy0);
788             dz00             = _mm256_sub_ps(iz0,jz0);
789
790             /* Calculate squared distance and things based on it */
791             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
792
793             rinv00           = avx256_invsqrt_f(rsq00);
794
795             /* Load parameters for j particles */
796             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
797                                                                  charge+jnrC+0,charge+jnrD+0,
798                                                                  charge+jnrE+0,charge+jnrF+0,
799                                                                  charge+jnrG+0,charge+jnrH+0);
800             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
801                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
802                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
803                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
804
805             /**************************
806              * CALCULATE INTERACTIONS *
807              **************************/
808
809             r00              = _mm256_mul_ps(rsq00,rinv00);
810             r00              = _mm256_andnot_ps(dummy_mask,r00);
811
812             /* Compute parameters for interactions between i and j atoms */
813             qq00             = _mm256_mul_ps(iq0,jq0);
814
815             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
816             isaprod          = _mm256_mul_ps(isai0,isaj0);
817             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
818             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
819
820             /* Calculate generalized born table index - this is a separate table from the normal one,
821              * but we use the same procedure by multiplying r with scale and truncating to integer.
822              */
823             rt               = _mm256_mul_ps(r00,gbscale);
824             gbitab           = _mm256_cvttps_epi32(rt);
825             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
826             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
827             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
828             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
829             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
830             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
831             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
832                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
833             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
834                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
835             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
836                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
837             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
838                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
839             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
840             Heps             = _mm256_mul_ps(gbeps,H);
841             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
842             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
843             vgb              = _mm256_mul_ps(gbqqfactor,VV);
844
845             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
846             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
847             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
848             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
849             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
850             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
851             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
852             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
853             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
854             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
855             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
856             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
857             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
858             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
859             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
860                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
861             velec            = _mm256_mul_ps(qq00,rinv00);
862             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
863
864             fscal            = felec;
865
866             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
867
868             /* Calculate temporary vectorial force */
869             tx               = _mm256_mul_ps(fscal,dx00);
870             ty               = _mm256_mul_ps(fscal,dy00);
871             tz               = _mm256_mul_ps(fscal,dz00);
872
873             /* Update vectorial force */
874             fix0             = _mm256_add_ps(fix0,tx);
875             fiy0             = _mm256_add_ps(fiy0,ty);
876             fiz0             = _mm256_add_ps(fiz0,tz);
877
878             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
879             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
880             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
881             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
882             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
883             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
884             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
885             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
886             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
887
888             /* Inner loop uses 56 flops */
889         }
890
891         /* End of innermost loop */
892
893         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
894                                                  f+i_coord_offset,fshift+i_shift_offset);
895
896         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
897         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
898
899         /* Increment number of inner iterations */
900         inneriter                  += j_index_end - j_index_start;
901
902         /* Outer loop uses 7 flops */
903     }
904
905     /* Increment number of outer iterations */
906     outeriter        += nri;
907
908     /* Update outer/inner flops */
909
910     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
911 }