c68e062c8e9d675773e8b90ea135b147aa602ac2
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256i          gbitab;
94     __m128i          gbitab_lo,gbitab_hi;
95     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
96     __m256           minushalf = _mm256_set1_ps(-0.5);
97     real             *invsqrta,*dvda,*gbtab;
98     int              nvdwtype;
99     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
103     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
104     __m256i          vfitab;
105     __m128i          vfitab_lo,vfitab_hi;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256           dummy_mask,cutoff_mask;
110     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
111     __m256           one     = _mm256_set1_ps(1.0);
112     __m256           two     = _mm256_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     invsqrta         = fr->invsqrta;
131     dvda             = fr->dvda;
132     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
133     gbtab            = fr->gbtab.data;
134     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142     j_coord_offsetE = 0;
143     j_coord_offsetF = 0;
144     j_coord_offsetG = 0;
145     j_coord_offsetH = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
171
172         fix0             = _mm256_setzero_ps();
173         fiy0             = _mm256_setzero_ps();
174         fiz0             = _mm256_setzero_ps();
175
176         /* Load parameters for i particles */
177         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
178         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
179         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
180
181         /* Reset potential sums */
182         velecsum         = _mm256_setzero_ps();
183         vgbsum           = _mm256_setzero_ps();
184         vvdwsum          = _mm256_setzero_ps();
185         dvdasum          = _mm256_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             jnrE             = jjnr[jidx+4];
197             jnrF             = jjnr[jidx+5];
198             jnrG             = jjnr[jidx+6];
199             jnrH             = jjnr[jidx+7];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204             j_coord_offsetE  = DIM*jnrE;
205             j_coord_offsetF  = DIM*jnrF;
206             j_coord_offsetG  = DIM*jnrG;
207             j_coord_offsetH  = DIM*jnrH;
208
209             /* load j atom coordinates */
210             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                                  x+j_coord_offsetC,x+j_coord_offsetD,
212                                                  x+j_coord_offsetE,x+j_coord_offsetF,
213                                                  x+j_coord_offsetG,x+j_coord_offsetH,
214                                                  &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm256_sub_ps(ix0,jx0);
218             dy00             = _mm256_sub_ps(iy0,jy0);
219             dz00             = _mm256_sub_ps(iz0,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
223
224             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
225
226             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
230                                                                  charge+jnrC+0,charge+jnrD+0,
231                                                                  charge+jnrE+0,charge+jnrF+0,
232                                                                  charge+jnrG+0,charge+jnrH+0);
233             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
234                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
235                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
236                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
237             vdwjidx0A        = 2*vdwtype[jnrA+0];
238             vdwjidx0B        = 2*vdwtype[jnrB+0];
239             vdwjidx0C        = 2*vdwtype[jnrC+0];
240             vdwjidx0D        = 2*vdwtype[jnrD+0];
241             vdwjidx0E        = 2*vdwtype[jnrE+0];
242             vdwjidx0F        = 2*vdwtype[jnrF+0];
243             vdwjidx0G        = 2*vdwtype[jnrG+0];
244             vdwjidx0H        = 2*vdwtype[jnrH+0];
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm256_mul_ps(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm256_mul_ps(iq0,jq0);
254             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
255                                             vdwioffsetptr0+vdwjidx0B,
256                                             vdwioffsetptr0+vdwjidx0C,
257                                             vdwioffsetptr0+vdwjidx0D,
258                                             vdwioffsetptr0+vdwjidx0E,
259                                             vdwioffsetptr0+vdwjidx0F,
260                                             vdwioffsetptr0+vdwjidx0G,
261                                             vdwioffsetptr0+vdwjidx0H,
262                                             &c6_00,&c12_00);
263
264             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
265             isaprod          = _mm256_mul_ps(isai0,isaj0);
266             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
267             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
268
269             /* Calculate generalized born table index - this is a separate table from the normal one,
270              * but we use the same procedure by multiplying r with scale and truncating to integer.
271              */
272             rt               = _mm256_mul_ps(r00,gbscale);
273             gbitab           = _mm256_cvttps_epi32(rt);
274             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
275             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
276             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
277             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
278             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
279             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
280             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
281                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
282             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
283                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
284             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
285                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
286             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
287                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
288             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
289             Heps             = _mm256_mul_ps(gbeps,H);
290             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
291             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
292             vgb              = _mm256_mul_ps(gbqqfactor,VV);
293
294             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
295             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
296             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
297             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
298             fjptrA           = dvda+jnrA;
299             fjptrB           = dvda+jnrB;
300             fjptrC           = dvda+jnrC;
301             fjptrD           = dvda+jnrD;
302             fjptrE           = dvda+jnrE;
303             fjptrF           = dvda+jnrF;
304             fjptrG           = dvda+jnrG;
305             fjptrH           = dvda+jnrH;
306             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
307                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
308             velec            = _mm256_mul_ps(qq00,rinv00);
309             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
310
311             /* LENNARD-JONES DISPERSION/REPULSION */
312
313             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
314             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
315             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
316             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
317             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm256_add_ps(velecsum,velec);
321             vgbsum           = _mm256_add_ps(vgbsum,vgb);
322             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
323
324             fscal            = _mm256_add_ps(felec,fvdw);
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm256_mul_ps(fscal,dx00);
328             ty               = _mm256_mul_ps(fscal,dy00);
329             tz               = _mm256_mul_ps(fscal,dz00);
330
331             /* Update vectorial force */
332             fix0             = _mm256_add_ps(fix0,tx);
333             fiy0             = _mm256_add_ps(fiy0,ty);
334             fiz0             = _mm256_add_ps(fiz0,tz);
335
336             fjptrA             = f+j_coord_offsetA;
337             fjptrB             = f+j_coord_offsetB;
338             fjptrC             = f+j_coord_offsetC;
339             fjptrD             = f+j_coord_offsetD;
340             fjptrE             = f+j_coord_offsetE;
341             fjptrF             = f+j_coord_offsetF;
342             fjptrG             = f+j_coord_offsetG;
343             fjptrH             = f+j_coord_offsetH;
344             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
345
346             /* Inner loop uses 70 flops */
347         }
348
349         if(jidx<j_index_end)
350         {
351
352             /* Get j neighbor index, and coordinate index */
353             jnrlistA         = jjnr[jidx];
354             jnrlistB         = jjnr[jidx+1];
355             jnrlistC         = jjnr[jidx+2];
356             jnrlistD         = jjnr[jidx+3];
357             jnrlistE         = jjnr[jidx+4];
358             jnrlistF         = jjnr[jidx+5];
359             jnrlistG         = jjnr[jidx+6];
360             jnrlistH         = jjnr[jidx+7];
361             /* Sign of each element will be negative for non-real atoms.
362              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
363              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
364              */
365             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
366                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
367                                             
368             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
369             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
370             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
371             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
372             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
373             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
374             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
375             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
376             j_coord_offsetA  = DIM*jnrA;
377             j_coord_offsetB  = DIM*jnrB;
378             j_coord_offsetC  = DIM*jnrC;
379             j_coord_offsetD  = DIM*jnrD;
380             j_coord_offsetE  = DIM*jnrE;
381             j_coord_offsetF  = DIM*jnrF;
382             j_coord_offsetG  = DIM*jnrG;
383             j_coord_offsetH  = DIM*jnrH;
384
385             /* load j atom coordinates */
386             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
387                                                  x+j_coord_offsetC,x+j_coord_offsetD,
388                                                  x+j_coord_offsetE,x+j_coord_offsetF,
389                                                  x+j_coord_offsetG,x+j_coord_offsetH,
390                                                  &jx0,&jy0,&jz0);
391
392             /* Calculate displacement vector */
393             dx00             = _mm256_sub_ps(ix0,jx0);
394             dy00             = _mm256_sub_ps(iy0,jy0);
395             dz00             = _mm256_sub_ps(iz0,jz0);
396
397             /* Calculate squared distance and things based on it */
398             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
399
400             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
401
402             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
403
404             /* Load parameters for j particles */
405             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
406                                                                  charge+jnrC+0,charge+jnrD+0,
407                                                                  charge+jnrE+0,charge+jnrF+0,
408                                                                  charge+jnrG+0,charge+jnrH+0);
409             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
410                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
411                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
412                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
413             vdwjidx0A        = 2*vdwtype[jnrA+0];
414             vdwjidx0B        = 2*vdwtype[jnrB+0];
415             vdwjidx0C        = 2*vdwtype[jnrC+0];
416             vdwjidx0D        = 2*vdwtype[jnrD+0];
417             vdwjidx0E        = 2*vdwtype[jnrE+0];
418             vdwjidx0F        = 2*vdwtype[jnrF+0];
419             vdwjidx0G        = 2*vdwtype[jnrG+0];
420             vdwjidx0H        = 2*vdwtype[jnrH+0];
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             r00              = _mm256_mul_ps(rsq00,rinv00);
427             r00              = _mm256_andnot_ps(dummy_mask,r00);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq00             = _mm256_mul_ps(iq0,jq0);
431             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
432                                             vdwioffsetptr0+vdwjidx0B,
433                                             vdwioffsetptr0+vdwjidx0C,
434                                             vdwioffsetptr0+vdwjidx0D,
435                                             vdwioffsetptr0+vdwjidx0E,
436                                             vdwioffsetptr0+vdwjidx0F,
437                                             vdwioffsetptr0+vdwjidx0G,
438                                             vdwioffsetptr0+vdwjidx0H,
439                                             &c6_00,&c12_00);
440
441             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
442             isaprod          = _mm256_mul_ps(isai0,isaj0);
443             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
444             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
445
446             /* Calculate generalized born table index - this is a separate table from the normal one,
447              * but we use the same procedure by multiplying r with scale and truncating to integer.
448              */
449             rt               = _mm256_mul_ps(r00,gbscale);
450             gbitab           = _mm256_cvttps_epi32(rt);
451             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
452             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
453             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
454             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
455             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
456             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
457             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
458                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
459             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
460                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
461             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
462                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
463             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
464                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
465             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
466             Heps             = _mm256_mul_ps(gbeps,H);
467             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
468             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
469             vgb              = _mm256_mul_ps(gbqqfactor,VV);
470
471             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
472             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
473             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
474             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
475             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
476             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
477             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
478             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
479             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
480             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
481             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
482             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
483             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
484             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
485             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
486                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
487             velec            = _mm256_mul_ps(qq00,rinv00);
488             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
489
490             /* LENNARD-JONES DISPERSION/REPULSION */
491
492             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
493             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
494             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
495             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
496             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
497
498             /* Update potential sum for this i atom from the interaction with this j atom. */
499             velec            = _mm256_andnot_ps(dummy_mask,velec);
500             velecsum         = _mm256_add_ps(velecsum,velec);
501             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
502             vgbsum           = _mm256_add_ps(vgbsum,vgb);
503             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
504             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
505
506             fscal            = _mm256_add_ps(felec,fvdw);
507
508             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
509
510             /* Calculate temporary vectorial force */
511             tx               = _mm256_mul_ps(fscal,dx00);
512             ty               = _mm256_mul_ps(fscal,dy00);
513             tz               = _mm256_mul_ps(fscal,dz00);
514
515             /* Update vectorial force */
516             fix0             = _mm256_add_ps(fix0,tx);
517             fiy0             = _mm256_add_ps(fiy0,ty);
518             fiz0             = _mm256_add_ps(fiz0,tz);
519
520             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
521             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
522             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
523             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
524             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
525             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
526             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
527             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
528             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
529
530             /* Inner loop uses 71 flops */
531         }
532
533         /* End of innermost loop */
534
535         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
536                                                  f+i_coord_offset,fshift+i_shift_offset);
537
538         ggid                        = gid[iidx];
539         /* Update potential energies */
540         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
541         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
542         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
543         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
544         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
545
546         /* Increment number of inner iterations */
547         inneriter                  += j_index_end - j_index_start;
548
549         /* Outer loop uses 10 flops */
550     }
551
552     /* Increment number of outer iterations */
553     outeriter        += nri;
554
555     /* Update outer/inner flops */
556
557     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
558 }
559 /*
560  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
561  * Electrostatics interaction: GeneralizedBorn
562  * VdW interaction:            LennardJones
563  * Geometry:                   Particle-Particle
564  * Calculate force/pot:        Force
565  */
566 void
567 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
568                     (t_nblist                    * gmx_restrict       nlist,
569                      rvec                        * gmx_restrict          xx,
570                      rvec                        * gmx_restrict          ff,
571                      t_forcerec                  * gmx_restrict          fr,
572                      t_mdatoms                   * gmx_restrict     mdatoms,
573                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
574                      t_nrnb                      * gmx_restrict        nrnb)
575 {
576     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
577      * just 0 for non-waters.
578      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
579      * jnr indices corresponding to data put in the four positions in the SIMD register.
580      */
581     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
582     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
583     int              jnrA,jnrB,jnrC,jnrD;
584     int              jnrE,jnrF,jnrG,jnrH;
585     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
586     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
587     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
588     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
589     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
590     real             rcutoff_scalar;
591     real             *shiftvec,*fshift,*x,*f;
592     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
593     real             scratch[4*DIM];
594     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
595     real *           vdwioffsetptr0;
596     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
597     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
598     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
599     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
600     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
601     real             *charge;
602     __m256i          gbitab;
603     __m128i          gbitab_lo,gbitab_hi;
604     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
605     __m256           minushalf = _mm256_set1_ps(-0.5);
606     real             *invsqrta,*dvda,*gbtab;
607     int              nvdwtype;
608     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
609     int              *vdwtype;
610     real             *vdwparam;
611     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
612     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
613     __m256i          vfitab;
614     __m128i          vfitab_lo,vfitab_hi;
615     __m128i          ifour       = _mm_set1_epi32(4);
616     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
617     real             *vftab;
618     __m256           dummy_mask,cutoff_mask;
619     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
620     __m256           one     = _mm256_set1_ps(1.0);
621     __m256           two     = _mm256_set1_ps(2.0);
622     x                = xx[0];
623     f                = ff[0];
624
625     nri              = nlist->nri;
626     iinr             = nlist->iinr;
627     jindex           = nlist->jindex;
628     jjnr             = nlist->jjnr;
629     shiftidx         = nlist->shift;
630     gid              = nlist->gid;
631     shiftvec         = fr->shift_vec[0];
632     fshift           = fr->fshift[0];
633     facel            = _mm256_set1_ps(fr->epsfac);
634     charge           = mdatoms->chargeA;
635     nvdwtype         = fr->ntype;
636     vdwparam         = fr->nbfp;
637     vdwtype          = mdatoms->typeA;
638
639     invsqrta         = fr->invsqrta;
640     dvda             = fr->dvda;
641     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
642     gbtab            = fr->gbtab.data;
643     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
644
645     /* Avoid stupid compiler warnings */
646     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
647     j_coord_offsetA = 0;
648     j_coord_offsetB = 0;
649     j_coord_offsetC = 0;
650     j_coord_offsetD = 0;
651     j_coord_offsetE = 0;
652     j_coord_offsetF = 0;
653     j_coord_offsetG = 0;
654     j_coord_offsetH = 0;
655
656     outeriter        = 0;
657     inneriter        = 0;
658
659     for(iidx=0;iidx<4*DIM;iidx++)
660     {
661         scratch[iidx] = 0.0;
662     }
663
664     /* Start outer loop over neighborlists */
665     for(iidx=0; iidx<nri; iidx++)
666     {
667         /* Load shift vector for this list */
668         i_shift_offset   = DIM*shiftidx[iidx];
669
670         /* Load limits for loop over neighbors */
671         j_index_start    = jindex[iidx];
672         j_index_end      = jindex[iidx+1];
673
674         /* Get outer coordinate index */
675         inr              = iinr[iidx];
676         i_coord_offset   = DIM*inr;
677
678         /* Load i particle coords and add shift vector */
679         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
680
681         fix0             = _mm256_setzero_ps();
682         fiy0             = _mm256_setzero_ps();
683         fiz0             = _mm256_setzero_ps();
684
685         /* Load parameters for i particles */
686         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
687         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
688         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
689
690         dvdasum          = _mm256_setzero_ps();
691
692         /* Start inner kernel loop */
693         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
694         {
695
696             /* Get j neighbor index, and coordinate index */
697             jnrA             = jjnr[jidx];
698             jnrB             = jjnr[jidx+1];
699             jnrC             = jjnr[jidx+2];
700             jnrD             = jjnr[jidx+3];
701             jnrE             = jjnr[jidx+4];
702             jnrF             = jjnr[jidx+5];
703             jnrG             = jjnr[jidx+6];
704             jnrH             = jjnr[jidx+7];
705             j_coord_offsetA  = DIM*jnrA;
706             j_coord_offsetB  = DIM*jnrB;
707             j_coord_offsetC  = DIM*jnrC;
708             j_coord_offsetD  = DIM*jnrD;
709             j_coord_offsetE  = DIM*jnrE;
710             j_coord_offsetF  = DIM*jnrF;
711             j_coord_offsetG  = DIM*jnrG;
712             j_coord_offsetH  = DIM*jnrH;
713
714             /* load j atom coordinates */
715             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
716                                                  x+j_coord_offsetC,x+j_coord_offsetD,
717                                                  x+j_coord_offsetE,x+j_coord_offsetF,
718                                                  x+j_coord_offsetG,x+j_coord_offsetH,
719                                                  &jx0,&jy0,&jz0);
720
721             /* Calculate displacement vector */
722             dx00             = _mm256_sub_ps(ix0,jx0);
723             dy00             = _mm256_sub_ps(iy0,jy0);
724             dz00             = _mm256_sub_ps(iz0,jz0);
725
726             /* Calculate squared distance and things based on it */
727             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
728
729             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
730
731             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
732
733             /* Load parameters for j particles */
734             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
735                                                                  charge+jnrC+0,charge+jnrD+0,
736                                                                  charge+jnrE+0,charge+jnrF+0,
737                                                                  charge+jnrG+0,charge+jnrH+0);
738             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
739                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
740                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
741                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
742             vdwjidx0A        = 2*vdwtype[jnrA+0];
743             vdwjidx0B        = 2*vdwtype[jnrB+0];
744             vdwjidx0C        = 2*vdwtype[jnrC+0];
745             vdwjidx0D        = 2*vdwtype[jnrD+0];
746             vdwjidx0E        = 2*vdwtype[jnrE+0];
747             vdwjidx0F        = 2*vdwtype[jnrF+0];
748             vdwjidx0G        = 2*vdwtype[jnrG+0];
749             vdwjidx0H        = 2*vdwtype[jnrH+0];
750
751             /**************************
752              * CALCULATE INTERACTIONS *
753              **************************/
754
755             r00              = _mm256_mul_ps(rsq00,rinv00);
756
757             /* Compute parameters for interactions between i and j atoms */
758             qq00             = _mm256_mul_ps(iq0,jq0);
759             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
760                                             vdwioffsetptr0+vdwjidx0B,
761                                             vdwioffsetptr0+vdwjidx0C,
762                                             vdwioffsetptr0+vdwjidx0D,
763                                             vdwioffsetptr0+vdwjidx0E,
764                                             vdwioffsetptr0+vdwjidx0F,
765                                             vdwioffsetptr0+vdwjidx0G,
766                                             vdwioffsetptr0+vdwjidx0H,
767                                             &c6_00,&c12_00);
768
769             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
770             isaprod          = _mm256_mul_ps(isai0,isaj0);
771             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
772             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
773
774             /* Calculate generalized born table index - this is a separate table from the normal one,
775              * but we use the same procedure by multiplying r with scale and truncating to integer.
776              */
777             rt               = _mm256_mul_ps(r00,gbscale);
778             gbitab           = _mm256_cvttps_epi32(rt);
779             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
780             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
781             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
782             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
783             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
784             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
785             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
786                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
787             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
788                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
789             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
790                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
791             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
792                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
793             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
794             Heps             = _mm256_mul_ps(gbeps,H);
795             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
796             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
797             vgb              = _mm256_mul_ps(gbqqfactor,VV);
798
799             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
800             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
801             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
802             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
803             fjptrA           = dvda+jnrA;
804             fjptrB           = dvda+jnrB;
805             fjptrC           = dvda+jnrC;
806             fjptrD           = dvda+jnrD;
807             fjptrE           = dvda+jnrE;
808             fjptrF           = dvda+jnrF;
809             fjptrG           = dvda+jnrG;
810             fjptrH           = dvda+jnrH;
811             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
812                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
813             velec            = _mm256_mul_ps(qq00,rinv00);
814             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
815
816             /* LENNARD-JONES DISPERSION/REPULSION */
817
818             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
819             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
820
821             fscal            = _mm256_add_ps(felec,fvdw);
822
823             /* Calculate temporary vectorial force */
824             tx               = _mm256_mul_ps(fscal,dx00);
825             ty               = _mm256_mul_ps(fscal,dy00);
826             tz               = _mm256_mul_ps(fscal,dz00);
827
828             /* Update vectorial force */
829             fix0             = _mm256_add_ps(fix0,tx);
830             fiy0             = _mm256_add_ps(fiy0,ty);
831             fiz0             = _mm256_add_ps(fiz0,tz);
832
833             fjptrA             = f+j_coord_offsetA;
834             fjptrB             = f+j_coord_offsetB;
835             fjptrC             = f+j_coord_offsetC;
836             fjptrD             = f+j_coord_offsetD;
837             fjptrE             = f+j_coord_offsetE;
838             fjptrF             = f+j_coord_offsetF;
839             fjptrG             = f+j_coord_offsetG;
840             fjptrH             = f+j_coord_offsetH;
841             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
842
843             /* Inner loop uses 63 flops */
844         }
845
846         if(jidx<j_index_end)
847         {
848
849             /* Get j neighbor index, and coordinate index */
850             jnrlistA         = jjnr[jidx];
851             jnrlistB         = jjnr[jidx+1];
852             jnrlistC         = jjnr[jidx+2];
853             jnrlistD         = jjnr[jidx+3];
854             jnrlistE         = jjnr[jidx+4];
855             jnrlistF         = jjnr[jidx+5];
856             jnrlistG         = jjnr[jidx+6];
857             jnrlistH         = jjnr[jidx+7];
858             /* Sign of each element will be negative for non-real atoms.
859              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
860              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
861              */
862             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
863                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
864                                             
865             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
866             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
867             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
868             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
869             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
870             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
871             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
872             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
873             j_coord_offsetA  = DIM*jnrA;
874             j_coord_offsetB  = DIM*jnrB;
875             j_coord_offsetC  = DIM*jnrC;
876             j_coord_offsetD  = DIM*jnrD;
877             j_coord_offsetE  = DIM*jnrE;
878             j_coord_offsetF  = DIM*jnrF;
879             j_coord_offsetG  = DIM*jnrG;
880             j_coord_offsetH  = DIM*jnrH;
881
882             /* load j atom coordinates */
883             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
884                                                  x+j_coord_offsetC,x+j_coord_offsetD,
885                                                  x+j_coord_offsetE,x+j_coord_offsetF,
886                                                  x+j_coord_offsetG,x+j_coord_offsetH,
887                                                  &jx0,&jy0,&jz0);
888
889             /* Calculate displacement vector */
890             dx00             = _mm256_sub_ps(ix0,jx0);
891             dy00             = _mm256_sub_ps(iy0,jy0);
892             dz00             = _mm256_sub_ps(iz0,jz0);
893
894             /* Calculate squared distance and things based on it */
895             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
896
897             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
898
899             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
900
901             /* Load parameters for j particles */
902             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
903                                                                  charge+jnrC+0,charge+jnrD+0,
904                                                                  charge+jnrE+0,charge+jnrF+0,
905                                                                  charge+jnrG+0,charge+jnrH+0);
906             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
907                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
908                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
909                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
910             vdwjidx0A        = 2*vdwtype[jnrA+0];
911             vdwjidx0B        = 2*vdwtype[jnrB+0];
912             vdwjidx0C        = 2*vdwtype[jnrC+0];
913             vdwjidx0D        = 2*vdwtype[jnrD+0];
914             vdwjidx0E        = 2*vdwtype[jnrE+0];
915             vdwjidx0F        = 2*vdwtype[jnrF+0];
916             vdwjidx0G        = 2*vdwtype[jnrG+0];
917             vdwjidx0H        = 2*vdwtype[jnrH+0];
918
919             /**************************
920              * CALCULATE INTERACTIONS *
921              **************************/
922
923             r00              = _mm256_mul_ps(rsq00,rinv00);
924             r00              = _mm256_andnot_ps(dummy_mask,r00);
925
926             /* Compute parameters for interactions between i and j atoms */
927             qq00             = _mm256_mul_ps(iq0,jq0);
928             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
929                                             vdwioffsetptr0+vdwjidx0B,
930                                             vdwioffsetptr0+vdwjidx0C,
931                                             vdwioffsetptr0+vdwjidx0D,
932                                             vdwioffsetptr0+vdwjidx0E,
933                                             vdwioffsetptr0+vdwjidx0F,
934                                             vdwioffsetptr0+vdwjidx0G,
935                                             vdwioffsetptr0+vdwjidx0H,
936                                             &c6_00,&c12_00);
937
938             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
939             isaprod          = _mm256_mul_ps(isai0,isaj0);
940             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
941             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
942
943             /* Calculate generalized born table index - this is a separate table from the normal one,
944              * but we use the same procedure by multiplying r with scale and truncating to integer.
945              */
946             rt               = _mm256_mul_ps(r00,gbscale);
947             gbitab           = _mm256_cvttps_epi32(rt);
948             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
949             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
950             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
951             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
952             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
953             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
954             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
955                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
956             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
957                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
958             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
959                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
960             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
961                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
962             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
963             Heps             = _mm256_mul_ps(gbeps,H);
964             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
965             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
966             vgb              = _mm256_mul_ps(gbqqfactor,VV);
967
968             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
969             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
970             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
971             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
972             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
973             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
974             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
975             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
976             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
977             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
978             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
979             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
980             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
981             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
982             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
983                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
984             velec            = _mm256_mul_ps(qq00,rinv00);
985             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
986
987             /* LENNARD-JONES DISPERSION/REPULSION */
988
989             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
990             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
991
992             fscal            = _mm256_add_ps(felec,fvdw);
993
994             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm256_mul_ps(fscal,dx00);
998             ty               = _mm256_mul_ps(fscal,dy00);
999             tz               = _mm256_mul_ps(fscal,dz00);
1000
1001             /* Update vectorial force */
1002             fix0             = _mm256_add_ps(fix0,tx);
1003             fiy0             = _mm256_add_ps(fiy0,ty);
1004             fiz0             = _mm256_add_ps(fiz0,tz);
1005
1006             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1007             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1008             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1009             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1010             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1011             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1012             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1013             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1014             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1015
1016             /* Inner loop uses 64 flops */
1017         }
1018
1019         /* End of innermost loop */
1020
1021         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1022                                                  f+i_coord_offset,fshift+i_shift_offset);
1023
1024         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
1025         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1026
1027         /* Increment number of inner iterations */
1028         inneriter                  += j_index_end - j_index_start;
1029
1030         /* Outer loop uses 7 flops */
1031     }
1032
1033     /* Increment number of outer iterations */
1034     outeriter        += nri;
1035
1036     /* Update outer/inner flops */
1037
1038     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
1039 }