6dfbecb6a40b97904117cc4549a53eac6caa40b4
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m256i          gbitab;
93     __m128i          gbitab_lo,gbitab_hi;
94     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
95     __m256           minushalf = _mm256_set1_ps(-0.5);
96     real             *invsqrta,*dvda,*gbtab;
97     int              nvdwtype;
98     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
102     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
103     __m256i          vfitab;
104     __m128i          vfitab_lo,vfitab_hi;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m256           dummy_mask,cutoff_mask;
109     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
110     __m256           one     = _mm256_set1_ps(1.0);
111     __m256           two     = _mm256_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     invsqrta         = fr->invsqrta;
130     dvda             = fr->dvda;
131     gbtabscale       = _mm256_set1_ps(fr->gbtab->scale);
132     gbtab            = fr->gbtab->data;
133     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141     j_coord_offsetE = 0;
142     j_coord_offsetF = 0;
143     j_coord_offsetG = 0;
144     j_coord_offsetH = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
170
171         fix0             = _mm256_setzero_ps();
172         fiy0             = _mm256_setzero_ps();
173         fiz0             = _mm256_setzero_ps();
174
175         /* Load parameters for i particles */
176         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
177         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
178         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_ps();
182         vgbsum           = _mm256_setzero_ps();
183         vvdwsum          = _mm256_setzero_ps();
184         dvdasum          = _mm256_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             jnrE             = jjnr[jidx+4];
196             jnrF             = jjnr[jidx+5];
197             jnrG             = jjnr[jidx+6];
198             jnrH             = jjnr[jidx+7];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203             j_coord_offsetE  = DIM*jnrE;
204             j_coord_offsetF  = DIM*jnrF;
205             j_coord_offsetG  = DIM*jnrG;
206             j_coord_offsetH  = DIM*jnrH;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  x+j_coord_offsetE,x+j_coord_offsetF,
212                                                  x+j_coord_offsetG,x+j_coord_offsetH,
213                                                  &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm256_sub_ps(ix0,jx0);
217             dy00             = _mm256_sub_ps(iy0,jy0);
218             dz00             = _mm256_sub_ps(iz0,jz0);
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
222
223             rinv00           = avx256_invsqrt_f(rsq00);
224
225             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
229                                                                  charge+jnrC+0,charge+jnrD+0,
230                                                                  charge+jnrE+0,charge+jnrF+0,
231                                                                  charge+jnrG+0,charge+jnrH+0);
232             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
233                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
234                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
235                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240             vdwjidx0E        = 2*vdwtype[jnrE+0];
241             vdwjidx0F        = 2*vdwtype[jnrF+0];
242             vdwjidx0G        = 2*vdwtype[jnrG+0];
243             vdwjidx0H        = 2*vdwtype[jnrH+0];
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             r00              = _mm256_mul_ps(rsq00,rinv00);
250
251             /* Compute parameters for interactions between i and j atoms */
252             qq00             = _mm256_mul_ps(iq0,jq0);
253             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
254                                             vdwioffsetptr0+vdwjidx0B,
255                                             vdwioffsetptr0+vdwjidx0C,
256                                             vdwioffsetptr0+vdwjidx0D,
257                                             vdwioffsetptr0+vdwjidx0E,
258                                             vdwioffsetptr0+vdwjidx0F,
259                                             vdwioffsetptr0+vdwjidx0G,
260                                             vdwioffsetptr0+vdwjidx0H,
261                                             &c6_00,&c12_00);
262
263             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
264             isaprod          = _mm256_mul_ps(isai0,isaj0);
265             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
266             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
267
268             /* Calculate generalized born table index - this is a separate table from the normal one,
269              * but we use the same procedure by multiplying r with scale and truncating to integer.
270              */
271             rt               = _mm256_mul_ps(r00,gbscale);
272             gbitab           = _mm256_cvttps_epi32(rt);
273             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
274             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
275             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
276             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
277             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
278             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
279             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
280                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
281             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
282                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
283             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
284                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
285             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
286                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
287             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
288             Heps             = _mm256_mul_ps(gbeps,H);
289             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
290             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
291             vgb              = _mm256_mul_ps(gbqqfactor,VV);
292
293             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
294             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
295             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
296             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
297             fjptrA           = dvda+jnrA;
298             fjptrB           = dvda+jnrB;
299             fjptrC           = dvda+jnrC;
300             fjptrD           = dvda+jnrD;
301             fjptrE           = dvda+jnrE;
302             fjptrF           = dvda+jnrF;
303             fjptrG           = dvda+jnrG;
304             fjptrH           = dvda+jnrH;
305             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
306                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
307             velec            = _mm256_mul_ps(qq00,rinv00);
308             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
309
310             /* LENNARD-JONES DISPERSION/REPULSION */
311
312             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
313             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
314             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
315             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
316             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velecsum         = _mm256_add_ps(velecsum,velec);
320             vgbsum           = _mm256_add_ps(vgbsum,vgb);
321             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
322
323             fscal            = _mm256_add_ps(felec,fvdw);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm256_mul_ps(fscal,dx00);
327             ty               = _mm256_mul_ps(fscal,dy00);
328             tz               = _mm256_mul_ps(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm256_add_ps(fix0,tx);
332             fiy0             = _mm256_add_ps(fiy0,ty);
333             fiz0             = _mm256_add_ps(fiz0,tz);
334
335             fjptrA             = f+j_coord_offsetA;
336             fjptrB             = f+j_coord_offsetB;
337             fjptrC             = f+j_coord_offsetC;
338             fjptrD             = f+j_coord_offsetD;
339             fjptrE             = f+j_coord_offsetE;
340             fjptrF             = f+j_coord_offsetF;
341             fjptrG             = f+j_coord_offsetG;
342             fjptrH             = f+j_coord_offsetH;
343             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
344
345             /* Inner loop uses 70 flops */
346         }
347
348         if(jidx<j_index_end)
349         {
350
351             /* Get j neighbor index, and coordinate index */
352             jnrlistA         = jjnr[jidx];
353             jnrlistB         = jjnr[jidx+1];
354             jnrlistC         = jjnr[jidx+2];
355             jnrlistD         = jjnr[jidx+3];
356             jnrlistE         = jjnr[jidx+4];
357             jnrlistF         = jjnr[jidx+5];
358             jnrlistG         = jjnr[jidx+6];
359             jnrlistH         = jjnr[jidx+7];
360             /* Sign of each element will be negative for non-real atoms.
361              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
362              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
363              */
364             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
365                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
366                                             
367             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
368             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
369             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
370             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
371             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
372             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
373             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
374             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
375             j_coord_offsetA  = DIM*jnrA;
376             j_coord_offsetB  = DIM*jnrB;
377             j_coord_offsetC  = DIM*jnrC;
378             j_coord_offsetD  = DIM*jnrD;
379             j_coord_offsetE  = DIM*jnrE;
380             j_coord_offsetF  = DIM*jnrF;
381             j_coord_offsetG  = DIM*jnrG;
382             j_coord_offsetH  = DIM*jnrH;
383
384             /* load j atom coordinates */
385             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
386                                                  x+j_coord_offsetC,x+j_coord_offsetD,
387                                                  x+j_coord_offsetE,x+j_coord_offsetF,
388                                                  x+j_coord_offsetG,x+j_coord_offsetH,
389                                                  &jx0,&jy0,&jz0);
390
391             /* Calculate displacement vector */
392             dx00             = _mm256_sub_ps(ix0,jx0);
393             dy00             = _mm256_sub_ps(iy0,jy0);
394             dz00             = _mm256_sub_ps(iz0,jz0);
395
396             /* Calculate squared distance and things based on it */
397             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
398
399             rinv00           = avx256_invsqrt_f(rsq00);
400
401             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
402
403             /* Load parameters for j particles */
404             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
405                                                                  charge+jnrC+0,charge+jnrD+0,
406                                                                  charge+jnrE+0,charge+jnrF+0,
407                                                                  charge+jnrG+0,charge+jnrH+0);
408             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
409                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
410                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
411                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
412             vdwjidx0A        = 2*vdwtype[jnrA+0];
413             vdwjidx0B        = 2*vdwtype[jnrB+0];
414             vdwjidx0C        = 2*vdwtype[jnrC+0];
415             vdwjidx0D        = 2*vdwtype[jnrD+0];
416             vdwjidx0E        = 2*vdwtype[jnrE+0];
417             vdwjidx0F        = 2*vdwtype[jnrF+0];
418             vdwjidx0G        = 2*vdwtype[jnrG+0];
419             vdwjidx0H        = 2*vdwtype[jnrH+0];
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             r00              = _mm256_mul_ps(rsq00,rinv00);
426             r00              = _mm256_andnot_ps(dummy_mask,r00);
427
428             /* Compute parameters for interactions between i and j atoms */
429             qq00             = _mm256_mul_ps(iq0,jq0);
430             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
431                                             vdwioffsetptr0+vdwjidx0B,
432                                             vdwioffsetptr0+vdwjidx0C,
433                                             vdwioffsetptr0+vdwjidx0D,
434                                             vdwioffsetptr0+vdwjidx0E,
435                                             vdwioffsetptr0+vdwjidx0F,
436                                             vdwioffsetptr0+vdwjidx0G,
437                                             vdwioffsetptr0+vdwjidx0H,
438                                             &c6_00,&c12_00);
439
440             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
441             isaprod          = _mm256_mul_ps(isai0,isaj0);
442             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
443             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
444
445             /* Calculate generalized born table index - this is a separate table from the normal one,
446              * but we use the same procedure by multiplying r with scale and truncating to integer.
447              */
448             rt               = _mm256_mul_ps(r00,gbscale);
449             gbitab           = _mm256_cvttps_epi32(rt);
450             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
451             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
452             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
453             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
454             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
455             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
456             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
457                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
458             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
459                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
460             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
461                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
462             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
463                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
464             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
465             Heps             = _mm256_mul_ps(gbeps,H);
466             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
467             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
468             vgb              = _mm256_mul_ps(gbqqfactor,VV);
469
470             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
471             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
472             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
473             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
474             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
475             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
476             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
477             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
478             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
479             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
480             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
481             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
482             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
483             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
484             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
485                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
486             velec            = _mm256_mul_ps(qq00,rinv00);
487             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
488
489             /* LENNARD-JONES DISPERSION/REPULSION */
490
491             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
492             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
493             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
494             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
495             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
496
497             /* Update potential sum for this i atom from the interaction with this j atom. */
498             velec            = _mm256_andnot_ps(dummy_mask,velec);
499             velecsum         = _mm256_add_ps(velecsum,velec);
500             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
501             vgbsum           = _mm256_add_ps(vgbsum,vgb);
502             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
503             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
504
505             fscal            = _mm256_add_ps(felec,fvdw);
506
507             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
508
509             /* Calculate temporary vectorial force */
510             tx               = _mm256_mul_ps(fscal,dx00);
511             ty               = _mm256_mul_ps(fscal,dy00);
512             tz               = _mm256_mul_ps(fscal,dz00);
513
514             /* Update vectorial force */
515             fix0             = _mm256_add_ps(fix0,tx);
516             fiy0             = _mm256_add_ps(fiy0,ty);
517             fiz0             = _mm256_add_ps(fiz0,tz);
518
519             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
520             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
521             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
522             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
523             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
524             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
525             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
526             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
527             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
528
529             /* Inner loop uses 71 flops */
530         }
531
532         /* End of innermost loop */
533
534         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
535                                                  f+i_coord_offset,fshift+i_shift_offset);
536
537         ggid                        = gid[iidx];
538         /* Update potential energies */
539         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
540         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
541         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
542         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
543         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
544
545         /* Increment number of inner iterations */
546         inneriter                  += j_index_end - j_index_start;
547
548         /* Outer loop uses 10 flops */
549     }
550
551     /* Increment number of outer iterations */
552     outeriter        += nri;
553
554     /* Update outer/inner flops */
555
556     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
557 }
558 /*
559  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
560  * Electrostatics interaction: GeneralizedBorn
561  * VdW interaction:            LennardJones
562  * Geometry:                   Particle-Particle
563  * Calculate force/pot:        Force
564  */
565 void
566 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
567                     (t_nblist                    * gmx_restrict       nlist,
568                      rvec                        * gmx_restrict          xx,
569                      rvec                        * gmx_restrict          ff,
570                      struct t_forcerec           * gmx_restrict          fr,
571                      t_mdatoms                   * gmx_restrict     mdatoms,
572                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
573                      t_nrnb                      * gmx_restrict        nrnb)
574 {
575     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
576      * just 0 for non-waters.
577      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
578      * jnr indices corresponding to data put in the four positions in the SIMD register.
579      */
580     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
581     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
582     int              jnrA,jnrB,jnrC,jnrD;
583     int              jnrE,jnrF,jnrG,jnrH;
584     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
585     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
586     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
587     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
588     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
589     real             rcutoff_scalar;
590     real             *shiftvec,*fshift,*x,*f;
591     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
592     real             scratch[4*DIM];
593     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
594     real *           vdwioffsetptr0;
595     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
596     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
597     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
598     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
599     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
600     real             *charge;
601     __m256i          gbitab;
602     __m128i          gbitab_lo,gbitab_hi;
603     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
604     __m256           minushalf = _mm256_set1_ps(-0.5);
605     real             *invsqrta,*dvda,*gbtab;
606     int              nvdwtype;
607     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
608     int              *vdwtype;
609     real             *vdwparam;
610     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
611     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
612     __m256i          vfitab;
613     __m128i          vfitab_lo,vfitab_hi;
614     __m128i          ifour       = _mm_set1_epi32(4);
615     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
616     real             *vftab;
617     __m256           dummy_mask,cutoff_mask;
618     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
619     __m256           one     = _mm256_set1_ps(1.0);
620     __m256           two     = _mm256_set1_ps(2.0);
621     x                = xx[0];
622     f                = ff[0];
623
624     nri              = nlist->nri;
625     iinr             = nlist->iinr;
626     jindex           = nlist->jindex;
627     jjnr             = nlist->jjnr;
628     shiftidx         = nlist->shift;
629     gid              = nlist->gid;
630     shiftvec         = fr->shift_vec[0];
631     fshift           = fr->fshift[0];
632     facel            = _mm256_set1_ps(fr->ic->epsfac);
633     charge           = mdatoms->chargeA;
634     nvdwtype         = fr->ntype;
635     vdwparam         = fr->nbfp;
636     vdwtype          = mdatoms->typeA;
637
638     invsqrta         = fr->invsqrta;
639     dvda             = fr->dvda;
640     gbtabscale       = _mm256_set1_ps(fr->gbtab->scale);
641     gbtab            = fr->gbtab->data;
642     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
643
644     /* Avoid stupid compiler warnings */
645     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
646     j_coord_offsetA = 0;
647     j_coord_offsetB = 0;
648     j_coord_offsetC = 0;
649     j_coord_offsetD = 0;
650     j_coord_offsetE = 0;
651     j_coord_offsetF = 0;
652     j_coord_offsetG = 0;
653     j_coord_offsetH = 0;
654
655     outeriter        = 0;
656     inneriter        = 0;
657
658     for(iidx=0;iidx<4*DIM;iidx++)
659     {
660         scratch[iidx] = 0.0;
661     }
662
663     /* Start outer loop over neighborlists */
664     for(iidx=0; iidx<nri; iidx++)
665     {
666         /* Load shift vector for this list */
667         i_shift_offset   = DIM*shiftidx[iidx];
668
669         /* Load limits for loop over neighbors */
670         j_index_start    = jindex[iidx];
671         j_index_end      = jindex[iidx+1];
672
673         /* Get outer coordinate index */
674         inr              = iinr[iidx];
675         i_coord_offset   = DIM*inr;
676
677         /* Load i particle coords and add shift vector */
678         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
679
680         fix0             = _mm256_setzero_ps();
681         fiy0             = _mm256_setzero_ps();
682         fiz0             = _mm256_setzero_ps();
683
684         /* Load parameters for i particles */
685         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
686         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
687         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
688
689         dvdasum          = _mm256_setzero_ps();
690
691         /* Start inner kernel loop */
692         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
693         {
694
695             /* Get j neighbor index, and coordinate index */
696             jnrA             = jjnr[jidx];
697             jnrB             = jjnr[jidx+1];
698             jnrC             = jjnr[jidx+2];
699             jnrD             = jjnr[jidx+3];
700             jnrE             = jjnr[jidx+4];
701             jnrF             = jjnr[jidx+5];
702             jnrG             = jjnr[jidx+6];
703             jnrH             = jjnr[jidx+7];
704             j_coord_offsetA  = DIM*jnrA;
705             j_coord_offsetB  = DIM*jnrB;
706             j_coord_offsetC  = DIM*jnrC;
707             j_coord_offsetD  = DIM*jnrD;
708             j_coord_offsetE  = DIM*jnrE;
709             j_coord_offsetF  = DIM*jnrF;
710             j_coord_offsetG  = DIM*jnrG;
711             j_coord_offsetH  = DIM*jnrH;
712
713             /* load j atom coordinates */
714             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
715                                                  x+j_coord_offsetC,x+j_coord_offsetD,
716                                                  x+j_coord_offsetE,x+j_coord_offsetF,
717                                                  x+j_coord_offsetG,x+j_coord_offsetH,
718                                                  &jx0,&jy0,&jz0);
719
720             /* Calculate displacement vector */
721             dx00             = _mm256_sub_ps(ix0,jx0);
722             dy00             = _mm256_sub_ps(iy0,jy0);
723             dz00             = _mm256_sub_ps(iz0,jz0);
724
725             /* Calculate squared distance and things based on it */
726             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
727
728             rinv00           = avx256_invsqrt_f(rsq00);
729
730             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
731
732             /* Load parameters for j particles */
733             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
734                                                                  charge+jnrC+0,charge+jnrD+0,
735                                                                  charge+jnrE+0,charge+jnrF+0,
736                                                                  charge+jnrG+0,charge+jnrH+0);
737             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
738                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
739                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
740                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
741             vdwjidx0A        = 2*vdwtype[jnrA+0];
742             vdwjidx0B        = 2*vdwtype[jnrB+0];
743             vdwjidx0C        = 2*vdwtype[jnrC+0];
744             vdwjidx0D        = 2*vdwtype[jnrD+0];
745             vdwjidx0E        = 2*vdwtype[jnrE+0];
746             vdwjidx0F        = 2*vdwtype[jnrF+0];
747             vdwjidx0G        = 2*vdwtype[jnrG+0];
748             vdwjidx0H        = 2*vdwtype[jnrH+0];
749
750             /**************************
751              * CALCULATE INTERACTIONS *
752              **************************/
753
754             r00              = _mm256_mul_ps(rsq00,rinv00);
755
756             /* Compute parameters for interactions between i and j atoms */
757             qq00             = _mm256_mul_ps(iq0,jq0);
758             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
759                                             vdwioffsetptr0+vdwjidx0B,
760                                             vdwioffsetptr0+vdwjidx0C,
761                                             vdwioffsetptr0+vdwjidx0D,
762                                             vdwioffsetptr0+vdwjidx0E,
763                                             vdwioffsetptr0+vdwjidx0F,
764                                             vdwioffsetptr0+vdwjidx0G,
765                                             vdwioffsetptr0+vdwjidx0H,
766                                             &c6_00,&c12_00);
767
768             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
769             isaprod          = _mm256_mul_ps(isai0,isaj0);
770             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
771             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
772
773             /* Calculate generalized born table index - this is a separate table from the normal one,
774              * but we use the same procedure by multiplying r with scale and truncating to integer.
775              */
776             rt               = _mm256_mul_ps(r00,gbscale);
777             gbitab           = _mm256_cvttps_epi32(rt);
778             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
779             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
780             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
781             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
782             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
783             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
784             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
785                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
786             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
787                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
788             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
789                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
790             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
791                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
792             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
793             Heps             = _mm256_mul_ps(gbeps,H);
794             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
795             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
796             vgb              = _mm256_mul_ps(gbqqfactor,VV);
797
798             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
799             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
800             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
801             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
802             fjptrA           = dvda+jnrA;
803             fjptrB           = dvda+jnrB;
804             fjptrC           = dvda+jnrC;
805             fjptrD           = dvda+jnrD;
806             fjptrE           = dvda+jnrE;
807             fjptrF           = dvda+jnrF;
808             fjptrG           = dvda+jnrG;
809             fjptrH           = dvda+jnrH;
810             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
811                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
812             velec            = _mm256_mul_ps(qq00,rinv00);
813             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
814
815             /* LENNARD-JONES DISPERSION/REPULSION */
816
817             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
818             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
819
820             fscal            = _mm256_add_ps(felec,fvdw);
821
822             /* Calculate temporary vectorial force */
823             tx               = _mm256_mul_ps(fscal,dx00);
824             ty               = _mm256_mul_ps(fscal,dy00);
825             tz               = _mm256_mul_ps(fscal,dz00);
826
827             /* Update vectorial force */
828             fix0             = _mm256_add_ps(fix0,tx);
829             fiy0             = _mm256_add_ps(fiy0,ty);
830             fiz0             = _mm256_add_ps(fiz0,tz);
831
832             fjptrA             = f+j_coord_offsetA;
833             fjptrB             = f+j_coord_offsetB;
834             fjptrC             = f+j_coord_offsetC;
835             fjptrD             = f+j_coord_offsetD;
836             fjptrE             = f+j_coord_offsetE;
837             fjptrF             = f+j_coord_offsetF;
838             fjptrG             = f+j_coord_offsetG;
839             fjptrH             = f+j_coord_offsetH;
840             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
841
842             /* Inner loop uses 63 flops */
843         }
844
845         if(jidx<j_index_end)
846         {
847
848             /* Get j neighbor index, and coordinate index */
849             jnrlistA         = jjnr[jidx];
850             jnrlistB         = jjnr[jidx+1];
851             jnrlistC         = jjnr[jidx+2];
852             jnrlistD         = jjnr[jidx+3];
853             jnrlistE         = jjnr[jidx+4];
854             jnrlistF         = jjnr[jidx+5];
855             jnrlistG         = jjnr[jidx+6];
856             jnrlistH         = jjnr[jidx+7];
857             /* Sign of each element will be negative for non-real atoms.
858              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
859              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
860              */
861             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
862                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
863                                             
864             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
865             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
866             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
867             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
868             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
869             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
870             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
871             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
872             j_coord_offsetA  = DIM*jnrA;
873             j_coord_offsetB  = DIM*jnrB;
874             j_coord_offsetC  = DIM*jnrC;
875             j_coord_offsetD  = DIM*jnrD;
876             j_coord_offsetE  = DIM*jnrE;
877             j_coord_offsetF  = DIM*jnrF;
878             j_coord_offsetG  = DIM*jnrG;
879             j_coord_offsetH  = DIM*jnrH;
880
881             /* load j atom coordinates */
882             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
883                                                  x+j_coord_offsetC,x+j_coord_offsetD,
884                                                  x+j_coord_offsetE,x+j_coord_offsetF,
885                                                  x+j_coord_offsetG,x+j_coord_offsetH,
886                                                  &jx0,&jy0,&jz0);
887
888             /* Calculate displacement vector */
889             dx00             = _mm256_sub_ps(ix0,jx0);
890             dy00             = _mm256_sub_ps(iy0,jy0);
891             dz00             = _mm256_sub_ps(iz0,jz0);
892
893             /* Calculate squared distance and things based on it */
894             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
895
896             rinv00           = avx256_invsqrt_f(rsq00);
897
898             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
899
900             /* Load parameters for j particles */
901             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
902                                                                  charge+jnrC+0,charge+jnrD+0,
903                                                                  charge+jnrE+0,charge+jnrF+0,
904                                                                  charge+jnrG+0,charge+jnrH+0);
905             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
906                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
907                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
908                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
909             vdwjidx0A        = 2*vdwtype[jnrA+0];
910             vdwjidx0B        = 2*vdwtype[jnrB+0];
911             vdwjidx0C        = 2*vdwtype[jnrC+0];
912             vdwjidx0D        = 2*vdwtype[jnrD+0];
913             vdwjidx0E        = 2*vdwtype[jnrE+0];
914             vdwjidx0F        = 2*vdwtype[jnrF+0];
915             vdwjidx0G        = 2*vdwtype[jnrG+0];
916             vdwjidx0H        = 2*vdwtype[jnrH+0];
917
918             /**************************
919              * CALCULATE INTERACTIONS *
920              **************************/
921
922             r00              = _mm256_mul_ps(rsq00,rinv00);
923             r00              = _mm256_andnot_ps(dummy_mask,r00);
924
925             /* Compute parameters for interactions between i and j atoms */
926             qq00             = _mm256_mul_ps(iq0,jq0);
927             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
928                                             vdwioffsetptr0+vdwjidx0B,
929                                             vdwioffsetptr0+vdwjidx0C,
930                                             vdwioffsetptr0+vdwjidx0D,
931                                             vdwioffsetptr0+vdwjidx0E,
932                                             vdwioffsetptr0+vdwjidx0F,
933                                             vdwioffsetptr0+vdwjidx0G,
934                                             vdwioffsetptr0+vdwjidx0H,
935                                             &c6_00,&c12_00);
936
937             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
938             isaprod          = _mm256_mul_ps(isai0,isaj0);
939             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
940             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
941
942             /* Calculate generalized born table index - this is a separate table from the normal one,
943              * but we use the same procedure by multiplying r with scale and truncating to integer.
944              */
945             rt               = _mm256_mul_ps(r00,gbscale);
946             gbitab           = _mm256_cvttps_epi32(rt);
947             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
948             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
949             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
950             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
951             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
952             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
953             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
954                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
955             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
956                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
957             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
958                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
959             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
960                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
961             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
962             Heps             = _mm256_mul_ps(gbeps,H);
963             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
964             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
965             vgb              = _mm256_mul_ps(gbqqfactor,VV);
966
967             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
968             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
969             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
970             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
971             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
972             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
973             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
974             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
975             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
976             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
977             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
978             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
979             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
980             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
981             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
982                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
983             velec            = _mm256_mul_ps(qq00,rinv00);
984             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
985
986             /* LENNARD-JONES DISPERSION/REPULSION */
987
988             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
989             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
990
991             fscal            = _mm256_add_ps(felec,fvdw);
992
993             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
994
995             /* Calculate temporary vectorial force */
996             tx               = _mm256_mul_ps(fscal,dx00);
997             ty               = _mm256_mul_ps(fscal,dy00);
998             tz               = _mm256_mul_ps(fscal,dz00);
999
1000             /* Update vectorial force */
1001             fix0             = _mm256_add_ps(fix0,tx);
1002             fiy0             = _mm256_add_ps(fiy0,ty);
1003             fiz0             = _mm256_add_ps(fiz0,tz);
1004
1005             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1006             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1007             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1008             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1009             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1010             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1011             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1012             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1013             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1014
1015             /* Inner loop uses 64 flops */
1016         }
1017
1018         /* End of innermost loop */
1019
1020         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1021                                                  f+i_coord_offset,fshift+i_shift_offset);
1022
1023         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
1024         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1025
1026         /* Increment number of inner iterations */
1027         inneriter                  += j_index_end - j_index_start;
1028
1029         /* Outer loop uses 7 flops */
1030     }
1031
1032     /* Increment number of outer iterations */
1033     outeriter        += nri;
1034
1035     /* Update outer/inner flops */
1036
1037     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
1038 }