Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m256i          gbitab;
80     __m128i          gbitab_lo,gbitab_hi;
81     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
82     __m256           minushalf = _mm256_set1_ps(-0.5);
83     real             *invsqrta,*dvda,*gbtab;
84     int              nvdwtype;
85     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
89     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
90     __m256i          vfitab;
91     __m128i          vfitab_lo,vfitab_hi;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m256           dummy_mask,cutoff_mask;
96     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
97     __m256           one     = _mm256_set1_ps(1.0);
98     __m256           two     = _mm256_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm256_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     invsqrta         = fr->invsqrta;
117     dvda             = fr->dvda;
118     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
119     gbtab            = fr->gbtab.data;
120     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128     j_coord_offsetE = 0;
129     j_coord_offsetF = 0;
130     j_coord_offsetG = 0;
131     j_coord_offsetH = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm256_setzero_ps();
159         fiy0             = _mm256_setzero_ps();
160         fiz0             = _mm256_setzero_ps();
161
162         /* Load parameters for i particles */
163         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
164         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
165         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm256_setzero_ps();
169         vgbsum           = _mm256_setzero_ps();
170         vvdwsum          = _mm256_setzero_ps();
171         dvdasum          = _mm256_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             jnrE             = jjnr[jidx+4];
183             jnrF             = jjnr[jidx+5];
184             jnrG             = jjnr[jidx+6];
185             jnrH             = jjnr[jidx+7];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190             j_coord_offsetE  = DIM*jnrE;
191             j_coord_offsetF  = DIM*jnrF;
192             j_coord_offsetG  = DIM*jnrG;
193             j_coord_offsetH  = DIM*jnrH;
194
195             /* load j atom coordinates */
196             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
198                                                  x+j_coord_offsetE,x+j_coord_offsetF,
199                                                  x+j_coord_offsetG,x+j_coord_offsetH,
200                                                  &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm256_sub_ps(ix0,jx0);
204             dy00             = _mm256_sub_ps(iy0,jy0);
205             dz00             = _mm256_sub_ps(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
211
212             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                                  charge+jnrC+0,charge+jnrD+0,
217                                                                  charge+jnrE+0,charge+jnrF+0,
218                                                                  charge+jnrG+0,charge+jnrH+0);
219             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
220                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
221                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
222                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225             vdwjidx0C        = 2*vdwtype[jnrC+0];
226             vdwjidx0D        = 2*vdwtype[jnrD+0];
227             vdwjidx0E        = 2*vdwtype[jnrE+0];
228             vdwjidx0F        = 2*vdwtype[jnrF+0];
229             vdwjidx0G        = 2*vdwtype[jnrG+0];
230             vdwjidx0H        = 2*vdwtype[jnrH+0];
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             r00              = _mm256_mul_ps(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm256_mul_ps(iq0,jq0);
240             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
241                                             vdwioffsetptr0+vdwjidx0B,
242                                             vdwioffsetptr0+vdwjidx0C,
243                                             vdwioffsetptr0+vdwjidx0D,
244                                             vdwioffsetptr0+vdwjidx0E,
245                                             vdwioffsetptr0+vdwjidx0F,
246                                             vdwioffsetptr0+vdwjidx0G,
247                                             vdwioffsetptr0+vdwjidx0H,
248                                             &c6_00,&c12_00);
249
250             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
251             isaprod          = _mm256_mul_ps(isai0,isaj0);
252             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
253             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
254
255             /* Calculate generalized born table index - this is a separate table from the normal one,
256              * but we use the same procedure by multiplying r with scale and truncating to integer.
257              */
258             rt               = _mm256_mul_ps(r00,gbscale);
259             gbitab           = _mm256_cvttps_epi32(rt);
260             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
261             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
262             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
263             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
264             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
265             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
266             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
267                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
268             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
269                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
270             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
271                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
272             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
273                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
274             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
275             Heps             = _mm256_mul_ps(gbeps,H);
276             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
277             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
278             vgb              = _mm256_mul_ps(gbqqfactor,VV);
279
280             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
281             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
282             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
283             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
284             fjptrA           = dvda+jnrA;
285             fjptrB           = dvda+jnrB;
286             fjptrC           = dvda+jnrC;
287             fjptrD           = dvda+jnrD;
288             fjptrE           = dvda+jnrE;
289             fjptrF           = dvda+jnrF;
290             fjptrG           = dvda+jnrG;
291             fjptrH           = dvda+jnrH;
292             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
293                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
294             velec            = _mm256_mul_ps(qq00,rinv00);
295             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
296
297             /* LENNARD-JONES DISPERSION/REPULSION */
298
299             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
300             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
301             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
302             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
303             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _mm256_add_ps(velecsum,velec);
307             vgbsum           = _mm256_add_ps(vgbsum,vgb);
308             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
309
310             fscal            = _mm256_add_ps(felec,fvdw);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_ps(fscal,dx00);
314             ty               = _mm256_mul_ps(fscal,dy00);
315             tz               = _mm256_mul_ps(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm256_add_ps(fix0,tx);
319             fiy0             = _mm256_add_ps(fiy0,ty);
320             fiz0             = _mm256_add_ps(fiz0,tz);
321
322             fjptrA             = f+j_coord_offsetA;
323             fjptrB             = f+j_coord_offsetB;
324             fjptrC             = f+j_coord_offsetC;
325             fjptrD             = f+j_coord_offsetD;
326             fjptrE             = f+j_coord_offsetE;
327             fjptrF             = f+j_coord_offsetF;
328             fjptrG             = f+j_coord_offsetG;
329             fjptrH             = f+j_coord_offsetH;
330             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
331
332             /* Inner loop uses 70 flops */
333         }
334
335         if(jidx<j_index_end)
336         {
337
338             /* Get j neighbor index, and coordinate index */
339             jnrlistA         = jjnr[jidx];
340             jnrlistB         = jjnr[jidx+1];
341             jnrlistC         = jjnr[jidx+2];
342             jnrlistD         = jjnr[jidx+3];
343             jnrlistE         = jjnr[jidx+4];
344             jnrlistF         = jjnr[jidx+5];
345             jnrlistG         = jjnr[jidx+6];
346             jnrlistH         = jjnr[jidx+7];
347             /* Sign of each element will be negative for non-real atoms.
348              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
349              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
350              */
351             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
352                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
353                                             
354             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
355             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
356             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
357             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
358             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
359             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
360             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
361             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
362             j_coord_offsetA  = DIM*jnrA;
363             j_coord_offsetB  = DIM*jnrB;
364             j_coord_offsetC  = DIM*jnrC;
365             j_coord_offsetD  = DIM*jnrD;
366             j_coord_offsetE  = DIM*jnrE;
367             j_coord_offsetF  = DIM*jnrF;
368             j_coord_offsetG  = DIM*jnrG;
369             j_coord_offsetH  = DIM*jnrH;
370
371             /* load j atom coordinates */
372             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
373                                                  x+j_coord_offsetC,x+j_coord_offsetD,
374                                                  x+j_coord_offsetE,x+j_coord_offsetF,
375                                                  x+j_coord_offsetG,x+j_coord_offsetH,
376                                                  &jx0,&jy0,&jz0);
377
378             /* Calculate displacement vector */
379             dx00             = _mm256_sub_ps(ix0,jx0);
380             dy00             = _mm256_sub_ps(iy0,jy0);
381             dz00             = _mm256_sub_ps(iz0,jz0);
382
383             /* Calculate squared distance and things based on it */
384             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
385
386             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
387
388             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
389
390             /* Load parameters for j particles */
391             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
392                                                                  charge+jnrC+0,charge+jnrD+0,
393                                                                  charge+jnrE+0,charge+jnrF+0,
394                                                                  charge+jnrG+0,charge+jnrH+0);
395             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
396                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
397                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
398                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
399             vdwjidx0A        = 2*vdwtype[jnrA+0];
400             vdwjidx0B        = 2*vdwtype[jnrB+0];
401             vdwjidx0C        = 2*vdwtype[jnrC+0];
402             vdwjidx0D        = 2*vdwtype[jnrD+0];
403             vdwjidx0E        = 2*vdwtype[jnrE+0];
404             vdwjidx0F        = 2*vdwtype[jnrF+0];
405             vdwjidx0G        = 2*vdwtype[jnrG+0];
406             vdwjidx0H        = 2*vdwtype[jnrH+0];
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             r00              = _mm256_mul_ps(rsq00,rinv00);
413             r00              = _mm256_andnot_ps(dummy_mask,r00);
414
415             /* Compute parameters for interactions between i and j atoms */
416             qq00             = _mm256_mul_ps(iq0,jq0);
417             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
418                                             vdwioffsetptr0+vdwjidx0B,
419                                             vdwioffsetptr0+vdwjidx0C,
420                                             vdwioffsetptr0+vdwjidx0D,
421                                             vdwioffsetptr0+vdwjidx0E,
422                                             vdwioffsetptr0+vdwjidx0F,
423                                             vdwioffsetptr0+vdwjidx0G,
424                                             vdwioffsetptr0+vdwjidx0H,
425                                             &c6_00,&c12_00);
426
427             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
428             isaprod          = _mm256_mul_ps(isai0,isaj0);
429             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
430             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
431
432             /* Calculate generalized born table index - this is a separate table from the normal one,
433              * but we use the same procedure by multiplying r with scale and truncating to integer.
434              */
435             rt               = _mm256_mul_ps(r00,gbscale);
436             gbitab           = _mm256_cvttps_epi32(rt);
437             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
438             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
439             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
440             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
441             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
442             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
443             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
444                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
445             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
446                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
447             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
448                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
449             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
450                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
451             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
452             Heps             = _mm256_mul_ps(gbeps,H);
453             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
454             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
455             vgb              = _mm256_mul_ps(gbqqfactor,VV);
456
457             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
458             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
459             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
460             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
461             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
462             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
463             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
464             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
465             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
466             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
467             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
468             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
469             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
470             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
471             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
472                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
473             velec            = _mm256_mul_ps(qq00,rinv00);
474             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
475
476             /* LENNARD-JONES DISPERSION/REPULSION */
477
478             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
479             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
480             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
481             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
482             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
483
484             /* Update potential sum for this i atom from the interaction with this j atom. */
485             velec            = _mm256_andnot_ps(dummy_mask,velec);
486             velecsum         = _mm256_add_ps(velecsum,velec);
487             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
488             vgbsum           = _mm256_add_ps(vgbsum,vgb);
489             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
490             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
491
492             fscal            = _mm256_add_ps(felec,fvdw);
493
494             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
495
496             /* Calculate temporary vectorial force */
497             tx               = _mm256_mul_ps(fscal,dx00);
498             ty               = _mm256_mul_ps(fscal,dy00);
499             tz               = _mm256_mul_ps(fscal,dz00);
500
501             /* Update vectorial force */
502             fix0             = _mm256_add_ps(fix0,tx);
503             fiy0             = _mm256_add_ps(fiy0,ty);
504             fiz0             = _mm256_add_ps(fiz0,tz);
505
506             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
507             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
508             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
509             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
510             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
511             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
512             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
513             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
514             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
515
516             /* Inner loop uses 71 flops */
517         }
518
519         /* End of innermost loop */
520
521         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
522                                                  f+i_coord_offset,fshift+i_shift_offset);
523
524         ggid                        = gid[iidx];
525         /* Update potential energies */
526         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
527         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
528         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
529         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
530         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
531
532         /* Increment number of inner iterations */
533         inneriter                  += j_index_end - j_index_start;
534
535         /* Outer loop uses 10 flops */
536     }
537
538     /* Increment number of outer iterations */
539     outeriter        += nri;
540
541     /* Update outer/inner flops */
542
543     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
544 }
545 /*
546  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
547  * Electrostatics interaction: GeneralizedBorn
548  * VdW interaction:            LennardJones
549  * Geometry:                   Particle-Particle
550  * Calculate force/pot:        Force
551  */
552 void
553 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
554                     (t_nblist * gmx_restrict                nlist,
555                      rvec * gmx_restrict                    xx,
556                      rvec * gmx_restrict                    ff,
557                      t_forcerec * gmx_restrict              fr,
558                      t_mdatoms * gmx_restrict               mdatoms,
559                      nb_kernel_data_t * gmx_restrict        kernel_data,
560                      t_nrnb * gmx_restrict                  nrnb)
561 {
562     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
563      * just 0 for non-waters.
564      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
565      * jnr indices corresponding to data put in the four positions in the SIMD register.
566      */
567     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
568     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
569     int              jnrA,jnrB,jnrC,jnrD;
570     int              jnrE,jnrF,jnrG,jnrH;
571     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
572     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
573     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
574     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
575     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
576     real             rcutoff_scalar;
577     real             *shiftvec,*fshift,*x,*f;
578     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
579     real             scratch[4*DIM];
580     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
581     real *           vdwioffsetptr0;
582     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
583     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
584     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
585     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
586     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
587     real             *charge;
588     __m256i          gbitab;
589     __m128i          gbitab_lo,gbitab_hi;
590     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
591     __m256           minushalf = _mm256_set1_ps(-0.5);
592     real             *invsqrta,*dvda,*gbtab;
593     int              nvdwtype;
594     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
595     int              *vdwtype;
596     real             *vdwparam;
597     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
598     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
599     __m256i          vfitab;
600     __m128i          vfitab_lo,vfitab_hi;
601     __m128i          ifour       = _mm_set1_epi32(4);
602     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
603     real             *vftab;
604     __m256           dummy_mask,cutoff_mask;
605     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
606     __m256           one     = _mm256_set1_ps(1.0);
607     __m256           two     = _mm256_set1_ps(2.0);
608     x                = xx[0];
609     f                = ff[0];
610
611     nri              = nlist->nri;
612     iinr             = nlist->iinr;
613     jindex           = nlist->jindex;
614     jjnr             = nlist->jjnr;
615     shiftidx         = nlist->shift;
616     gid              = nlist->gid;
617     shiftvec         = fr->shift_vec[0];
618     fshift           = fr->fshift[0];
619     facel            = _mm256_set1_ps(fr->epsfac);
620     charge           = mdatoms->chargeA;
621     nvdwtype         = fr->ntype;
622     vdwparam         = fr->nbfp;
623     vdwtype          = mdatoms->typeA;
624
625     invsqrta         = fr->invsqrta;
626     dvda             = fr->dvda;
627     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
628     gbtab            = fr->gbtab.data;
629     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
630
631     /* Avoid stupid compiler warnings */
632     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
633     j_coord_offsetA = 0;
634     j_coord_offsetB = 0;
635     j_coord_offsetC = 0;
636     j_coord_offsetD = 0;
637     j_coord_offsetE = 0;
638     j_coord_offsetF = 0;
639     j_coord_offsetG = 0;
640     j_coord_offsetH = 0;
641
642     outeriter        = 0;
643     inneriter        = 0;
644
645     for(iidx=0;iidx<4*DIM;iidx++)
646     {
647         scratch[iidx] = 0.0;
648     }
649
650     /* Start outer loop over neighborlists */
651     for(iidx=0; iidx<nri; iidx++)
652     {
653         /* Load shift vector for this list */
654         i_shift_offset   = DIM*shiftidx[iidx];
655
656         /* Load limits for loop over neighbors */
657         j_index_start    = jindex[iidx];
658         j_index_end      = jindex[iidx+1];
659
660         /* Get outer coordinate index */
661         inr              = iinr[iidx];
662         i_coord_offset   = DIM*inr;
663
664         /* Load i particle coords and add shift vector */
665         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
666
667         fix0             = _mm256_setzero_ps();
668         fiy0             = _mm256_setzero_ps();
669         fiz0             = _mm256_setzero_ps();
670
671         /* Load parameters for i particles */
672         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
673         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
674         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
675
676         dvdasum          = _mm256_setzero_ps();
677
678         /* Start inner kernel loop */
679         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
680         {
681
682             /* Get j neighbor index, and coordinate index */
683             jnrA             = jjnr[jidx];
684             jnrB             = jjnr[jidx+1];
685             jnrC             = jjnr[jidx+2];
686             jnrD             = jjnr[jidx+3];
687             jnrE             = jjnr[jidx+4];
688             jnrF             = jjnr[jidx+5];
689             jnrG             = jjnr[jidx+6];
690             jnrH             = jjnr[jidx+7];
691             j_coord_offsetA  = DIM*jnrA;
692             j_coord_offsetB  = DIM*jnrB;
693             j_coord_offsetC  = DIM*jnrC;
694             j_coord_offsetD  = DIM*jnrD;
695             j_coord_offsetE  = DIM*jnrE;
696             j_coord_offsetF  = DIM*jnrF;
697             j_coord_offsetG  = DIM*jnrG;
698             j_coord_offsetH  = DIM*jnrH;
699
700             /* load j atom coordinates */
701             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
702                                                  x+j_coord_offsetC,x+j_coord_offsetD,
703                                                  x+j_coord_offsetE,x+j_coord_offsetF,
704                                                  x+j_coord_offsetG,x+j_coord_offsetH,
705                                                  &jx0,&jy0,&jz0);
706
707             /* Calculate displacement vector */
708             dx00             = _mm256_sub_ps(ix0,jx0);
709             dy00             = _mm256_sub_ps(iy0,jy0);
710             dz00             = _mm256_sub_ps(iz0,jz0);
711
712             /* Calculate squared distance and things based on it */
713             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
714
715             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
716
717             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
718
719             /* Load parameters for j particles */
720             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
721                                                                  charge+jnrC+0,charge+jnrD+0,
722                                                                  charge+jnrE+0,charge+jnrF+0,
723                                                                  charge+jnrG+0,charge+jnrH+0);
724             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
725                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
726                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
727                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
728             vdwjidx0A        = 2*vdwtype[jnrA+0];
729             vdwjidx0B        = 2*vdwtype[jnrB+0];
730             vdwjidx0C        = 2*vdwtype[jnrC+0];
731             vdwjidx0D        = 2*vdwtype[jnrD+0];
732             vdwjidx0E        = 2*vdwtype[jnrE+0];
733             vdwjidx0F        = 2*vdwtype[jnrF+0];
734             vdwjidx0G        = 2*vdwtype[jnrG+0];
735             vdwjidx0H        = 2*vdwtype[jnrH+0];
736
737             /**************************
738              * CALCULATE INTERACTIONS *
739              **************************/
740
741             r00              = _mm256_mul_ps(rsq00,rinv00);
742
743             /* Compute parameters for interactions between i and j atoms */
744             qq00             = _mm256_mul_ps(iq0,jq0);
745             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
746                                             vdwioffsetptr0+vdwjidx0B,
747                                             vdwioffsetptr0+vdwjidx0C,
748                                             vdwioffsetptr0+vdwjidx0D,
749                                             vdwioffsetptr0+vdwjidx0E,
750                                             vdwioffsetptr0+vdwjidx0F,
751                                             vdwioffsetptr0+vdwjidx0G,
752                                             vdwioffsetptr0+vdwjidx0H,
753                                             &c6_00,&c12_00);
754
755             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
756             isaprod          = _mm256_mul_ps(isai0,isaj0);
757             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
758             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
759
760             /* Calculate generalized born table index - this is a separate table from the normal one,
761              * but we use the same procedure by multiplying r with scale and truncating to integer.
762              */
763             rt               = _mm256_mul_ps(r00,gbscale);
764             gbitab           = _mm256_cvttps_epi32(rt);
765             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
766             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
767             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
768             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
769             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
770             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
771             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
772                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
773             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
774                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
775             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
776                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
777             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
778                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
779             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
780             Heps             = _mm256_mul_ps(gbeps,H);
781             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
782             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
783             vgb              = _mm256_mul_ps(gbqqfactor,VV);
784
785             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
786             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
787             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
788             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
789             fjptrA           = dvda+jnrA;
790             fjptrB           = dvda+jnrB;
791             fjptrC           = dvda+jnrC;
792             fjptrD           = dvda+jnrD;
793             fjptrE           = dvda+jnrE;
794             fjptrF           = dvda+jnrF;
795             fjptrG           = dvda+jnrG;
796             fjptrH           = dvda+jnrH;
797             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
798                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
799             velec            = _mm256_mul_ps(qq00,rinv00);
800             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
801
802             /* LENNARD-JONES DISPERSION/REPULSION */
803
804             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
805             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
806
807             fscal            = _mm256_add_ps(felec,fvdw);
808
809             /* Calculate temporary vectorial force */
810             tx               = _mm256_mul_ps(fscal,dx00);
811             ty               = _mm256_mul_ps(fscal,dy00);
812             tz               = _mm256_mul_ps(fscal,dz00);
813
814             /* Update vectorial force */
815             fix0             = _mm256_add_ps(fix0,tx);
816             fiy0             = _mm256_add_ps(fiy0,ty);
817             fiz0             = _mm256_add_ps(fiz0,tz);
818
819             fjptrA             = f+j_coord_offsetA;
820             fjptrB             = f+j_coord_offsetB;
821             fjptrC             = f+j_coord_offsetC;
822             fjptrD             = f+j_coord_offsetD;
823             fjptrE             = f+j_coord_offsetE;
824             fjptrF             = f+j_coord_offsetF;
825             fjptrG             = f+j_coord_offsetG;
826             fjptrH             = f+j_coord_offsetH;
827             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
828
829             /* Inner loop uses 63 flops */
830         }
831
832         if(jidx<j_index_end)
833         {
834
835             /* Get j neighbor index, and coordinate index */
836             jnrlistA         = jjnr[jidx];
837             jnrlistB         = jjnr[jidx+1];
838             jnrlistC         = jjnr[jidx+2];
839             jnrlistD         = jjnr[jidx+3];
840             jnrlistE         = jjnr[jidx+4];
841             jnrlistF         = jjnr[jidx+5];
842             jnrlistG         = jjnr[jidx+6];
843             jnrlistH         = jjnr[jidx+7];
844             /* Sign of each element will be negative for non-real atoms.
845              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
846              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
847              */
848             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
849                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
850                                             
851             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
852             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
853             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
854             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
855             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
856             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
857             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
858             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
859             j_coord_offsetA  = DIM*jnrA;
860             j_coord_offsetB  = DIM*jnrB;
861             j_coord_offsetC  = DIM*jnrC;
862             j_coord_offsetD  = DIM*jnrD;
863             j_coord_offsetE  = DIM*jnrE;
864             j_coord_offsetF  = DIM*jnrF;
865             j_coord_offsetG  = DIM*jnrG;
866             j_coord_offsetH  = DIM*jnrH;
867
868             /* load j atom coordinates */
869             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
870                                                  x+j_coord_offsetC,x+j_coord_offsetD,
871                                                  x+j_coord_offsetE,x+j_coord_offsetF,
872                                                  x+j_coord_offsetG,x+j_coord_offsetH,
873                                                  &jx0,&jy0,&jz0);
874
875             /* Calculate displacement vector */
876             dx00             = _mm256_sub_ps(ix0,jx0);
877             dy00             = _mm256_sub_ps(iy0,jy0);
878             dz00             = _mm256_sub_ps(iz0,jz0);
879
880             /* Calculate squared distance and things based on it */
881             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
882
883             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
884
885             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
886
887             /* Load parameters for j particles */
888             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
889                                                                  charge+jnrC+0,charge+jnrD+0,
890                                                                  charge+jnrE+0,charge+jnrF+0,
891                                                                  charge+jnrG+0,charge+jnrH+0);
892             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
893                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
894                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
895                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
896             vdwjidx0A        = 2*vdwtype[jnrA+0];
897             vdwjidx0B        = 2*vdwtype[jnrB+0];
898             vdwjidx0C        = 2*vdwtype[jnrC+0];
899             vdwjidx0D        = 2*vdwtype[jnrD+0];
900             vdwjidx0E        = 2*vdwtype[jnrE+0];
901             vdwjidx0F        = 2*vdwtype[jnrF+0];
902             vdwjidx0G        = 2*vdwtype[jnrG+0];
903             vdwjidx0H        = 2*vdwtype[jnrH+0];
904
905             /**************************
906              * CALCULATE INTERACTIONS *
907              **************************/
908
909             r00              = _mm256_mul_ps(rsq00,rinv00);
910             r00              = _mm256_andnot_ps(dummy_mask,r00);
911
912             /* Compute parameters for interactions between i and j atoms */
913             qq00             = _mm256_mul_ps(iq0,jq0);
914             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
915                                             vdwioffsetptr0+vdwjidx0B,
916                                             vdwioffsetptr0+vdwjidx0C,
917                                             vdwioffsetptr0+vdwjidx0D,
918                                             vdwioffsetptr0+vdwjidx0E,
919                                             vdwioffsetptr0+vdwjidx0F,
920                                             vdwioffsetptr0+vdwjidx0G,
921                                             vdwioffsetptr0+vdwjidx0H,
922                                             &c6_00,&c12_00);
923
924             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
925             isaprod          = _mm256_mul_ps(isai0,isaj0);
926             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
927             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
928
929             /* Calculate generalized born table index - this is a separate table from the normal one,
930              * but we use the same procedure by multiplying r with scale and truncating to integer.
931              */
932             rt               = _mm256_mul_ps(r00,gbscale);
933             gbitab           = _mm256_cvttps_epi32(rt);
934             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
935             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
936             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
937             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
938             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
939             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
940             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
941                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
942             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
943                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
944             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
945                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
946             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
947                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
948             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
949             Heps             = _mm256_mul_ps(gbeps,H);
950             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
951             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
952             vgb              = _mm256_mul_ps(gbqqfactor,VV);
953
954             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
955             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
956             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
957             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
958             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
959             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
960             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
961             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
962             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
963             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
964             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
965             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
966             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
967             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
968             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
969                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
970             velec            = _mm256_mul_ps(qq00,rinv00);
971             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
972
973             /* LENNARD-JONES DISPERSION/REPULSION */
974
975             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
976             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
977
978             fscal            = _mm256_add_ps(felec,fvdw);
979
980             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
981
982             /* Calculate temporary vectorial force */
983             tx               = _mm256_mul_ps(fscal,dx00);
984             ty               = _mm256_mul_ps(fscal,dy00);
985             tz               = _mm256_mul_ps(fscal,dz00);
986
987             /* Update vectorial force */
988             fix0             = _mm256_add_ps(fix0,tx);
989             fiy0             = _mm256_add_ps(fiy0,ty);
990             fiz0             = _mm256_add_ps(fiz0,tz);
991
992             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
993             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
994             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
995             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
996             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
997             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
998             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
999             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1000             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1001
1002             /* Inner loop uses 64 flops */
1003         }
1004
1005         /* End of innermost loop */
1006
1007         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1008                                                  f+i_coord_offset,fshift+i_shift_offset);
1009
1010         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
1011         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1012
1013         /* Increment number of inner iterations */
1014         inneriter                  += j_index_end - j_index_start;
1015
1016         /* Outer loop uses 7 flops */
1017     }
1018
1019     /* Increment number of outer iterations */
1020     outeriter        += nri;
1021
1022     /* Update outer/inner flops */
1023
1024     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
1025 }