Remove topology support for implicit solvation
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m256i          gbitab;
93     __m128i          gbitab_lo,gbitab_hi;
94     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
95     __m256           minushalf = _mm256_set1_ps(-0.5);
96     real             *invsqrta,*dvda,*gbtab;
97     int              nvdwtype;
98     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
102     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
103     __m256i          vfitab;
104     __m128i          vfitab_lo,vfitab_hi;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m256           dummy_mask,cutoff_mask;
109     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
110     __m256           one     = _mm256_set1_ps(1.0);
111     __m256           two     = _mm256_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
131
132     invsqrta         = fr->invsqrta;
133     dvda             = fr->dvda;
134     gbtabscale       = _mm256_set1_ps(fr->gbtab->scale);
135     gbtab            = fr->gbtab->data;
136     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144     j_coord_offsetE = 0;
145     j_coord_offsetF = 0;
146     j_coord_offsetG = 0;
147     j_coord_offsetH = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
173
174         fix0             = _mm256_setzero_ps();
175         fiy0             = _mm256_setzero_ps();
176         fiz0             = _mm256_setzero_ps();
177
178         /* Load parameters for i particles */
179         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
180         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
181         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_ps();
185         vgbsum           = _mm256_setzero_ps();
186         vvdwsum          = _mm256_setzero_ps();
187         dvdasum          = _mm256_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             jnrE             = jjnr[jidx+4];
199             jnrF             = jjnr[jidx+5];
200             jnrG             = jjnr[jidx+6];
201             jnrH             = jjnr[jidx+7];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206             j_coord_offsetE  = DIM*jnrE;
207             j_coord_offsetF  = DIM*jnrF;
208             j_coord_offsetG  = DIM*jnrG;
209             j_coord_offsetH  = DIM*jnrH;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  x+j_coord_offsetE,x+j_coord_offsetF,
215                                                  x+j_coord_offsetG,x+j_coord_offsetH,
216                                                  &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm256_sub_ps(ix0,jx0);
220             dy00             = _mm256_sub_ps(iy0,jy0);
221             dz00             = _mm256_sub_ps(iz0,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
225
226             rinv00           = avx256_invsqrt_f(rsq00);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
230                                                                  charge+jnrC+0,charge+jnrD+0,
231                                                                  charge+jnrE+0,charge+jnrF+0,
232                                                                  charge+jnrG+0,charge+jnrH+0);
233             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
234                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
235                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
236                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
237             vdwjidx0A        = 2*vdwtype[jnrA+0];
238             vdwjidx0B        = 2*vdwtype[jnrB+0];
239             vdwjidx0C        = 2*vdwtype[jnrC+0];
240             vdwjidx0D        = 2*vdwtype[jnrD+0];
241             vdwjidx0E        = 2*vdwtype[jnrE+0];
242             vdwjidx0F        = 2*vdwtype[jnrF+0];
243             vdwjidx0G        = 2*vdwtype[jnrG+0];
244             vdwjidx0H        = 2*vdwtype[jnrH+0];
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm256_mul_ps(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm256_mul_ps(iq0,jq0);
254             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
255                                             vdwioffsetptr0+vdwjidx0B,
256                                             vdwioffsetptr0+vdwjidx0C,
257                                             vdwioffsetptr0+vdwjidx0D,
258                                             vdwioffsetptr0+vdwjidx0E,
259                                             vdwioffsetptr0+vdwjidx0F,
260                                             vdwioffsetptr0+vdwjidx0G,
261                                             vdwioffsetptr0+vdwjidx0H,
262                                             &c6_00,&c12_00);
263
264             /* Calculate table index by multiplying r with table scale and truncate to integer */
265             rt               = _mm256_mul_ps(r00,vftabscale);
266             vfitab           = _mm256_cvttps_epi32(rt);
267             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
268             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
269             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
270             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
271             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
272             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
273
274             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
275             isaprod          = _mm256_mul_ps(isai0,isaj0);
276             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
277             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
278
279             /* Calculate generalized born table index - this is a separate table from the normal one,
280              * but we use the same procedure by multiplying r with scale and truncating to integer.
281              */
282             rt               = _mm256_mul_ps(r00,gbscale);
283             gbitab           = _mm256_cvttps_epi32(rt);
284             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
285             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
286             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
287             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
288             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
289             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
290             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
291                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
292             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
293                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
294             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
295                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
296             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
297                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
298             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
299             Heps             = _mm256_mul_ps(gbeps,H);
300             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
301             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
302             vgb              = _mm256_mul_ps(gbqqfactor,VV);
303
304             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
305             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
306             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
307             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
308             fjptrA           = dvda+jnrA;
309             fjptrB           = dvda+jnrB;
310             fjptrC           = dvda+jnrC;
311             fjptrD           = dvda+jnrD;
312             fjptrE           = dvda+jnrE;
313             fjptrF           = dvda+jnrF;
314             fjptrG           = dvda+jnrG;
315             fjptrH           = dvda+jnrH;
316             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
317                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
318             velec            = _mm256_mul_ps(qq00,rinv00);
319             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
320
321             /* CUBIC SPLINE TABLE DISPERSION */
322             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
323                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
324             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
326             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
327                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
328             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
329                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
330             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
331             Heps             = _mm256_mul_ps(vfeps,H);
332             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
333             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
334             vvdw6            = _mm256_mul_ps(c6_00,VV);
335             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
336             fvdw6            = _mm256_mul_ps(c6_00,FF);
337
338             /* CUBIC SPLINE TABLE REPULSION */
339             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
340             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
341             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
342                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
343             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
344                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
345             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
346                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
347             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
348                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
349             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
350             Heps             = _mm256_mul_ps(vfeps,H);
351             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
352             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
353             vvdw12           = _mm256_mul_ps(c12_00,VV);
354             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
355             fvdw12           = _mm256_mul_ps(c12_00,FF);
356             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
357             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm256_add_ps(velecsum,velec);
361             vgbsum           = _mm256_add_ps(vgbsum,vgb);
362             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
363
364             fscal            = _mm256_add_ps(felec,fvdw);
365
366             /* Calculate temporary vectorial force */
367             tx               = _mm256_mul_ps(fscal,dx00);
368             ty               = _mm256_mul_ps(fscal,dy00);
369             tz               = _mm256_mul_ps(fscal,dz00);
370
371             /* Update vectorial force */
372             fix0             = _mm256_add_ps(fix0,tx);
373             fiy0             = _mm256_add_ps(fiy0,ty);
374             fiz0             = _mm256_add_ps(fiz0,tz);
375
376             fjptrA             = f+j_coord_offsetA;
377             fjptrB             = f+j_coord_offsetB;
378             fjptrC             = f+j_coord_offsetC;
379             fjptrD             = f+j_coord_offsetD;
380             fjptrE             = f+j_coord_offsetE;
381             fjptrF             = f+j_coord_offsetF;
382             fjptrG             = f+j_coord_offsetG;
383             fjptrH             = f+j_coord_offsetH;
384             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
385
386             /* Inner loop uses 91 flops */
387         }
388
389         if(jidx<j_index_end)
390         {
391
392             /* Get j neighbor index, and coordinate index */
393             jnrlistA         = jjnr[jidx];
394             jnrlistB         = jjnr[jidx+1];
395             jnrlistC         = jjnr[jidx+2];
396             jnrlistD         = jjnr[jidx+3];
397             jnrlistE         = jjnr[jidx+4];
398             jnrlistF         = jjnr[jidx+5];
399             jnrlistG         = jjnr[jidx+6];
400             jnrlistH         = jjnr[jidx+7];
401             /* Sign of each element will be negative for non-real atoms.
402              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
403              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
404              */
405             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
406                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
407                                             
408             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
409             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
410             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
411             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
412             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
413             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
414             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
415             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
416             j_coord_offsetA  = DIM*jnrA;
417             j_coord_offsetB  = DIM*jnrB;
418             j_coord_offsetC  = DIM*jnrC;
419             j_coord_offsetD  = DIM*jnrD;
420             j_coord_offsetE  = DIM*jnrE;
421             j_coord_offsetF  = DIM*jnrF;
422             j_coord_offsetG  = DIM*jnrG;
423             j_coord_offsetH  = DIM*jnrH;
424
425             /* load j atom coordinates */
426             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
427                                                  x+j_coord_offsetC,x+j_coord_offsetD,
428                                                  x+j_coord_offsetE,x+j_coord_offsetF,
429                                                  x+j_coord_offsetG,x+j_coord_offsetH,
430                                                  &jx0,&jy0,&jz0);
431
432             /* Calculate displacement vector */
433             dx00             = _mm256_sub_ps(ix0,jx0);
434             dy00             = _mm256_sub_ps(iy0,jy0);
435             dz00             = _mm256_sub_ps(iz0,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
439
440             rinv00           = avx256_invsqrt_f(rsq00);
441
442             /* Load parameters for j particles */
443             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
444                                                                  charge+jnrC+0,charge+jnrD+0,
445                                                                  charge+jnrE+0,charge+jnrF+0,
446                                                                  charge+jnrG+0,charge+jnrH+0);
447             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
448                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
449                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
450                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452             vdwjidx0B        = 2*vdwtype[jnrB+0];
453             vdwjidx0C        = 2*vdwtype[jnrC+0];
454             vdwjidx0D        = 2*vdwtype[jnrD+0];
455             vdwjidx0E        = 2*vdwtype[jnrE+0];
456             vdwjidx0F        = 2*vdwtype[jnrF+0];
457             vdwjidx0G        = 2*vdwtype[jnrG+0];
458             vdwjidx0H        = 2*vdwtype[jnrH+0];
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             r00              = _mm256_mul_ps(rsq00,rinv00);
465             r00              = _mm256_andnot_ps(dummy_mask,r00);
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq00             = _mm256_mul_ps(iq0,jq0);
469             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
470                                             vdwioffsetptr0+vdwjidx0B,
471                                             vdwioffsetptr0+vdwjidx0C,
472                                             vdwioffsetptr0+vdwjidx0D,
473                                             vdwioffsetptr0+vdwjidx0E,
474                                             vdwioffsetptr0+vdwjidx0F,
475                                             vdwioffsetptr0+vdwjidx0G,
476                                             vdwioffsetptr0+vdwjidx0H,
477                                             &c6_00,&c12_00);
478
479             /* Calculate table index by multiplying r with table scale and truncate to integer */
480             rt               = _mm256_mul_ps(r00,vftabscale);
481             vfitab           = _mm256_cvttps_epi32(rt);
482             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
483             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
484             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
485             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
486             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
487             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
488
489             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
490             isaprod          = _mm256_mul_ps(isai0,isaj0);
491             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
492             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
493
494             /* Calculate generalized born table index - this is a separate table from the normal one,
495              * but we use the same procedure by multiplying r with scale and truncating to integer.
496              */
497             rt               = _mm256_mul_ps(r00,gbscale);
498             gbitab           = _mm256_cvttps_epi32(rt);
499             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
500             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
501             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
502             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
503             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
504             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
505             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
506                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
507             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
508                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
509             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
510                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
511             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
512                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
513             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
514             Heps             = _mm256_mul_ps(gbeps,H);
515             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
516             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
517             vgb              = _mm256_mul_ps(gbqqfactor,VV);
518
519             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
520             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
521             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
522             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
523             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
524             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
525             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
526             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
527             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
528             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
529             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
530             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
531             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
532             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
533             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
534                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
535             velec            = _mm256_mul_ps(qq00,rinv00);
536             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
537
538             /* CUBIC SPLINE TABLE DISPERSION */
539             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
540                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
541             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
542                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
543             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
544                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
545             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
546                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
547             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
548             Heps             = _mm256_mul_ps(vfeps,H);
549             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
550             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
551             vvdw6            = _mm256_mul_ps(c6_00,VV);
552             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
553             fvdw6            = _mm256_mul_ps(c6_00,FF);
554
555             /* CUBIC SPLINE TABLE REPULSION */
556             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
557             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
558             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
559                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
560             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
561                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
562             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
563                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
564             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
565                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
566             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
567             Heps             = _mm256_mul_ps(vfeps,H);
568             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
569             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
570             vvdw12           = _mm256_mul_ps(c12_00,VV);
571             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
572             fvdw12           = _mm256_mul_ps(c12_00,FF);
573             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
574             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm256_andnot_ps(dummy_mask,velec);
578             velecsum         = _mm256_add_ps(velecsum,velec);
579             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
580             vgbsum           = _mm256_add_ps(vgbsum,vgb);
581             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
582             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
583
584             fscal            = _mm256_add_ps(felec,fvdw);
585
586             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
587
588             /* Calculate temporary vectorial force */
589             tx               = _mm256_mul_ps(fscal,dx00);
590             ty               = _mm256_mul_ps(fscal,dy00);
591             tz               = _mm256_mul_ps(fscal,dz00);
592
593             /* Update vectorial force */
594             fix0             = _mm256_add_ps(fix0,tx);
595             fiy0             = _mm256_add_ps(fiy0,ty);
596             fiz0             = _mm256_add_ps(fiz0,tz);
597
598             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
599             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
600             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
601             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
602             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
603             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
604             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
605             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
606             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
607
608             /* Inner loop uses 92 flops */
609         }
610
611         /* End of innermost loop */
612
613         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
614                                                  f+i_coord_offset,fshift+i_shift_offset);
615
616         ggid                        = gid[iidx];
617         /* Update potential energies */
618         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
619         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
620         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
621         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
622         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
623
624         /* Increment number of inner iterations */
625         inneriter                  += j_index_end - j_index_start;
626
627         /* Outer loop uses 10 flops */
628     }
629
630     /* Increment number of outer iterations */
631     outeriter        += nri;
632
633     /* Update outer/inner flops */
634
635     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
636 }
637 /*
638  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_single
639  * Electrostatics interaction: GeneralizedBorn
640  * VdW interaction:            CubicSplineTable
641  * Geometry:                   Particle-Particle
642  * Calculate force/pot:        Force
643  */
644 void
645 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_single
646                     (t_nblist                    * gmx_restrict       nlist,
647                      rvec                        * gmx_restrict          xx,
648                      rvec                        * gmx_restrict          ff,
649                      struct t_forcerec           * gmx_restrict          fr,
650                      t_mdatoms                   * gmx_restrict     mdatoms,
651                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
652                      t_nrnb                      * gmx_restrict        nrnb)
653 {
654     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
655      * just 0 for non-waters.
656      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
657      * jnr indices corresponding to data put in the four positions in the SIMD register.
658      */
659     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
660     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
661     int              jnrA,jnrB,jnrC,jnrD;
662     int              jnrE,jnrF,jnrG,jnrH;
663     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
664     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
665     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
666     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
667     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
668     real             rcutoff_scalar;
669     real             *shiftvec,*fshift,*x,*f;
670     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
671     real             scratch[4*DIM];
672     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
673     real *           vdwioffsetptr0;
674     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
675     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
676     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
677     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
678     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
679     real             *charge;
680     __m256i          gbitab;
681     __m128i          gbitab_lo,gbitab_hi;
682     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
683     __m256           minushalf = _mm256_set1_ps(-0.5);
684     real             *invsqrta,*dvda,*gbtab;
685     int              nvdwtype;
686     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
687     int              *vdwtype;
688     real             *vdwparam;
689     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
690     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
691     __m256i          vfitab;
692     __m128i          vfitab_lo,vfitab_hi;
693     __m128i          ifour       = _mm_set1_epi32(4);
694     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
695     real             *vftab;
696     __m256           dummy_mask,cutoff_mask;
697     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
698     __m256           one     = _mm256_set1_ps(1.0);
699     __m256           two     = _mm256_set1_ps(2.0);
700     x                = xx[0];
701     f                = ff[0];
702
703     nri              = nlist->nri;
704     iinr             = nlist->iinr;
705     jindex           = nlist->jindex;
706     jjnr             = nlist->jjnr;
707     shiftidx         = nlist->shift;
708     gid              = nlist->gid;
709     shiftvec         = fr->shift_vec[0];
710     fshift           = fr->fshift[0];
711     facel            = _mm256_set1_ps(fr->ic->epsfac);
712     charge           = mdatoms->chargeA;
713     nvdwtype         = fr->ntype;
714     vdwparam         = fr->nbfp;
715     vdwtype          = mdatoms->typeA;
716
717     vftab            = kernel_data->table_vdw->data;
718     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
719
720     invsqrta         = fr->invsqrta;
721     dvda             = fr->dvda;
722     gbtabscale       = _mm256_set1_ps(fr->gbtab->scale);
723     gbtab            = fr->gbtab->data;
724     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
725
726     /* Avoid stupid compiler warnings */
727     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
728     j_coord_offsetA = 0;
729     j_coord_offsetB = 0;
730     j_coord_offsetC = 0;
731     j_coord_offsetD = 0;
732     j_coord_offsetE = 0;
733     j_coord_offsetF = 0;
734     j_coord_offsetG = 0;
735     j_coord_offsetH = 0;
736
737     outeriter        = 0;
738     inneriter        = 0;
739
740     for(iidx=0;iidx<4*DIM;iidx++)
741     {
742         scratch[iidx] = 0.0;
743     }
744
745     /* Start outer loop over neighborlists */
746     for(iidx=0; iidx<nri; iidx++)
747     {
748         /* Load shift vector for this list */
749         i_shift_offset   = DIM*shiftidx[iidx];
750
751         /* Load limits for loop over neighbors */
752         j_index_start    = jindex[iidx];
753         j_index_end      = jindex[iidx+1];
754
755         /* Get outer coordinate index */
756         inr              = iinr[iidx];
757         i_coord_offset   = DIM*inr;
758
759         /* Load i particle coords and add shift vector */
760         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
761
762         fix0             = _mm256_setzero_ps();
763         fiy0             = _mm256_setzero_ps();
764         fiz0             = _mm256_setzero_ps();
765
766         /* Load parameters for i particles */
767         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
768         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
769         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
770
771         dvdasum          = _mm256_setzero_ps();
772
773         /* Start inner kernel loop */
774         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
775         {
776
777             /* Get j neighbor index, and coordinate index */
778             jnrA             = jjnr[jidx];
779             jnrB             = jjnr[jidx+1];
780             jnrC             = jjnr[jidx+2];
781             jnrD             = jjnr[jidx+3];
782             jnrE             = jjnr[jidx+4];
783             jnrF             = jjnr[jidx+5];
784             jnrG             = jjnr[jidx+6];
785             jnrH             = jjnr[jidx+7];
786             j_coord_offsetA  = DIM*jnrA;
787             j_coord_offsetB  = DIM*jnrB;
788             j_coord_offsetC  = DIM*jnrC;
789             j_coord_offsetD  = DIM*jnrD;
790             j_coord_offsetE  = DIM*jnrE;
791             j_coord_offsetF  = DIM*jnrF;
792             j_coord_offsetG  = DIM*jnrG;
793             j_coord_offsetH  = DIM*jnrH;
794
795             /* load j atom coordinates */
796             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
797                                                  x+j_coord_offsetC,x+j_coord_offsetD,
798                                                  x+j_coord_offsetE,x+j_coord_offsetF,
799                                                  x+j_coord_offsetG,x+j_coord_offsetH,
800                                                  &jx0,&jy0,&jz0);
801
802             /* Calculate displacement vector */
803             dx00             = _mm256_sub_ps(ix0,jx0);
804             dy00             = _mm256_sub_ps(iy0,jy0);
805             dz00             = _mm256_sub_ps(iz0,jz0);
806
807             /* Calculate squared distance and things based on it */
808             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
809
810             rinv00           = avx256_invsqrt_f(rsq00);
811
812             /* Load parameters for j particles */
813             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
814                                                                  charge+jnrC+0,charge+jnrD+0,
815                                                                  charge+jnrE+0,charge+jnrF+0,
816                                                                  charge+jnrG+0,charge+jnrH+0);
817             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
818                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
819                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
820                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
821             vdwjidx0A        = 2*vdwtype[jnrA+0];
822             vdwjidx0B        = 2*vdwtype[jnrB+0];
823             vdwjidx0C        = 2*vdwtype[jnrC+0];
824             vdwjidx0D        = 2*vdwtype[jnrD+0];
825             vdwjidx0E        = 2*vdwtype[jnrE+0];
826             vdwjidx0F        = 2*vdwtype[jnrF+0];
827             vdwjidx0G        = 2*vdwtype[jnrG+0];
828             vdwjidx0H        = 2*vdwtype[jnrH+0];
829
830             /**************************
831              * CALCULATE INTERACTIONS *
832              **************************/
833
834             r00              = _mm256_mul_ps(rsq00,rinv00);
835
836             /* Compute parameters for interactions between i and j atoms */
837             qq00             = _mm256_mul_ps(iq0,jq0);
838             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
839                                             vdwioffsetptr0+vdwjidx0B,
840                                             vdwioffsetptr0+vdwjidx0C,
841                                             vdwioffsetptr0+vdwjidx0D,
842                                             vdwioffsetptr0+vdwjidx0E,
843                                             vdwioffsetptr0+vdwjidx0F,
844                                             vdwioffsetptr0+vdwjidx0G,
845                                             vdwioffsetptr0+vdwjidx0H,
846                                             &c6_00,&c12_00);
847
848             /* Calculate table index by multiplying r with table scale and truncate to integer */
849             rt               = _mm256_mul_ps(r00,vftabscale);
850             vfitab           = _mm256_cvttps_epi32(rt);
851             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
852             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
853             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
854             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
855             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
856             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
857
858             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
859             isaprod          = _mm256_mul_ps(isai0,isaj0);
860             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
861             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
862
863             /* Calculate generalized born table index - this is a separate table from the normal one,
864              * but we use the same procedure by multiplying r with scale and truncating to integer.
865              */
866             rt               = _mm256_mul_ps(r00,gbscale);
867             gbitab           = _mm256_cvttps_epi32(rt);
868             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
869             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
870             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
871             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
872             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
873             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
874             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
875                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
876             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
877                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
878             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
879                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
880             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
881                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
882             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
883             Heps             = _mm256_mul_ps(gbeps,H);
884             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
885             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
886             vgb              = _mm256_mul_ps(gbqqfactor,VV);
887
888             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
889             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
890             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
891             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
892             fjptrA           = dvda+jnrA;
893             fjptrB           = dvda+jnrB;
894             fjptrC           = dvda+jnrC;
895             fjptrD           = dvda+jnrD;
896             fjptrE           = dvda+jnrE;
897             fjptrF           = dvda+jnrF;
898             fjptrG           = dvda+jnrG;
899             fjptrH           = dvda+jnrH;
900             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
901                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
902             velec            = _mm256_mul_ps(qq00,rinv00);
903             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
904
905             /* CUBIC SPLINE TABLE DISPERSION */
906             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
907                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
908             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
909                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
910             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
911                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
912             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
913                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
914             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
915             Heps             = _mm256_mul_ps(vfeps,H);
916             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
917             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
918             fvdw6            = _mm256_mul_ps(c6_00,FF);
919
920             /* CUBIC SPLINE TABLE REPULSION */
921             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
922             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
923             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
924                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
925             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
926                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
927             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
928                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
929             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
930                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
931             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
932             Heps             = _mm256_mul_ps(vfeps,H);
933             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
934             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
935             fvdw12           = _mm256_mul_ps(c12_00,FF);
936             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
937
938             fscal            = _mm256_add_ps(felec,fvdw);
939
940             /* Calculate temporary vectorial force */
941             tx               = _mm256_mul_ps(fscal,dx00);
942             ty               = _mm256_mul_ps(fscal,dy00);
943             tz               = _mm256_mul_ps(fscal,dz00);
944
945             /* Update vectorial force */
946             fix0             = _mm256_add_ps(fix0,tx);
947             fiy0             = _mm256_add_ps(fiy0,ty);
948             fiz0             = _mm256_add_ps(fiz0,tz);
949
950             fjptrA             = f+j_coord_offsetA;
951             fjptrB             = f+j_coord_offsetB;
952             fjptrC             = f+j_coord_offsetC;
953             fjptrD             = f+j_coord_offsetD;
954             fjptrE             = f+j_coord_offsetE;
955             fjptrF             = f+j_coord_offsetF;
956             fjptrG             = f+j_coord_offsetG;
957             fjptrH             = f+j_coord_offsetH;
958             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
959
960             /* Inner loop uses 81 flops */
961         }
962
963         if(jidx<j_index_end)
964         {
965
966             /* Get j neighbor index, and coordinate index */
967             jnrlistA         = jjnr[jidx];
968             jnrlistB         = jjnr[jidx+1];
969             jnrlistC         = jjnr[jidx+2];
970             jnrlistD         = jjnr[jidx+3];
971             jnrlistE         = jjnr[jidx+4];
972             jnrlistF         = jjnr[jidx+5];
973             jnrlistG         = jjnr[jidx+6];
974             jnrlistH         = jjnr[jidx+7];
975             /* Sign of each element will be negative for non-real atoms.
976              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
977              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
978              */
979             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
980                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
981                                             
982             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
983             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
984             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
985             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
986             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
987             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
988             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
989             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
990             j_coord_offsetA  = DIM*jnrA;
991             j_coord_offsetB  = DIM*jnrB;
992             j_coord_offsetC  = DIM*jnrC;
993             j_coord_offsetD  = DIM*jnrD;
994             j_coord_offsetE  = DIM*jnrE;
995             j_coord_offsetF  = DIM*jnrF;
996             j_coord_offsetG  = DIM*jnrG;
997             j_coord_offsetH  = DIM*jnrH;
998
999             /* load j atom coordinates */
1000             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1001                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1002                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1003                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1004                                                  &jx0,&jy0,&jz0);
1005
1006             /* Calculate displacement vector */
1007             dx00             = _mm256_sub_ps(ix0,jx0);
1008             dy00             = _mm256_sub_ps(iy0,jy0);
1009             dz00             = _mm256_sub_ps(iz0,jz0);
1010
1011             /* Calculate squared distance and things based on it */
1012             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1013
1014             rinv00           = avx256_invsqrt_f(rsq00);
1015
1016             /* Load parameters for j particles */
1017             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1018                                                                  charge+jnrC+0,charge+jnrD+0,
1019                                                                  charge+jnrE+0,charge+jnrF+0,
1020                                                                  charge+jnrG+0,charge+jnrH+0);
1021             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
1022                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
1023                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
1024                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
1025             vdwjidx0A        = 2*vdwtype[jnrA+0];
1026             vdwjidx0B        = 2*vdwtype[jnrB+0];
1027             vdwjidx0C        = 2*vdwtype[jnrC+0];
1028             vdwjidx0D        = 2*vdwtype[jnrD+0];
1029             vdwjidx0E        = 2*vdwtype[jnrE+0];
1030             vdwjidx0F        = 2*vdwtype[jnrF+0];
1031             vdwjidx0G        = 2*vdwtype[jnrG+0];
1032             vdwjidx0H        = 2*vdwtype[jnrH+0];
1033
1034             /**************************
1035              * CALCULATE INTERACTIONS *
1036              **************************/
1037
1038             r00              = _mm256_mul_ps(rsq00,rinv00);
1039             r00              = _mm256_andnot_ps(dummy_mask,r00);
1040
1041             /* Compute parameters for interactions between i and j atoms */
1042             qq00             = _mm256_mul_ps(iq0,jq0);
1043             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1044                                             vdwioffsetptr0+vdwjidx0B,
1045                                             vdwioffsetptr0+vdwjidx0C,
1046                                             vdwioffsetptr0+vdwjidx0D,
1047                                             vdwioffsetptr0+vdwjidx0E,
1048                                             vdwioffsetptr0+vdwjidx0F,
1049                                             vdwioffsetptr0+vdwjidx0G,
1050                                             vdwioffsetptr0+vdwjidx0H,
1051                                             &c6_00,&c12_00);
1052
1053             /* Calculate table index by multiplying r with table scale and truncate to integer */
1054             rt               = _mm256_mul_ps(r00,vftabscale);
1055             vfitab           = _mm256_cvttps_epi32(rt);
1056             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1057             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1058             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1059             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1060             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1061             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1062
1063             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
1064             isaprod          = _mm256_mul_ps(isai0,isaj0);
1065             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
1066             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
1067
1068             /* Calculate generalized born table index - this is a separate table from the normal one,
1069              * but we use the same procedure by multiplying r with scale and truncating to integer.
1070              */
1071             rt               = _mm256_mul_ps(r00,gbscale);
1072             gbitab           = _mm256_cvttps_epi32(rt);
1073             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1074             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1075             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
1076             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
1077             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
1078             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
1079             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
1080                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
1081             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
1082                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
1083             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
1084                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
1085             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
1086                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
1087             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1088             Heps             = _mm256_mul_ps(gbeps,H);
1089             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
1090             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
1091             vgb              = _mm256_mul_ps(gbqqfactor,VV);
1092
1093             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1094             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
1095             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
1096             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
1097             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
1098             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
1099             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
1100             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
1101             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
1102             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
1103             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
1104             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
1105             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
1106             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
1107             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
1108                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
1109             velec            = _mm256_mul_ps(qq00,rinv00);
1110             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
1111
1112             /* CUBIC SPLINE TABLE DISPERSION */
1113             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1114                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1115             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1116                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1117             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1118                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1119             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1120                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1121             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1122             Heps             = _mm256_mul_ps(vfeps,H);
1123             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1124             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1125             fvdw6            = _mm256_mul_ps(c6_00,FF);
1126
1127             /* CUBIC SPLINE TABLE REPULSION */
1128             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1129             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1130             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1131                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1132             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1133                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1134             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1135                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1136             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1137                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1138             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1139             Heps             = _mm256_mul_ps(vfeps,H);
1140             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1141             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1142             fvdw12           = _mm256_mul_ps(c12_00,FF);
1143             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1144
1145             fscal            = _mm256_add_ps(felec,fvdw);
1146
1147             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = _mm256_mul_ps(fscal,dx00);
1151             ty               = _mm256_mul_ps(fscal,dy00);
1152             tz               = _mm256_mul_ps(fscal,dz00);
1153
1154             /* Update vectorial force */
1155             fix0             = _mm256_add_ps(fix0,tx);
1156             fiy0             = _mm256_add_ps(fiy0,ty);
1157             fiz0             = _mm256_add_ps(fiz0,tz);
1158
1159             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1160             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1161             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1162             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1163             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1164             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1165             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1166             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1167             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1168
1169             /* Inner loop uses 82 flops */
1170         }
1171
1172         /* End of innermost loop */
1173
1174         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1175                                                  f+i_coord_offset,fshift+i_shift_offset);
1176
1177         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
1178         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1179
1180         /* Increment number of inner iterations */
1181         inneriter                  += j_index_end - j_index_start;
1182
1183         /* Outer loop uses 7 flops */
1184     }
1185
1186     /* Increment number of outer iterations */
1187     outeriter        += nri;
1188
1189     /* Update outer/inner flops */
1190
1191     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
1192 }