69214ec45f8348a45ba25137b9598216b7b0397c
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m256i          gbitab;
96     __m128i          gbitab_lo,gbitab_hi;
97     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
98     __m256           minushalf = _mm256_set1_ps(-0.5);
99     real             *invsqrta,*dvda,*gbtab;
100     int              nvdwtype;
101     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
105     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
106     __m256i          vfitab;
107     __m128i          vfitab_lo,vfitab_hi;
108     __m128i          ifour       = _mm_set1_epi32(4);
109     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
110     real             *vftab;
111     __m256           dummy_mask,cutoff_mask;
112     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
113     __m256           one     = _mm256_set1_ps(1.0);
114     __m256           two     = _mm256_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
134
135     invsqrta         = fr->invsqrta;
136     dvda             = fr->dvda;
137     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
138     gbtab            = fr->gbtab.data;
139     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147     j_coord_offsetE = 0;
148     j_coord_offsetF = 0;
149     j_coord_offsetG = 0;
150     j_coord_offsetH = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
176
177         fix0             = _mm256_setzero_ps();
178         fiy0             = _mm256_setzero_ps();
179         fiz0             = _mm256_setzero_ps();
180
181         /* Load parameters for i particles */
182         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
183         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
184         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_ps();
188         vgbsum           = _mm256_setzero_ps();
189         vvdwsum          = _mm256_setzero_ps();
190         dvdasum          = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
228
229             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                                  charge+jnrC+0,charge+jnrD+0,
234                                                                  charge+jnrE+0,charge+jnrF+0,
235                                                                  charge+jnrG+0,charge+jnrH+0);
236             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
237                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
238                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
239                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244             vdwjidx0E        = 2*vdwtype[jnrE+0];
245             vdwjidx0F        = 2*vdwtype[jnrF+0];
246             vdwjidx0G        = 2*vdwtype[jnrG+0];
247             vdwjidx0H        = 2*vdwtype[jnrH+0];
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             r00              = _mm256_mul_ps(rsq00,rinv00);
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq00             = _mm256_mul_ps(iq0,jq0);
257             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
258                                             vdwioffsetptr0+vdwjidx0B,
259                                             vdwioffsetptr0+vdwjidx0C,
260                                             vdwioffsetptr0+vdwjidx0D,
261                                             vdwioffsetptr0+vdwjidx0E,
262                                             vdwioffsetptr0+vdwjidx0F,
263                                             vdwioffsetptr0+vdwjidx0G,
264                                             vdwioffsetptr0+vdwjidx0H,
265                                             &c6_00,&c12_00);
266
267             /* Calculate table index by multiplying r with table scale and truncate to integer */
268             rt               = _mm256_mul_ps(r00,vftabscale);
269             vfitab           = _mm256_cvttps_epi32(rt);
270             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
271             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
272             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
273             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
274             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
275             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
276
277             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
278             isaprod          = _mm256_mul_ps(isai0,isaj0);
279             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
280             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
281
282             /* Calculate generalized born table index - this is a separate table from the normal one,
283              * but we use the same procedure by multiplying r with scale and truncating to integer.
284              */
285             rt               = _mm256_mul_ps(r00,gbscale);
286             gbitab           = _mm256_cvttps_epi32(rt);
287             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
288             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
289             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
290             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
291             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
292             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
293             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
294                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
295             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
296                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
297             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
298                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
299             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
300                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
301             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
302             Heps             = _mm256_mul_ps(gbeps,H);
303             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
304             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
305             vgb              = _mm256_mul_ps(gbqqfactor,VV);
306
307             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
308             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
309             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
310             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
311             fjptrA           = dvda+jnrA;
312             fjptrB           = dvda+jnrB;
313             fjptrC           = dvda+jnrC;
314             fjptrD           = dvda+jnrD;
315             fjptrE           = dvda+jnrE;
316             fjptrF           = dvda+jnrF;
317             fjptrG           = dvda+jnrG;
318             fjptrH           = dvda+jnrH;
319             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
320                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
321             velec            = _mm256_mul_ps(qq00,rinv00);
322             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
323
324             /* CUBIC SPLINE TABLE DISPERSION */
325             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
326                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
327             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
328                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
329             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
330                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
331             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
332                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
333             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
334             Heps             = _mm256_mul_ps(vfeps,H);
335             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
336             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
337             vvdw6            = _mm256_mul_ps(c6_00,VV);
338             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
339             fvdw6            = _mm256_mul_ps(c6_00,FF);
340
341             /* CUBIC SPLINE TABLE REPULSION */
342             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
343             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
344             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
345                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
346             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
347                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
348             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
349                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
350             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
351                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
352             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
353             Heps             = _mm256_mul_ps(vfeps,H);
354             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
355             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
356             vvdw12           = _mm256_mul_ps(c12_00,VV);
357             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
358             fvdw12           = _mm256_mul_ps(c12_00,FF);
359             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
360             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velecsum         = _mm256_add_ps(velecsum,velec);
364             vgbsum           = _mm256_add_ps(vgbsum,vgb);
365             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
366
367             fscal            = _mm256_add_ps(felec,fvdw);
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm256_mul_ps(fscal,dx00);
371             ty               = _mm256_mul_ps(fscal,dy00);
372             tz               = _mm256_mul_ps(fscal,dz00);
373
374             /* Update vectorial force */
375             fix0             = _mm256_add_ps(fix0,tx);
376             fiy0             = _mm256_add_ps(fiy0,ty);
377             fiz0             = _mm256_add_ps(fiz0,tz);
378
379             fjptrA             = f+j_coord_offsetA;
380             fjptrB             = f+j_coord_offsetB;
381             fjptrC             = f+j_coord_offsetC;
382             fjptrD             = f+j_coord_offsetD;
383             fjptrE             = f+j_coord_offsetE;
384             fjptrF             = f+j_coord_offsetF;
385             fjptrG             = f+j_coord_offsetG;
386             fjptrH             = f+j_coord_offsetH;
387             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
388
389             /* Inner loop uses 91 flops */
390         }
391
392         if(jidx<j_index_end)
393         {
394
395             /* Get j neighbor index, and coordinate index */
396             jnrlistA         = jjnr[jidx];
397             jnrlistB         = jjnr[jidx+1];
398             jnrlistC         = jjnr[jidx+2];
399             jnrlistD         = jjnr[jidx+3];
400             jnrlistE         = jjnr[jidx+4];
401             jnrlistF         = jjnr[jidx+5];
402             jnrlistG         = jjnr[jidx+6];
403             jnrlistH         = jjnr[jidx+7];
404             /* Sign of each element will be negative for non-real atoms.
405              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
406              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
407              */
408             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
409                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
410                                             
411             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
412             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
413             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
414             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
415             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
416             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
417             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
418             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
419             j_coord_offsetA  = DIM*jnrA;
420             j_coord_offsetB  = DIM*jnrB;
421             j_coord_offsetC  = DIM*jnrC;
422             j_coord_offsetD  = DIM*jnrD;
423             j_coord_offsetE  = DIM*jnrE;
424             j_coord_offsetF  = DIM*jnrF;
425             j_coord_offsetG  = DIM*jnrG;
426             j_coord_offsetH  = DIM*jnrH;
427
428             /* load j atom coordinates */
429             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
430                                                  x+j_coord_offsetC,x+j_coord_offsetD,
431                                                  x+j_coord_offsetE,x+j_coord_offsetF,
432                                                  x+j_coord_offsetG,x+j_coord_offsetH,
433                                                  &jx0,&jy0,&jz0);
434
435             /* Calculate displacement vector */
436             dx00             = _mm256_sub_ps(ix0,jx0);
437             dy00             = _mm256_sub_ps(iy0,jy0);
438             dz00             = _mm256_sub_ps(iz0,jz0);
439
440             /* Calculate squared distance and things based on it */
441             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
442
443             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
444
445             /* Load parameters for j particles */
446             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
447                                                                  charge+jnrC+0,charge+jnrD+0,
448                                                                  charge+jnrE+0,charge+jnrF+0,
449                                                                  charge+jnrG+0,charge+jnrH+0);
450             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
451                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
452                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
453                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
454             vdwjidx0A        = 2*vdwtype[jnrA+0];
455             vdwjidx0B        = 2*vdwtype[jnrB+0];
456             vdwjidx0C        = 2*vdwtype[jnrC+0];
457             vdwjidx0D        = 2*vdwtype[jnrD+0];
458             vdwjidx0E        = 2*vdwtype[jnrE+0];
459             vdwjidx0F        = 2*vdwtype[jnrF+0];
460             vdwjidx0G        = 2*vdwtype[jnrG+0];
461             vdwjidx0H        = 2*vdwtype[jnrH+0];
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             r00              = _mm256_mul_ps(rsq00,rinv00);
468             r00              = _mm256_andnot_ps(dummy_mask,r00);
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq00             = _mm256_mul_ps(iq0,jq0);
472             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
473                                             vdwioffsetptr0+vdwjidx0B,
474                                             vdwioffsetptr0+vdwjidx0C,
475                                             vdwioffsetptr0+vdwjidx0D,
476                                             vdwioffsetptr0+vdwjidx0E,
477                                             vdwioffsetptr0+vdwjidx0F,
478                                             vdwioffsetptr0+vdwjidx0G,
479                                             vdwioffsetptr0+vdwjidx0H,
480                                             &c6_00,&c12_00);
481
482             /* Calculate table index by multiplying r with table scale and truncate to integer */
483             rt               = _mm256_mul_ps(r00,vftabscale);
484             vfitab           = _mm256_cvttps_epi32(rt);
485             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
486             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
487             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
488             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
489             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
490             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
491
492             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
493             isaprod          = _mm256_mul_ps(isai0,isaj0);
494             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
495             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
496
497             /* Calculate generalized born table index - this is a separate table from the normal one,
498              * but we use the same procedure by multiplying r with scale and truncating to integer.
499              */
500             rt               = _mm256_mul_ps(r00,gbscale);
501             gbitab           = _mm256_cvttps_epi32(rt);
502             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
503             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
504             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
505             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
506             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
507             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
508             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
509                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
510             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
511                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
512             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
513                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
514             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
515                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
516             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
517             Heps             = _mm256_mul_ps(gbeps,H);
518             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
519             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
520             vgb              = _mm256_mul_ps(gbqqfactor,VV);
521
522             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
523             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
524             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
525             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
526             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
527             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
528             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
529             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
530             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
531             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
532             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
533             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
534             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
535             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
536             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
537                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
538             velec            = _mm256_mul_ps(qq00,rinv00);
539             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
540
541             /* CUBIC SPLINE TABLE DISPERSION */
542             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
543                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
544             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
545                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
546             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
547                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
548             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
549                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
550             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
551             Heps             = _mm256_mul_ps(vfeps,H);
552             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
553             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
554             vvdw6            = _mm256_mul_ps(c6_00,VV);
555             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
556             fvdw6            = _mm256_mul_ps(c6_00,FF);
557
558             /* CUBIC SPLINE TABLE REPULSION */
559             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
560             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
561             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
562                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
563             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
564                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
565             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
566                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
567             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
568                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
569             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
570             Heps             = _mm256_mul_ps(vfeps,H);
571             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
572             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
573             vvdw12           = _mm256_mul_ps(c12_00,VV);
574             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
575             fvdw12           = _mm256_mul_ps(c12_00,FF);
576             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
577             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             velec            = _mm256_andnot_ps(dummy_mask,velec);
581             velecsum         = _mm256_add_ps(velecsum,velec);
582             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
583             vgbsum           = _mm256_add_ps(vgbsum,vgb);
584             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
585             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
586
587             fscal            = _mm256_add_ps(felec,fvdw);
588
589             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
590
591             /* Calculate temporary vectorial force */
592             tx               = _mm256_mul_ps(fscal,dx00);
593             ty               = _mm256_mul_ps(fscal,dy00);
594             tz               = _mm256_mul_ps(fscal,dz00);
595
596             /* Update vectorial force */
597             fix0             = _mm256_add_ps(fix0,tx);
598             fiy0             = _mm256_add_ps(fiy0,ty);
599             fiz0             = _mm256_add_ps(fiz0,tz);
600
601             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
602             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
603             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
604             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
605             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
606             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
607             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
608             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
609             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
610
611             /* Inner loop uses 92 flops */
612         }
613
614         /* End of innermost loop */
615
616         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
617                                                  f+i_coord_offset,fshift+i_shift_offset);
618
619         ggid                        = gid[iidx];
620         /* Update potential energies */
621         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
622         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
623         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
624         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
625         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
626
627         /* Increment number of inner iterations */
628         inneriter                  += j_index_end - j_index_start;
629
630         /* Outer loop uses 10 flops */
631     }
632
633     /* Increment number of outer iterations */
634     outeriter        += nri;
635
636     /* Update outer/inner flops */
637
638     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
639 }
640 /*
641  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_single
642  * Electrostatics interaction: GeneralizedBorn
643  * VdW interaction:            CubicSplineTable
644  * Geometry:                   Particle-Particle
645  * Calculate force/pot:        Force
646  */
647 void
648 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_single
649                     (t_nblist                    * gmx_restrict       nlist,
650                      rvec                        * gmx_restrict          xx,
651                      rvec                        * gmx_restrict          ff,
652                      t_forcerec                  * gmx_restrict          fr,
653                      t_mdatoms                   * gmx_restrict     mdatoms,
654                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
655                      t_nrnb                      * gmx_restrict        nrnb)
656 {
657     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
658      * just 0 for non-waters.
659      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
660      * jnr indices corresponding to data put in the four positions in the SIMD register.
661      */
662     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
663     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
664     int              jnrA,jnrB,jnrC,jnrD;
665     int              jnrE,jnrF,jnrG,jnrH;
666     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
667     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
668     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
669     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
670     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
671     real             rcutoff_scalar;
672     real             *shiftvec,*fshift,*x,*f;
673     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
674     real             scratch[4*DIM];
675     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
676     real *           vdwioffsetptr0;
677     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
678     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
679     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
680     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
681     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
682     real             *charge;
683     __m256i          gbitab;
684     __m128i          gbitab_lo,gbitab_hi;
685     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
686     __m256           minushalf = _mm256_set1_ps(-0.5);
687     real             *invsqrta,*dvda,*gbtab;
688     int              nvdwtype;
689     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
690     int              *vdwtype;
691     real             *vdwparam;
692     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
693     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
694     __m256i          vfitab;
695     __m128i          vfitab_lo,vfitab_hi;
696     __m128i          ifour       = _mm_set1_epi32(4);
697     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
698     real             *vftab;
699     __m256           dummy_mask,cutoff_mask;
700     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
701     __m256           one     = _mm256_set1_ps(1.0);
702     __m256           two     = _mm256_set1_ps(2.0);
703     x                = xx[0];
704     f                = ff[0];
705
706     nri              = nlist->nri;
707     iinr             = nlist->iinr;
708     jindex           = nlist->jindex;
709     jjnr             = nlist->jjnr;
710     shiftidx         = nlist->shift;
711     gid              = nlist->gid;
712     shiftvec         = fr->shift_vec[0];
713     fshift           = fr->fshift[0];
714     facel            = _mm256_set1_ps(fr->epsfac);
715     charge           = mdatoms->chargeA;
716     nvdwtype         = fr->ntype;
717     vdwparam         = fr->nbfp;
718     vdwtype          = mdatoms->typeA;
719
720     vftab            = kernel_data->table_vdw->data;
721     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
722
723     invsqrta         = fr->invsqrta;
724     dvda             = fr->dvda;
725     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
726     gbtab            = fr->gbtab.data;
727     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
728
729     /* Avoid stupid compiler warnings */
730     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
731     j_coord_offsetA = 0;
732     j_coord_offsetB = 0;
733     j_coord_offsetC = 0;
734     j_coord_offsetD = 0;
735     j_coord_offsetE = 0;
736     j_coord_offsetF = 0;
737     j_coord_offsetG = 0;
738     j_coord_offsetH = 0;
739
740     outeriter        = 0;
741     inneriter        = 0;
742
743     for(iidx=0;iidx<4*DIM;iidx++)
744     {
745         scratch[iidx] = 0.0;
746     }
747
748     /* Start outer loop over neighborlists */
749     for(iidx=0; iidx<nri; iidx++)
750     {
751         /* Load shift vector for this list */
752         i_shift_offset   = DIM*shiftidx[iidx];
753
754         /* Load limits for loop over neighbors */
755         j_index_start    = jindex[iidx];
756         j_index_end      = jindex[iidx+1];
757
758         /* Get outer coordinate index */
759         inr              = iinr[iidx];
760         i_coord_offset   = DIM*inr;
761
762         /* Load i particle coords and add shift vector */
763         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
764
765         fix0             = _mm256_setzero_ps();
766         fiy0             = _mm256_setzero_ps();
767         fiz0             = _mm256_setzero_ps();
768
769         /* Load parameters for i particles */
770         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
771         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
772         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
773
774         dvdasum          = _mm256_setzero_ps();
775
776         /* Start inner kernel loop */
777         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
778         {
779
780             /* Get j neighbor index, and coordinate index */
781             jnrA             = jjnr[jidx];
782             jnrB             = jjnr[jidx+1];
783             jnrC             = jjnr[jidx+2];
784             jnrD             = jjnr[jidx+3];
785             jnrE             = jjnr[jidx+4];
786             jnrF             = jjnr[jidx+5];
787             jnrG             = jjnr[jidx+6];
788             jnrH             = jjnr[jidx+7];
789             j_coord_offsetA  = DIM*jnrA;
790             j_coord_offsetB  = DIM*jnrB;
791             j_coord_offsetC  = DIM*jnrC;
792             j_coord_offsetD  = DIM*jnrD;
793             j_coord_offsetE  = DIM*jnrE;
794             j_coord_offsetF  = DIM*jnrF;
795             j_coord_offsetG  = DIM*jnrG;
796             j_coord_offsetH  = DIM*jnrH;
797
798             /* load j atom coordinates */
799             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
800                                                  x+j_coord_offsetC,x+j_coord_offsetD,
801                                                  x+j_coord_offsetE,x+j_coord_offsetF,
802                                                  x+j_coord_offsetG,x+j_coord_offsetH,
803                                                  &jx0,&jy0,&jz0);
804
805             /* Calculate displacement vector */
806             dx00             = _mm256_sub_ps(ix0,jx0);
807             dy00             = _mm256_sub_ps(iy0,jy0);
808             dz00             = _mm256_sub_ps(iz0,jz0);
809
810             /* Calculate squared distance and things based on it */
811             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
812
813             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
814
815             /* Load parameters for j particles */
816             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
817                                                                  charge+jnrC+0,charge+jnrD+0,
818                                                                  charge+jnrE+0,charge+jnrF+0,
819                                                                  charge+jnrG+0,charge+jnrH+0);
820             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
821                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
822                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
823                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
824             vdwjidx0A        = 2*vdwtype[jnrA+0];
825             vdwjidx0B        = 2*vdwtype[jnrB+0];
826             vdwjidx0C        = 2*vdwtype[jnrC+0];
827             vdwjidx0D        = 2*vdwtype[jnrD+0];
828             vdwjidx0E        = 2*vdwtype[jnrE+0];
829             vdwjidx0F        = 2*vdwtype[jnrF+0];
830             vdwjidx0G        = 2*vdwtype[jnrG+0];
831             vdwjidx0H        = 2*vdwtype[jnrH+0];
832
833             /**************************
834              * CALCULATE INTERACTIONS *
835              **************************/
836
837             r00              = _mm256_mul_ps(rsq00,rinv00);
838
839             /* Compute parameters for interactions between i and j atoms */
840             qq00             = _mm256_mul_ps(iq0,jq0);
841             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
842                                             vdwioffsetptr0+vdwjidx0B,
843                                             vdwioffsetptr0+vdwjidx0C,
844                                             vdwioffsetptr0+vdwjidx0D,
845                                             vdwioffsetptr0+vdwjidx0E,
846                                             vdwioffsetptr0+vdwjidx0F,
847                                             vdwioffsetptr0+vdwjidx0G,
848                                             vdwioffsetptr0+vdwjidx0H,
849                                             &c6_00,&c12_00);
850
851             /* Calculate table index by multiplying r with table scale and truncate to integer */
852             rt               = _mm256_mul_ps(r00,vftabscale);
853             vfitab           = _mm256_cvttps_epi32(rt);
854             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
855             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
856             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
857             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
858             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
859             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
860
861             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
862             isaprod          = _mm256_mul_ps(isai0,isaj0);
863             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
864             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
865
866             /* Calculate generalized born table index - this is a separate table from the normal one,
867              * but we use the same procedure by multiplying r with scale and truncating to integer.
868              */
869             rt               = _mm256_mul_ps(r00,gbscale);
870             gbitab           = _mm256_cvttps_epi32(rt);
871             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
872             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
873             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
874             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
875             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
876             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
877             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
878                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
879             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
880                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
881             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
882                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
883             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
884                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
885             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
886             Heps             = _mm256_mul_ps(gbeps,H);
887             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
888             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
889             vgb              = _mm256_mul_ps(gbqqfactor,VV);
890
891             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
892             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
893             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
894             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
895             fjptrA           = dvda+jnrA;
896             fjptrB           = dvda+jnrB;
897             fjptrC           = dvda+jnrC;
898             fjptrD           = dvda+jnrD;
899             fjptrE           = dvda+jnrE;
900             fjptrF           = dvda+jnrF;
901             fjptrG           = dvda+jnrG;
902             fjptrH           = dvda+jnrH;
903             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
904                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
905             velec            = _mm256_mul_ps(qq00,rinv00);
906             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
907
908             /* CUBIC SPLINE TABLE DISPERSION */
909             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
910                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
911             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
912                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
913             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
914                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
915             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
916                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
917             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
918             Heps             = _mm256_mul_ps(vfeps,H);
919             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
920             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
921             fvdw6            = _mm256_mul_ps(c6_00,FF);
922
923             /* CUBIC SPLINE TABLE REPULSION */
924             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
925             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
926             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
927                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
928             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
929                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
930             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
931                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
932             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
933                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
934             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
935             Heps             = _mm256_mul_ps(vfeps,H);
936             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
937             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
938             fvdw12           = _mm256_mul_ps(c12_00,FF);
939             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
940
941             fscal            = _mm256_add_ps(felec,fvdw);
942
943             /* Calculate temporary vectorial force */
944             tx               = _mm256_mul_ps(fscal,dx00);
945             ty               = _mm256_mul_ps(fscal,dy00);
946             tz               = _mm256_mul_ps(fscal,dz00);
947
948             /* Update vectorial force */
949             fix0             = _mm256_add_ps(fix0,tx);
950             fiy0             = _mm256_add_ps(fiy0,ty);
951             fiz0             = _mm256_add_ps(fiz0,tz);
952
953             fjptrA             = f+j_coord_offsetA;
954             fjptrB             = f+j_coord_offsetB;
955             fjptrC             = f+j_coord_offsetC;
956             fjptrD             = f+j_coord_offsetD;
957             fjptrE             = f+j_coord_offsetE;
958             fjptrF             = f+j_coord_offsetF;
959             fjptrG             = f+j_coord_offsetG;
960             fjptrH             = f+j_coord_offsetH;
961             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
962
963             /* Inner loop uses 81 flops */
964         }
965
966         if(jidx<j_index_end)
967         {
968
969             /* Get j neighbor index, and coordinate index */
970             jnrlistA         = jjnr[jidx];
971             jnrlistB         = jjnr[jidx+1];
972             jnrlistC         = jjnr[jidx+2];
973             jnrlistD         = jjnr[jidx+3];
974             jnrlistE         = jjnr[jidx+4];
975             jnrlistF         = jjnr[jidx+5];
976             jnrlistG         = jjnr[jidx+6];
977             jnrlistH         = jjnr[jidx+7];
978             /* Sign of each element will be negative for non-real atoms.
979              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
980              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
981              */
982             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
983                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
984                                             
985             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
986             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
987             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
988             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
989             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
990             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
991             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
992             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
993             j_coord_offsetA  = DIM*jnrA;
994             j_coord_offsetB  = DIM*jnrB;
995             j_coord_offsetC  = DIM*jnrC;
996             j_coord_offsetD  = DIM*jnrD;
997             j_coord_offsetE  = DIM*jnrE;
998             j_coord_offsetF  = DIM*jnrF;
999             j_coord_offsetG  = DIM*jnrG;
1000             j_coord_offsetH  = DIM*jnrH;
1001
1002             /* load j atom coordinates */
1003             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1004                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1005                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1006                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1007                                                  &jx0,&jy0,&jz0);
1008
1009             /* Calculate displacement vector */
1010             dx00             = _mm256_sub_ps(ix0,jx0);
1011             dy00             = _mm256_sub_ps(iy0,jy0);
1012             dz00             = _mm256_sub_ps(iz0,jz0);
1013
1014             /* Calculate squared distance and things based on it */
1015             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1016
1017             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1018
1019             /* Load parameters for j particles */
1020             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1021                                                                  charge+jnrC+0,charge+jnrD+0,
1022                                                                  charge+jnrE+0,charge+jnrF+0,
1023                                                                  charge+jnrG+0,charge+jnrH+0);
1024             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
1025                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
1026                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
1027                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
1028             vdwjidx0A        = 2*vdwtype[jnrA+0];
1029             vdwjidx0B        = 2*vdwtype[jnrB+0];
1030             vdwjidx0C        = 2*vdwtype[jnrC+0];
1031             vdwjidx0D        = 2*vdwtype[jnrD+0];
1032             vdwjidx0E        = 2*vdwtype[jnrE+0];
1033             vdwjidx0F        = 2*vdwtype[jnrF+0];
1034             vdwjidx0G        = 2*vdwtype[jnrG+0];
1035             vdwjidx0H        = 2*vdwtype[jnrH+0];
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             r00              = _mm256_mul_ps(rsq00,rinv00);
1042             r00              = _mm256_andnot_ps(dummy_mask,r00);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq00             = _mm256_mul_ps(iq0,jq0);
1046             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1047                                             vdwioffsetptr0+vdwjidx0B,
1048                                             vdwioffsetptr0+vdwjidx0C,
1049                                             vdwioffsetptr0+vdwjidx0D,
1050                                             vdwioffsetptr0+vdwjidx0E,
1051                                             vdwioffsetptr0+vdwjidx0F,
1052                                             vdwioffsetptr0+vdwjidx0G,
1053                                             vdwioffsetptr0+vdwjidx0H,
1054                                             &c6_00,&c12_00);
1055
1056             /* Calculate table index by multiplying r with table scale and truncate to integer */
1057             rt               = _mm256_mul_ps(r00,vftabscale);
1058             vfitab           = _mm256_cvttps_epi32(rt);
1059             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1060             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1061             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1062             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1063             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1064             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1065
1066             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
1067             isaprod          = _mm256_mul_ps(isai0,isaj0);
1068             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
1069             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
1070
1071             /* Calculate generalized born table index - this is a separate table from the normal one,
1072              * but we use the same procedure by multiplying r with scale and truncating to integer.
1073              */
1074             rt               = _mm256_mul_ps(r00,gbscale);
1075             gbitab           = _mm256_cvttps_epi32(rt);
1076             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1077             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1078             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
1079             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
1080             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
1081             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
1082             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
1083                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
1084             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
1085                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
1086             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
1087                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
1088             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
1089                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
1090             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1091             Heps             = _mm256_mul_ps(gbeps,H);
1092             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
1093             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
1094             vgb              = _mm256_mul_ps(gbqqfactor,VV);
1095
1096             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1097             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
1098             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
1099             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
1100             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
1101             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
1102             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
1103             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
1104             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
1105             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
1106             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
1107             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
1108             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
1109             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
1110             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
1111                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
1112             velec            = _mm256_mul_ps(qq00,rinv00);
1113             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
1114
1115             /* CUBIC SPLINE TABLE DISPERSION */
1116             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1117                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1118             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1119                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1120             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1121                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1122             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1123                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1124             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1125             Heps             = _mm256_mul_ps(vfeps,H);
1126             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1127             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1128             fvdw6            = _mm256_mul_ps(c6_00,FF);
1129
1130             /* CUBIC SPLINE TABLE REPULSION */
1131             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1132             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1133             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1134                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1135             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1136                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1137             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1138                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1139             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1140                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1141             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1142             Heps             = _mm256_mul_ps(vfeps,H);
1143             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1144             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1145             fvdw12           = _mm256_mul_ps(c12_00,FF);
1146             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1147
1148             fscal            = _mm256_add_ps(felec,fvdw);
1149
1150             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1151
1152             /* Calculate temporary vectorial force */
1153             tx               = _mm256_mul_ps(fscal,dx00);
1154             ty               = _mm256_mul_ps(fscal,dy00);
1155             tz               = _mm256_mul_ps(fscal,dz00);
1156
1157             /* Update vectorial force */
1158             fix0             = _mm256_add_ps(fix0,tx);
1159             fiy0             = _mm256_add_ps(fiy0,ty);
1160             fiz0             = _mm256_add_ps(fiz0,tz);
1161
1162             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1163             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1164             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1165             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1166             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1167             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1168             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1169             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1170             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1171
1172             /* Inner loop uses 82 flops */
1173         }
1174
1175         /* End of innermost loop */
1176
1177         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1178                                                  f+i_coord_offset,fshift+i_shift_offset);
1179
1180         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
1181         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1182
1183         /* Increment number of inner iterations */
1184         inneriter                  += j_index_end - j_index_start;
1185
1186         /* Outer loop uses 7 flops */
1187     }
1188
1189     /* Increment number of outer iterations */
1190     outeriter        += nri;
1191
1192     /* Update outer/inner flops */
1193
1194     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
1195 }