Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256i          gbitab;
94     __m128i          gbitab_lo,gbitab_hi;
95     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
96     __m256           minushalf = _mm256_set1_ps(-0.5);
97     real             *invsqrta,*dvda,*gbtab;
98     int              nvdwtype;
99     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
103     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
104     __m256i          vfitab;
105     __m128i          vfitab_lo,vfitab_hi;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256           dummy_mask,cutoff_mask;
110     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
111     __m256           one     = _mm256_set1_ps(1.0);
112     __m256           two     = _mm256_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
132
133     invsqrta         = fr->invsqrta;
134     dvda             = fr->dvda;
135     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
136     gbtab            = fr->gbtab.data;
137     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145     j_coord_offsetE = 0;
146     j_coord_offsetF = 0;
147     j_coord_offsetG = 0;
148     j_coord_offsetH = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
174
175         fix0             = _mm256_setzero_ps();
176         fiy0             = _mm256_setzero_ps();
177         fiz0             = _mm256_setzero_ps();
178
179         /* Load parameters for i particles */
180         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
181         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
182         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
183
184         /* Reset potential sums */
185         velecsum         = _mm256_setzero_ps();
186         vgbsum           = _mm256_setzero_ps();
187         vvdwsum          = _mm256_setzero_ps();
188         dvdasum          = _mm256_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             jnrE             = jjnr[jidx+4];
200             jnrF             = jjnr[jidx+5];
201             jnrG             = jjnr[jidx+6];
202             jnrH             = jjnr[jidx+7];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207             j_coord_offsetE  = DIM*jnrE;
208             j_coord_offsetF  = DIM*jnrF;
209             j_coord_offsetG  = DIM*jnrG;
210             j_coord_offsetH  = DIM*jnrH;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  x+j_coord_offsetE,x+j_coord_offsetF,
216                                                  x+j_coord_offsetG,x+j_coord_offsetH,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_ps(ix0,jx0);
221             dy00             = _mm256_sub_ps(iy0,jy0);
222             dz00             = _mm256_sub_ps(iz0,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
226
227             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
231                                                                  charge+jnrC+0,charge+jnrD+0,
232                                                                  charge+jnrE+0,charge+jnrF+0,
233                                                                  charge+jnrG+0,charge+jnrH+0);
234             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
235                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
236                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
237                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242             vdwjidx0E        = 2*vdwtype[jnrE+0];
243             vdwjidx0F        = 2*vdwtype[jnrF+0];
244             vdwjidx0G        = 2*vdwtype[jnrG+0];
245             vdwjidx0H        = 2*vdwtype[jnrH+0];
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             r00              = _mm256_mul_ps(rsq00,rinv00);
252
253             /* Compute parameters for interactions between i and j atoms */
254             qq00             = _mm256_mul_ps(iq0,jq0);
255             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
256                                             vdwioffsetptr0+vdwjidx0B,
257                                             vdwioffsetptr0+vdwjidx0C,
258                                             vdwioffsetptr0+vdwjidx0D,
259                                             vdwioffsetptr0+vdwjidx0E,
260                                             vdwioffsetptr0+vdwjidx0F,
261                                             vdwioffsetptr0+vdwjidx0G,
262                                             vdwioffsetptr0+vdwjidx0H,
263                                             &c6_00,&c12_00);
264
265             /* Calculate table index by multiplying r with table scale and truncate to integer */
266             rt               = _mm256_mul_ps(r00,vftabscale);
267             vfitab           = _mm256_cvttps_epi32(rt);
268             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
269             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
270             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
271             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
272             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
273             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
274
275             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
276             isaprod          = _mm256_mul_ps(isai0,isaj0);
277             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
278             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
279
280             /* Calculate generalized born table index - this is a separate table from the normal one,
281              * but we use the same procedure by multiplying r with scale and truncating to integer.
282              */
283             rt               = _mm256_mul_ps(r00,gbscale);
284             gbitab           = _mm256_cvttps_epi32(rt);
285             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
286             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
287             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
288             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
289             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
290             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
291             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
292                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
293             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
294                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
295             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
296                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
297             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
298                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
299             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
300             Heps             = _mm256_mul_ps(gbeps,H);
301             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
302             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
303             vgb              = _mm256_mul_ps(gbqqfactor,VV);
304
305             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
306             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
307             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
308             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
309             fjptrA           = dvda+jnrA;
310             fjptrB           = dvda+jnrB;
311             fjptrC           = dvda+jnrC;
312             fjptrD           = dvda+jnrD;
313             fjptrE           = dvda+jnrE;
314             fjptrF           = dvda+jnrF;
315             fjptrG           = dvda+jnrG;
316             fjptrH           = dvda+jnrH;
317             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
318                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
319             velec            = _mm256_mul_ps(qq00,rinv00);
320             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
321
322             /* CUBIC SPLINE TABLE DISPERSION */
323             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
324                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
325             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
326                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
327             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
328                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
329             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
330                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
331             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
332             Heps             = _mm256_mul_ps(vfeps,H);
333             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
334             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
335             vvdw6            = _mm256_mul_ps(c6_00,VV);
336             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
337             fvdw6            = _mm256_mul_ps(c6_00,FF);
338
339             /* CUBIC SPLINE TABLE REPULSION */
340             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
341             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
342             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
343                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
344             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
345                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
346             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
347                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
348             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
349                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
350             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
351             Heps             = _mm256_mul_ps(vfeps,H);
352             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
353             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
354             vvdw12           = _mm256_mul_ps(c12_00,VV);
355             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
356             fvdw12           = _mm256_mul_ps(c12_00,FF);
357             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
358             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm256_add_ps(velecsum,velec);
362             vgbsum           = _mm256_add_ps(vgbsum,vgb);
363             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
364
365             fscal            = _mm256_add_ps(felec,fvdw);
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm256_mul_ps(fscal,dx00);
369             ty               = _mm256_mul_ps(fscal,dy00);
370             tz               = _mm256_mul_ps(fscal,dz00);
371
372             /* Update vectorial force */
373             fix0             = _mm256_add_ps(fix0,tx);
374             fiy0             = _mm256_add_ps(fiy0,ty);
375             fiz0             = _mm256_add_ps(fiz0,tz);
376
377             fjptrA             = f+j_coord_offsetA;
378             fjptrB             = f+j_coord_offsetB;
379             fjptrC             = f+j_coord_offsetC;
380             fjptrD             = f+j_coord_offsetD;
381             fjptrE             = f+j_coord_offsetE;
382             fjptrF             = f+j_coord_offsetF;
383             fjptrG             = f+j_coord_offsetG;
384             fjptrH             = f+j_coord_offsetH;
385             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
386
387             /* Inner loop uses 91 flops */
388         }
389
390         if(jidx<j_index_end)
391         {
392
393             /* Get j neighbor index, and coordinate index */
394             jnrlistA         = jjnr[jidx];
395             jnrlistB         = jjnr[jidx+1];
396             jnrlistC         = jjnr[jidx+2];
397             jnrlistD         = jjnr[jidx+3];
398             jnrlistE         = jjnr[jidx+4];
399             jnrlistF         = jjnr[jidx+5];
400             jnrlistG         = jjnr[jidx+6];
401             jnrlistH         = jjnr[jidx+7];
402             /* Sign of each element will be negative for non-real atoms.
403              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
404              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
405              */
406             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
407                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
408                                             
409             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
410             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
411             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
412             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
413             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
414             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
415             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
416             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
417             j_coord_offsetA  = DIM*jnrA;
418             j_coord_offsetB  = DIM*jnrB;
419             j_coord_offsetC  = DIM*jnrC;
420             j_coord_offsetD  = DIM*jnrD;
421             j_coord_offsetE  = DIM*jnrE;
422             j_coord_offsetF  = DIM*jnrF;
423             j_coord_offsetG  = DIM*jnrG;
424             j_coord_offsetH  = DIM*jnrH;
425
426             /* load j atom coordinates */
427             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
428                                                  x+j_coord_offsetC,x+j_coord_offsetD,
429                                                  x+j_coord_offsetE,x+j_coord_offsetF,
430                                                  x+j_coord_offsetG,x+j_coord_offsetH,
431                                                  &jx0,&jy0,&jz0);
432
433             /* Calculate displacement vector */
434             dx00             = _mm256_sub_ps(ix0,jx0);
435             dy00             = _mm256_sub_ps(iy0,jy0);
436             dz00             = _mm256_sub_ps(iz0,jz0);
437
438             /* Calculate squared distance and things based on it */
439             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
440
441             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
442
443             /* Load parameters for j particles */
444             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
445                                                                  charge+jnrC+0,charge+jnrD+0,
446                                                                  charge+jnrE+0,charge+jnrF+0,
447                                                                  charge+jnrG+0,charge+jnrH+0);
448             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
449                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
450                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
451                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
452             vdwjidx0A        = 2*vdwtype[jnrA+0];
453             vdwjidx0B        = 2*vdwtype[jnrB+0];
454             vdwjidx0C        = 2*vdwtype[jnrC+0];
455             vdwjidx0D        = 2*vdwtype[jnrD+0];
456             vdwjidx0E        = 2*vdwtype[jnrE+0];
457             vdwjidx0F        = 2*vdwtype[jnrF+0];
458             vdwjidx0G        = 2*vdwtype[jnrG+0];
459             vdwjidx0H        = 2*vdwtype[jnrH+0];
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             r00              = _mm256_mul_ps(rsq00,rinv00);
466             r00              = _mm256_andnot_ps(dummy_mask,r00);
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq00             = _mm256_mul_ps(iq0,jq0);
470             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
471                                             vdwioffsetptr0+vdwjidx0B,
472                                             vdwioffsetptr0+vdwjidx0C,
473                                             vdwioffsetptr0+vdwjidx0D,
474                                             vdwioffsetptr0+vdwjidx0E,
475                                             vdwioffsetptr0+vdwjidx0F,
476                                             vdwioffsetptr0+vdwjidx0G,
477                                             vdwioffsetptr0+vdwjidx0H,
478                                             &c6_00,&c12_00);
479
480             /* Calculate table index by multiplying r with table scale and truncate to integer */
481             rt               = _mm256_mul_ps(r00,vftabscale);
482             vfitab           = _mm256_cvttps_epi32(rt);
483             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
484             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
485             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
486             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
487             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
488             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
489
490             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
491             isaprod          = _mm256_mul_ps(isai0,isaj0);
492             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
493             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
494
495             /* Calculate generalized born table index - this is a separate table from the normal one,
496              * but we use the same procedure by multiplying r with scale and truncating to integer.
497              */
498             rt               = _mm256_mul_ps(r00,gbscale);
499             gbitab           = _mm256_cvttps_epi32(rt);
500             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
501             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
502             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
503             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
504             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
505             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
506             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
507                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
508             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
509                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
510             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
511                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
512             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
513                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
514             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
515             Heps             = _mm256_mul_ps(gbeps,H);
516             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
517             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
518             vgb              = _mm256_mul_ps(gbqqfactor,VV);
519
520             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
521             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
522             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
523             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
524             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
525             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
526             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
527             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
528             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
529             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
530             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
531             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
532             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
533             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
534             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
535                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
536             velec            = _mm256_mul_ps(qq00,rinv00);
537             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
538
539             /* CUBIC SPLINE TABLE DISPERSION */
540             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
541                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
542             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
543                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
544             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
545                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
546             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
547                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
548             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
549             Heps             = _mm256_mul_ps(vfeps,H);
550             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
551             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
552             vvdw6            = _mm256_mul_ps(c6_00,VV);
553             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
554             fvdw6            = _mm256_mul_ps(c6_00,FF);
555
556             /* CUBIC SPLINE TABLE REPULSION */
557             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
558             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
559             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
560                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
561             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
562                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
563             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
564                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
565             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
566                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
567             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
568             Heps             = _mm256_mul_ps(vfeps,H);
569             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
570             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
571             vvdw12           = _mm256_mul_ps(c12_00,VV);
572             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
573             fvdw12           = _mm256_mul_ps(c12_00,FF);
574             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
575             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm256_andnot_ps(dummy_mask,velec);
579             velecsum         = _mm256_add_ps(velecsum,velec);
580             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
581             vgbsum           = _mm256_add_ps(vgbsum,vgb);
582             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
583             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
584
585             fscal            = _mm256_add_ps(felec,fvdw);
586
587             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
588
589             /* Calculate temporary vectorial force */
590             tx               = _mm256_mul_ps(fscal,dx00);
591             ty               = _mm256_mul_ps(fscal,dy00);
592             tz               = _mm256_mul_ps(fscal,dz00);
593
594             /* Update vectorial force */
595             fix0             = _mm256_add_ps(fix0,tx);
596             fiy0             = _mm256_add_ps(fiy0,ty);
597             fiz0             = _mm256_add_ps(fiz0,tz);
598
599             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
600             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
601             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
602             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
603             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
604             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
605             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
606             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
607             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
608
609             /* Inner loop uses 92 flops */
610         }
611
612         /* End of innermost loop */
613
614         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
615                                                  f+i_coord_offset,fshift+i_shift_offset);
616
617         ggid                        = gid[iidx];
618         /* Update potential energies */
619         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
620         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
621         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
622         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
623         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
624
625         /* Increment number of inner iterations */
626         inneriter                  += j_index_end - j_index_start;
627
628         /* Outer loop uses 10 flops */
629     }
630
631     /* Increment number of outer iterations */
632     outeriter        += nri;
633
634     /* Update outer/inner flops */
635
636     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
637 }
638 /*
639  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_single
640  * Electrostatics interaction: GeneralizedBorn
641  * VdW interaction:            CubicSplineTable
642  * Geometry:                   Particle-Particle
643  * Calculate force/pot:        Force
644  */
645 void
646 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_single
647                     (t_nblist                    * gmx_restrict       nlist,
648                      rvec                        * gmx_restrict          xx,
649                      rvec                        * gmx_restrict          ff,
650                      t_forcerec                  * gmx_restrict          fr,
651                      t_mdatoms                   * gmx_restrict     mdatoms,
652                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
653                      t_nrnb                      * gmx_restrict        nrnb)
654 {
655     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
656      * just 0 for non-waters.
657      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
658      * jnr indices corresponding to data put in the four positions in the SIMD register.
659      */
660     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
661     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
662     int              jnrA,jnrB,jnrC,jnrD;
663     int              jnrE,jnrF,jnrG,jnrH;
664     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
665     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
666     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
667     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
668     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
669     real             rcutoff_scalar;
670     real             *shiftvec,*fshift,*x,*f;
671     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
672     real             scratch[4*DIM];
673     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
674     real *           vdwioffsetptr0;
675     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
676     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
677     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
678     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
679     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
680     real             *charge;
681     __m256i          gbitab;
682     __m128i          gbitab_lo,gbitab_hi;
683     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
684     __m256           minushalf = _mm256_set1_ps(-0.5);
685     real             *invsqrta,*dvda,*gbtab;
686     int              nvdwtype;
687     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
688     int              *vdwtype;
689     real             *vdwparam;
690     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
691     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
692     __m256i          vfitab;
693     __m128i          vfitab_lo,vfitab_hi;
694     __m128i          ifour       = _mm_set1_epi32(4);
695     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
696     real             *vftab;
697     __m256           dummy_mask,cutoff_mask;
698     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
699     __m256           one     = _mm256_set1_ps(1.0);
700     __m256           two     = _mm256_set1_ps(2.0);
701     x                = xx[0];
702     f                = ff[0];
703
704     nri              = nlist->nri;
705     iinr             = nlist->iinr;
706     jindex           = nlist->jindex;
707     jjnr             = nlist->jjnr;
708     shiftidx         = nlist->shift;
709     gid              = nlist->gid;
710     shiftvec         = fr->shift_vec[0];
711     fshift           = fr->fshift[0];
712     facel            = _mm256_set1_ps(fr->epsfac);
713     charge           = mdatoms->chargeA;
714     nvdwtype         = fr->ntype;
715     vdwparam         = fr->nbfp;
716     vdwtype          = mdatoms->typeA;
717
718     vftab            = kernel_data->table_vdw->data;
719     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
720
721     invsqrta         = fr->invsqrta;
722     dvda             = fr->dvda;
723     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
724     gbtab            = fr->gbtab.data;
725     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
726
727     /* Avoid stupid compiler warnings */
728     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
729     j_coord_offsetA = 0;
730     j_coord_offsetB = 0;
731     j_coord_offsetC = 0;
732     j_coord_offsetD = 0;
733     j_coord_offsetE = 0;
734     j_coord_offsetF = 0;
735     j_coord_offsetG = 0;
736     j_coord_offsetH = 0;
737
738     outeriter        = 0;
739     inneriter        = 0;
740
741     for(iidx=0;iidx<4*DIM;iidx++)
742     {
743         scratch[iidx] = 0.0;
744     }
745
746     /* Start outer loop over neighborlists */
747     for(iidx=0; iidx<nri; iidx++)
748     {
749         /* Load shift vector for this list */
750         i_shift_offset   = DIM*shiftidx[iidx];
751
752         /* Load limits for loop over neighbors */
753         j_index_start    = jindex[iidx];
754         j_index_end      = jindex[iidx+1];
755
756         /* Get outer coordinate index */
757         inr              = iinr[iidx];
758         i_coord_offset   = DIM*inr;
759
760         /* Load i particle coords and add shift vector */
761         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
762
763         fix0             = _mm256_setzero_ps();
764         fiy0             = _mm256_setzero_ps();
765         fiz0             = _mm256_setzero_ps();
766
767         /* Load parameters for i particles */
768         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
769         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
770         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
771
772         dvdasum          = _mm256_setzero_ps();
773
774         /* Start inner kernel loop */
775         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
776         {
777
778             /* Get j neighbor index, and coordinate index */
779             jnrA             = jjnr[jidx];
780             jnrB             = jjnr[jidx+1];
781             jnrC             = jjnr[jidx+2];
782             jnrD             = jjnr[jidx+3];
783             jnrE             = jjnr[jidx+4];
784             jnrF             = jjnr[jidx+5];
785             jnrG             = jjnr[jidx+6];
786             jnrH             = jjnr[jidx+7];
787             j_coord_offsetA  = DIM*jnrA;
788             j_coord_offsetB  = DIM*jnrB;
789             j_coord_offsetC  = DIM*jnrC;
790             j_coord_offsetD  = DIM*jnrD;
791             j_coord_offsetE  = DIM*jnrE;
792             j_coord_offsetF  = DIM*jnrF;
793             j_coord_offsetG  = DIM*jnrG;
794             j_coord_offsetH  = DIM*jnrH;
795
796             /* load j atom coordinates */
797             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
798                                                  x+j_coord_offsetC,x+j_coord_offsetD,
799                                                  x+j_coord_offsetE,x+j_coord_offsetF,
800                                                  x+j_coord_offsetG,x+j_coord_offsetH,
801                                                  &jx0,&jy0,&jz0);
802
803             /* Calculate displacement vector */
804             dx00             = _mm256_sub_ps(ix0,jx0);
805             dy00             = _mm256_sub_ps(iy0,jy0);
806             dz00             = _mm256_sub_ps(iz0,jz0);
807
808             /* Calculate squared distance and things based on it */
809             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
810
811             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
812
813             /* Load parameters for j particles */
814             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
815                                                                  charge+jnrC+0,charge+jnrD+0,
816                                                                  charge+jnrE+0,charge+jnrF+0,
817                                                                  charge+jnrG+0,charge+jnrH+0);
818             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
819                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
820                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
821                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
822             vdwjidx0A        = 2*vdwtype[jnrA+0];
823             vdwjidx0B        = 2*vdwtype[jnrB+0];
824             vdwjidx0C        = 2*vdwtype[jnrC+0];
825             vdwjidx0D        = 2*vdwtype[jnrD+0];
826             vdwjidx0E        = 2*vdwtype[jnrE+0];
827             vdwjidx0F        = 2*vdwtype[jnrF+0];
828             vdwjidx0G        = 2*vdwtype[jnrG+0];
829             vdwjidx0H        = 2*vdwtype[jnrH+0];
830
831             /**************************
832              * CALCULATE INTERACTIONS *
833              **************************/
834
835             r00              = _mm256_mul_ps(rsq00,rinv00);
836
837             /* Compute parameters for interactions between i and j atoms */
838             qq00             = _mm256_mul_ps(iq0,jq0);
839             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
840                                             vdwioffsetptr0+vdwjidx0B,
841                                             vdwioffsetptr0+vdwjidx0C,
842                                             vdwioffsetptr0+vdwjidx0D,
843                                             vdwioffsetptr0+vdwjidx0E,
844                                             vdwioffsetptr0+vdwjidx0F,
845                                             vdwioffsetptr0+vdwjidx0G,
846                                             vdwioffsetptr0+vdwjidx0H,
847                                             &c6_00,&c12_00);
848
849             /* Calculate table index by multiplying r with table scale and truncate to integer */
850             rt               = _mm256_mul_ps(r00,vftabscale);
851             vfitab           = _mm256_cvttps_epi32(rt);
852             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
853             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
854             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
855             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
856             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
857             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
858
859             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
860             isaprod          = _mm256_mul_ps(isai0,isaj0);
861             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
862             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
863
864             /* Calculate generalized born table index - this is a separate table from the normal one,
865              * but we use the same procedure by multiplying r with scale and truncating to integer.
866              */
867             rt               = _mm256_mul_ps(r00,gbscale);
868             gbitab           = _mm256_cvttps_epi32(rt);
869             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
870             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
871             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
872             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
873             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
874             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
875             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
876                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
877             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
878                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
879             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
880                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
881             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
882                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
883             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
884             Heps             = _mm256_mul_ps(gbeps,H);
885             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
886             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
887             vgb              = _mm256_mul_ps(gbqqfactor,VV);
888
889             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
890             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
891             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
892             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
893             fjptrA           = dvda+jnrA;
894             fjptrB           = dvda+jnrB;
895             fjptrC           = dvda+jnrC;
896             fjptrD           = dvda+jnrD;
897             fjptrE           = dvda+jnrE;
898             fjptrF           = dvda+jnrF;
899             fjptrG           = dvda+jnrG;
900             fjptrH           = dvda+jnrH;
901             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
902                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
903             velec            = _mm256_mul_ps(qq00,rinv00);
904             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
905
906             /* CUBIC SPLINE TABLE DISPERSION */
907             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
908                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
909             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
910                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
911             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
912                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
913             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
914                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
915             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
916             Heps             = _mm256_mul_ps(vfeps,H);
917             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
918             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
919             fvdw6            = _mm256_mul_ps(c6_00,FF);
920
921             /* CUBIC SPLINE TABLE REPULSION */
922             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
923             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
924             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
925                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
926             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
927                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
928             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
929                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
930             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
931                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
932             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
933             Heps             = _mm256_mul_ps(vfeps,H);
934             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
935             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
936             fvdw12           = _mm256_mul_ps(c12_00,FF);
937             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
938
939             fscal            = _mm256_add_ps(felec,fvdw);
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm256_mul_ps(fscal,dx00);
943             ty               = _mm256_mul_ps(fscal,dy00);
944             tz               = _mm256_mul_ps(fscal,dz00);
945
946             /* Update vectorial force */
947             fix0             = _mm256_add_ps(fix0,tx);
948             fiy0             = _mm256_add_ps(fiy0,ty);
949             fiz0             = _mm256_add_ps(fiz0,tz);
950
951             fjptrA             = f+j_coord_offsetA;
952             fjptrB             = f+j_coord_offsetB;
953             fjptrC             = f+j_coord_offsetC;
954             fjptrD             = f+j_coord_offsetD;
955             fjptrE             = f+j_coord_offsetE;
956             fjptrF             = f+j_coord_offsetF;
957             fjptrG             = f+j_coord_offsetG;
958             fjptrH             = f+j_coord_offsetH;
959             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
960
961             /* Inner loop uses 81 flops */
962         }
963
964         if(jidx<j_index_end)
965         {
966
967             /* Get j neighbor index, and coordinate index */
968             jnrlistA         = jjnr[jidx];
969             jnrlistB         = jjnr[jidx+1];
970             jnrlistC         = jjnr[jidx+2];
971             jnrlistD         = jjnr[jidx+3];
972             jnrlistE         = jjnr[jidx+4];
973             jnrlistF         = jjnr[jidx+5];
974             jnrlistG         = jjnr[jidx+6];
975             jnrlistH         = jjnr[jidx+7];
976             /* Sign of each element will be negative for non-real atoms.
977              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
978              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
979              */
980             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
981                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
982                                             
983             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
984             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
985             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
986             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
987             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
988             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
989             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
990             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
991             j_coord_offsetA  = DIM*jnrA;
992             j_coord_offsetB  = DIM*jnrB;
993             j_coord_offsetC  = DIM*jnrC;
994             j_coord_offsetD  = DIM*jnrD;
995             j_coord_offsetE  = DIM*jnrE;
996             j_coord_offsetF  = DIM*jnrF;
997             j_coord_offsetG  = DIM*jnrG;
998             j_coord_offsetH  = DIM*jnrH;
999
1000             /* load j atom coordinates */
1001             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1002                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1003                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1004                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1005                                                  &jx0,&jy0,&jz0);
1006
1007             /* Calculate displacement vector */
1008             dx00             = _mm256_sub_ps(ix0,jx0);
1009             dy00             = _mm256_sub_ps(iy0,jy0);
1010             dz00             = _mm256_sub_ps(iz0,jz0);
1011
1012             /* Calculate squared distance and things based on it */
1013             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1014
1015             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1016
1017             /* Load parameters for j particles */
1018             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1019                                                                  charge+jnrC+0,charge+jnrD+0,
1020                                                                  charge+jnrE+0,charge+jnrF+0,
1021                                                                  charge+jnrG+0,charge+jnrH+0);
1022             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
1023                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
1024                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
1025                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
1026             vdwjidx0A        = 2*vdwtype[jnrA+0];
1027             vdwjidx0B        = 2*vdwtype[jnrB+0];
1028             vdwjidx0C        = 2*vdwtype[jnrC+0];
1029             vdwjidx0D        = 2*vdwtype[jnrD+0];
1030             vdwjidx0E        = 2*vdwtype[jnrE+0];
1031             vdwjidx0F        = 2*vdwtype[jnrF+0];
1032             vdwjidx0G        = 2*vdwtype[jnrG+0];
1033             vdwjidx0H        = 2*vdwtype[jnrH+0];
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             r00              = _mm256_mul_ps(rsq00,rinv00);
1040             r00              = _mm256_andnot_ps(dummy_mask,r00);
1041
1042             /* Compute parameters for interactions between i and j atoms */
1043             qq00             = _mm256_mul_ps(iq0,jq0);
1044             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1045                                             vdwioffsetptr0+vdwjidx0B,
1046                                             vdwioffsetptr0+vdwjidx0C,
1047                                             vdwioffsetptr0+vdwjidx0D,
1048                                             vdwioffsetptr0+vdwjidx0E,
1049                                             vdwioffsetptr0+vdwjidx0F,
1050                                             vdwioffsetptr0+vdwjidx0G,
1051                                             vdwioffsetptr0+vdwjidx0H,
1052                                             &c6_00,&c12_00);
1053
1054             /* Calculate table index by multiplying r with table scale and truncate to integer */
1055             rt               = _mm256_mul_ps(r00,vftabscale);
1056             vfitab           = _mm256_cvttps_epi32(rt);
1057             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1058             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1059             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1060             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1061             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1062             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1063
1064             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
1065             isaprod          = _mm256_mul_ps(isai0,isaj0);
1066             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
1067             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
1068
1069             /* Calculate generalized born table index - this is a separate table from the normal one,
1070              * but we use the same procedure by multiplying r with scale and truncating to integer.
1071              */
1072             rt               = _mm256_mul_ps(r00,gbscale);
1073             gbitab           = _mm256_cvttps_epi32(rt);
1074             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1075             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1076             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
1077             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
1078             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
1079             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
1080             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
1081                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
1082             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
1083                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
1084             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
1085                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
1086             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
1087                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
1088             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1089             Heps             = _mm256_mul_ps(gbeps,H);
1090             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
1091             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
1092             vgb              = _mm256_mul_ps(gbqqfactor,VV);
1093
1094             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1095             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
1096             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
1097             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
1098             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
1099             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
1100             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
1101             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
1102             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
1103             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
1104             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
1105             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
1106             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
1107             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
1108             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
1109                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
1110             velec            = _mm256_mul_ps(qq00,rinv00);
1111             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
1112
1113             /* CUBIC SPLINE TABLE DISPERSION */
1114             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1115                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1116             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1117                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1118             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1119                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1120             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1121                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1122             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1123             Heps             = _mm256_mul_ps(vfeps,H);
1124             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1125             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1126             fvdw6            = _mm256_mul_ps(c6_00,FF);
1127
1128             /* CUBIC SPLINE TABLE REPULSION */
1129             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1130             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1131             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1132                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1133             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1134                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1135             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1136                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1137             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1138                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1139             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1140             Heps             = _mm256_mul_ps(vfeps,H);
1141             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1142             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1143             fvdw12           = _mm256_mul_ps(c12_00,FF);
1144             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1145
1146             fscal            = _mm256_add_ps(felec,fvdw);
1147
1148             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1149
1150             /* Calculate temporary vectorial force */
1151             tx               = _mm256_mul_ps(fscal,dx00);
1152             ty               = _mm256_mul_ps(fscal,dy00);
1153             tz               = _mm256_mul_ps(fscal,dz00);
1154
1155             /* Update vectorial force */
1156             fix0             = _mm256_add_ps(fix0,tx);
1157             fiy0             = _mm256_add_ps(fiy0,ty);
1158             fiz0             = _mm256_add_ps(fiz0,tz);
1159
1160             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1161             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1162             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1163             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1164             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1165             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1166             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1167             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1168             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1169
1170             /* Inner loop uses 82 flops */
1171         }
1172
1173         /* End of innermost loop */
1174
1175         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1176                                                  f+i_coord_offset,fshift+i_shift_offset);
1177
1178         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
1179         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1180
1181         /* Increment number of inner iterations */
1182         inneriter                  += j_index_end - j_index_start;
1183
1184         /* Outer loop uses 7 flops */
1185     }
1186
1187     /* Increment number of outer iterations */
1188     outeriter        += nri;
1189
1190     /* Update outer/inner flops */
1191
1192     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
1193 }