Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr1;
86     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     real *           vdwioffsetptr3;
90     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     __m256i          ewitab;
99     __m128i          ewitab_lo,ewitab_hi;
100     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
102     real             *ewtab;
103     __m256           dummy_mask,cutoff_mask;
104     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
105     __m256           one     = _mm256_set1_ps(1.0);
106     __m256           two     = _mm256_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm256_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120
121     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
122     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
123     beta2            = _mm256_mul_ps(beta,beta);
124     beta3            = _mm256_mul_ps(beta,beta2);
125
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
133     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
134     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142     j_coord_offsetE = 0;
143     j_coord_offsetF = 0;
144     j_coord_offsetG = 0;
145     j_coord_offsetH = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
171                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix1             = _mm256_setzero_ps();
174         fiy1             = _mm256_setzero_ps();
175         fiz1             = _mm256_setzero_ps();
176         fix2             = _mm256_setzero_ps();
177         fiy2             = _mm256_setzero_ps();
178         fiz2             = _mm256_setzero_ps();
179         fix3             = _mm256_setzero_ps();
180         fiy3             = _mm256_setzero_ps();
181         fiz3             = _mm256_setzero_ps();
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             jnrE             = jjnr[jidx+4];
196             jnrF             = jjnr[jidx+5];
197             jnrG             = jjnr[jidx+6];
198             jnrH             = jjnr[jidx+7];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203             j_coord_offsetE  = DIM*jnrE;
204             j_coord_offsetF  = DIM*jnrF;
205             j_coord_offsetG  = DIM*jnrG;
206             j_coord_offsetH  = DIM*jnrH;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  x+j_coord_offsetE,x+j_coord_offsetF,
212                                                  x+j_coord_offsetG,x+j_coord_offsetH,
213                                                  &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx10             = _mm256_sub_ps(ix1,jx0);
217             dy10             = _mm256_sub_ps(iy1,jy0);
218             dz10             = _mm256_sub_ps(iz1,jz0);
219             dx20             = _mm256_sub_ps(ix2,jx0);
220             dy20             = _mm256_sub_ps(iy2,jy0);
221             dz20             = _mm256_sub_ps(iz2,jz0);
222             dx30             = _mm256_sub_ps(ix3,jx0);
223             dy30             = _mm256_sub_ps(iy3,jy0);
224             dz30             = _mm256_sub_ps(iz3,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
229             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
230
231             rinv10           = avx256_invsqrt_f(rsq10);
232             rinv20           = avx256_invsqrt_f(rsq20);
233             rinv30           = avx256_invsqrt_f(rsq30);
234
235             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
236             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
237             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
241                                                                  charge+jnrC+0,charge+jnrD+0,
242                                                                  charge+jnrE+0,charge+jnrF+0,
243                                                                  charge+jnrG+0,charge+jnrH+0);
244
245             fjx0             = _mm256_setzero_ps();
246             fjy0             = _mm256_setzero_ps();
247             fjz0             = _mm256_setzero_ps();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             r10              = _mm256_mul_ps(rsq10,rinv10);
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq10             = _mm256_mul_ps(iq1,jq0);
257
258             /* EWALD ELECTROSTATICS */
259             
260             /* Analytical PME correction */
261             zeta2            = _mm256_mul_ps(beta2,rsq10);
262             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
263             pmecorrF         = avx256_pmecorrF_f(zeta2);
264             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
265             felec            = _mm256_mul_ps(qq10,felec);
266             pmecorrV         = avx256_pmecorrV_f(zeta2);
267             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
268             velec            = _mm256_sub_ps(rinv10,pmecorrV);
269             velec            = _mm256_mul_ps(qq10,velec);
270             
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             velecsum         = _mm256_add_ps(velecsum,velec);
273
274             fscal            = felec;
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm256_mul_ps(fscal,dx10);
278             ty               = _mm256_mul_ps(fscal,dy10);
279             tz               = _mm256_mul_ps(fscal,dz10);
280
281             /* Update vectorial force */
282             fix1             = _mm256_add_ps(fix1,tx);
283             fiy1             = _mm256_add_ps(fiy1,ty);
284             fiz1             = _mm256_add_ps(fiz1,tz);
285
286             fjx0             = _mm256_add_ps(fjx0,tx);
287             fjy0             = _mm256_add_ps(fjy0,ty);
288             fjz0             = _mm256_add_ps(fjz0,tz);
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             r20              = _mm256_mul_ps(rsq20,rinv20);
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq20             = _mm256_mul_ps(iq2,jq0);
298
299             /* EWALD ELECTROSTATICS */
300             
301             /* Analytical PME correction */
302             zeta2            = _mm256_mul_ps(beta2,rsq20);
303             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
304             pmecorrF         = avx256_pmecorrF_f(zeta2);
305             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
306             felec            = _mm256_mul_ps(qq20,felec);
307             pmecorrV         = avx256_pmecorrV_f(zeta2);
308             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
309             velec            = _mm256_sub_ps(rinv20,pmecorrV);
310             velec            = _mm256_mul_ps(qq20,velec);
311             
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm256_add_ps(velecsum,velec);
314
315             fscal            = felec;
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm256_mul_ps(fscal,dx20);
319             ty               = _mm256_mul_ps(fscal,dy20);
320             tz               = _mm256_mul_ps(fscal,dz20);
321
322             /* Update vectorial force */
323             fix2             = _mm256_add_ps(fix2,tx);
324             fiy2             = _mm256_add_ps(fiy2,ty);
325             fiz2             = _mm256_add_ps(fiz2,tz);
326
327             fjx0             = _mm256_add_ps(fjx0,tx);
328             fjy0             = _mm256_add_ps(fjy0,ty);
329             fjz0             = _mm256_add_ps(fjz0,tz);
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             r30              = _mm256_mul_ps(rsq30,rinv30);
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq30             = _mm256_mul_ps(iq3,jq0);
339
340             /* EWALD ELECTROSTATICS */
341             
342             /* Analytical PME correction */
343             zeta2            = _mm256_mul_ps(beta2,rsq30);
344             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
345             pmecorrF         = avx256_pmecorrF_f(zeta2);
346             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
347             felec            = _mm256_mul_ps(qq30,felec);
348             pmecorrV         = avx256_pmecorrV_f(zeta2);
349             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
350             velec            = _mm256_sub_ps(rinv30,pmecorrV);
351             velec            = _mm256_mul_ps(qq30,velec);
352             
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velecsum         = _mm256_add_ps(velecsum,velec);
355
356             fscal            = felec;
357
358             /* Calculate temporary vectorial force */
359             tx               = _mm256_mul_ps(fscal,dx30);
360             ty               = _mm256_mul_ps(fscal,dy30);
361             tz               = _mm256_mul_ps(fscal,dz30);
362
363             /* Update vectorial force */
364             fix3             = _mm256_add_ps(fix3,tx);
365             fiy3             = _mm256_add_ps(fiy3,ty);
366             fiz3             = _mm256_add_ps(fiz3,tz);
367
368             fjx0             = _mm256_add_ps(fjx0,tx);
369             fjy0             = _mm256_add_ps(fjy0,ty);
370             fjz0             = _mm256_add_ps(fjz0,tz);
371
372             fjptrA             = f+j_coord_offsetA;
373             fjptrB             = f+j_coord_offsetB;
374             fjptrC             = f+j_coord_offsetC;
375             fjptrD             = f+j_coord_offsetD;
376             fjptrE             = f+j_coord_offsetE;
377             fjptrF             = f+j_coord_offsetF;
378             fjptrG             = f+j_coord_offsetG;
379             fjptrH             = f+j_coord_offsetH;
380
381             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
382
383             /* Inner loop uses 255 flops */
384         }
385
386         if(jidx<j_index_end)
387         {
388
389             /* Get j neighbor index, and coordinate index */
390             jnrlistA         = jjnr[jidx];
391             jnrlistB         = jjnr[jidx+1];
392             jnrlistC         = jjnr[jidx+2];
393             jnrlistD         = jjnr[jidx+3];
394             jnrlistE         = jjnr[jidx+4];
395             jnrlistF         = jjnr[jidx+5];
396             jnrlistG         = jjnr[jidx+6];
397             jnrlistH         = jjnr[jidx+7];
398             /* Sign of each element will be negative for non-real atoms.
399              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
400              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
401              */
402             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
403                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
404                                             
405             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
406             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
407             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
408             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
409             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
410             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
411             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
412             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
413             j_coord_offsetA  = DIM*jnrA;
414             j_coord_offsetB  = DIM*jnrB;
415             j_coord_offsetC  = DIM*jnrC;
416             j_coord_offsetD  = DIM*jnrD;
417             j_coord_offsetE  = DIM*jnrE;
418             j_coord_offsetF  = DIM*jnrF;
419             j_coord_offsetG  = DIM*jnrG;
420             j_coord_offsetH  = DIM*jnrH;
421
422             /* load j atom coordinates */
423             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
424                                                  x+j_coord_offsetC,x+j_coord_offsetD,
425                                                  x+j_coord_offsetE,x+j_coord_offsetF,
426                                                  x+j_coord_offsetG,x+j_coord_offsetH,
427                                                  &jx0,&jy0,&jz0);
428
429             /* Calculate displacement vector */
430             dx10             = _mm256_sub_ps(ix1,jx0);
431             dy10             = _mm256_sub_ps(iy1,jy0);
432             dz10             = _mm256_sub_ps(iz1,jz0);
433             dx20             = _mm256_sub_ps(ix2,jx0);
434             dy20             = _mm256_sub_ps(iy2,jy0);
435             dz20             = _mm256_sub_ps(iz2,jz0);
436             dx30             = _mm256_sub_ps(ix3,jx0);
437             dy30             = _mm256_sub_ps(iy3,jy0);
438             dz30             = _mm256_sub_ps(iz3,jz0);
439
440             /* Calculate squared distance and things based on it */
441             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
442             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
443             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
444
445             rinv10           = avx256_invsqrt_f(rsq10);
446             rinv20           = avx256_invsqrt_f(rsq20);
447             rinv30           = avx256_invsqrt_f(rsq30);
448
449             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
450             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
451             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
452
453             /* Load parameters for j particles */
454             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
455                                                                  charge+jnrC+0,charge+jnrD+0,
456                                                                  charge+jnrE+0,charge+jnrF+0,
457                                                                  charge+jnrG+0,charge+jnrH+0);
458
459             fjx0             = _mm256_setzero_ps();
460             fjy0             = _mm256_setzero_ps();
461             fjz0             = _mm256_setzero_ps();
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             r10              = _mm256_mul_ps(rsq10,rinv10);
468             r10              = _mm256_andnot_ps(dummy_mask,r10);
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq10             = _mm256_mul_ps(iq1,jq0);
472
473             /* EWALD ELECTROSTATICS */
474             
475             /* Analytical PME correction */
476             zeta2            = _mm256_mul_ps(beta2,rsq10);
477             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
478             pmecorrF         = avx256_pmecorrF_f(zeta2);
479             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
480             felec            = _mm256_mul_ps(qq10,felec);
481             pmecorrV         = avx256_pmecorrV_f(zeta2);
482             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
483             velec            = _mm256_sub_ps(rinv10,pmecorrV);
484             velec            = _mm256_mul_ps(qq10,velec);
485             
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             velec            = _mm256_andnot_ps(dummy_mask,velec);
488             velecsum         = _mm256_add_ps(velecsum,velec);
489
490             fscal            = felec;
491
492             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
493
494             /* Calculate temporary vectorial force */
495             tx               = _mm256_mul_ps(fscal,dx10);
496             ty               = _mm256_mul_ps(fscal,dy10);
497             tz               = _mm256_mul_ps(fscal,dz10);
498
499             /* Update vectorial force */
500             fix1             = _mm256_add_ps(fix1,tx);
501             fiy1             = _mm256_add_ps(fiy1,ty);
502             fiz1             = _mm256_add_ps(fiz1,tz);
503
504             fjx0             = _mm256_add_ps(fjx0,tx);
505             fjy0             = _mm256_add_ps(fjy0,ty);
506             fjz0             = _mm256_add_ps(fjz0,tz);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             r20              = _mm256_mul_ps(rsq20,rinv20);
513             r20              = _mm256_andnot_ps(dummy_mask,r20);
514
515             /* Compute parameters for interactions between i and j atoms */
516             qq20             = _mm256_mul_ps(iq2,jq0);
517
518             /* EWALD ELECTROSTATICS */
519             
520             /* Analytical PME correction */
521             zeta2            = _mm256_mul_ps(beta2,rsq20);
522             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
523             pmecorrF         = avx256_pmecorrF_f(zeta2);
524             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
525             felec            = _mm256_mul_ps(qq20,felec);
526             pmecorrV         = avx256_pmecorrV_f(zeta2);
527             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
528             velec            = _mm256_sub_ps(rinv20,pmecorrV);
529             velec            = _mm256_mul_ps(qq20,velec);
530             
531             /* Update potential sum for this i atom from the interaction with this j atom. */
532             velec            = _mm256_andnot_ps(dummy_mask,velec);
533             velecsum         = _mm256_add_ps(velecsum,velec);
534
535             fscal            = felec;
536
537             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
538
539             /* Calculate temporary vectorial force */
540             tx               = _mm256_mul_ps(fscal,dx20);
541             ty               = _mm256_mul_ps(fscal,dy20);
542             tz               = _mm256_mul_ps(fscal,dz20);
543
544             /* Update vectorial force */
545             fix2             = _mm256_add_ps(fix2,tx);
546             fiy2             = _mm256_add_ps(fiy2,ty);
547             fiz2             = _mm256_add_ps(fiz2,tz);
548
549             fjx0             = _mm256_add_ps(fjx0,tx);
550             fjy0             = _mm256_add_ps(fjy0,ty);
551             fjz0             = _mm256_add_ps(fjz0,tz);
552
553             /**************************
554              * CALCULATE INTERACTIONS *
555              **************************/
556
557             r30              = _mm256_mul_ps(rsq30,rinv30);
558             r30              = _mm256_andnot_ps(dummy_mask,r30);
559
560             /* Compute parameters for interactions between i and j atoms */
561             qq30             = _mm256_mul_ps(iq3,jq0);
562
563             /* EWALD ELECTROSTATICS */
564             
565             /* Analytical PME correction */
566             zeta2            = _mm256_mul_ps(beta2,rsq30);
567             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
568             pmecorrF         = avx256_pmecorrF_f(zeta2);
569             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
570             felec            = _mm256_mul_ps(qq30,felec);
571             pmecorrV         = avx256_pmecorrV_f(zeta2);
572             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
573             velec            = _mm256_sub_ps(rinv30,pmecorrV);
574             velec            = _mm256_mul_ps(qq30,velec);
575             
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm256_andnot_ps(dummy_mask,velec);
578             velecsum         = _mm256_add_ps(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm256_mul_ps(fscal,dx30);
586             ty               = _mm256_mul_ps(fscal,dy30);
587             tz               = _mm256_mul_ps(fscal,dz30);
588
589             /* Update vectorial force */
590             fix3             = _mm256_add_ps(fix3,tx);
591             fiy3             = _mm256_add_ps(fiy3,ty);
592             fiz3             = _mm256_add_ps(fiz3,tz);
593
594             fjx0             = _mm256_add_ps(fjx0,tx);
595             fjy0             = _mm256_add_ps(fjy0,ty);
596             fjz0             = _mm256_add_ps(fjz0,tz);
597
598             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
599             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
600             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
601             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
602             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
603             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
604             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
605             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
606
607             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
608
609             /* Inner loop uses 258 flops */
610         }
611
612         /* End of innermost loop */
613
614         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
615                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
616
617         ggid                        = gid[iidx];
618         /* Update potential energies */
619         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 19 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*258);
633 }
634 /*
635  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_256_single
636  * Electrostatics interaction: Ewald
637  * VdW interaction:            None
638  * Geometry:                   Water4-Particle
639  * Calculate force/pot:        Force
640  */
641 void
642 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_256_single
643                     (t_nblist                    * gmx_restrict       nlist,
644                      rvec                        * gmx_restrict          xx,
645                      rvec                        * gmx_restrict          ff,
646                      struct t_forcerec           * gmx_restrict          fr,
647                      t_mdatoms                   * gmx_restrict     mdatoms,
648                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
649                      t_nrnb                      * gmx_restrict        nrnb)
650 {
651     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
652      * just 0 for non-waters.
653      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
654      * jnr indices corresponding to data put in the four positions in the SIMD register.
655      */
656     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
657     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
658     int              jnrA,jnrB,jnrC,jnrD;
659     int              jnrE,jnrF,jnrG,jnrH;
660     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
661     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
662     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
663     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
664     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
665     real             rcutoff_scalar;
666     real             *shiftvec,*fshift,*x,*f;
667     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
668     real             scratch[4*DIM];
669     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
670     real *           vdwioffsetptr1;
671     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
672     real *           vdwioffsetptr2;
673     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
674     real *           vdwioffsetptr3;
675     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
676     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
677     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
678     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
679     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
680     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
681     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
682     real             *charge;
683     __m256i          ewitab;
684     __m128i          ewitab_lo,ewitab_hi;
685     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
686     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
687     real             *ewtab;
688     __m256           dummy_mask,cutoff_mask;
689     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
690     __m256           one     = _mm256_set1_ps(1.0);
691     __m256           two     = _mm256_set1_ps(2.0);
692     x                = xx[0];
693     f                = ff[0];
694
695     nri              = nlist->nri;
696     iinr             = nlist->iinr;
697     jindex           = nlist->jindex;
698     jjnr             = nlist->jjnr;
699     shiftidx         = nlist->shift;
700     gid              = nlist->gid;
701     shiftvec         = fr->shift_vec[0];
702     fshift           = fr->fshift[0];
703     facel            = _mm256_set1_ps(fr->ic->epsfac);
704     charge           = mdatoms->chargeA;
705
706     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
707     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
708     beta2            = _mm256_mul_ps(beta,beta);
709     beta3            = _mm256_mul_ps(beta,beta2);
710
711     ewtab            = fr->ic->tabq_coul_F;
712     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
713     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
714
715     /* Setup water-specific parameters */
716     inr              = nlist->iinr[0];
717     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
718     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
719     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
720
721     /* Avoid stupid compiler warnings */
722     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
723     j_coord_offsetA = 0;
724     j_coord_offsetB = 0;
725     j_coord_offsetC = 0;
726     j_coord_offsetD = 0;
727     j_coord_offsetE = 0;
728     j_coord_offsetF = 0;
729     j_coord_offsetG = 0;
730     j_coord_offsetH = 0;
731
732     outeriter        = 0;
733     inneriter        = 0;
734
735     for(iidx=0;iidx<4*DIM;iidx++)
736     {
737         scratch[iidx] = 0.0;
738     }
739
740     /* Start outer loop over neighborlists */
741     for(iidx=0; iidx<nri; iidx++)
742     {
743         /* Load shift vector for this list */
744         i_shift_offset   = DIM*shiftidx[iidx];
745
746         /* Load limits for loop over neighbors */
747         j_index_start    = jindex[iidx];
748         j_index_end      = jindex[iidx+1];
749
750         /* Get outer coordinate index */
751         inr              = iinr[iidx];
752         i_coord_offset   = DIM*inr;
753
754         /* Load i particle coords and add shift vector */
755         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
756                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
757
758         fix1             = _mm256_setzero_ps();
759         fiy1             = _mm256_setzero_ps();
760         fiz1             = _mm256_setzero_ps();
761         fix2             = _mm256_setzero_ps();
762         fiy2             = _mm256_setzero_ps();
763         fiz2             = _mm256_setzero_ps();
764         fix3             = _mm256_setzero_ps();
765         fiy3             = _mm256_setzero_ps();
766         fiz3             = _mm256_setzero_ps();
767
768         /* Start inner kernel loop */
769         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
770         {
771
772             /* Get j neighbor index, and coordinate index */
773             jnrA             = jjnr[jidx];
774             jnrB             = jjnr[jidx+1];
775             jnrC             = jjnr[jidx+2];
776             jnrD             = jjnr[jidx+3];
777             jnrE             = jjnr[jidx+4];
778             jnrF             = jjnr[jidx+5];
779             jnrG             = jjnr[jidx+6];
780             jnrH             = jjnr[jidx+7];
781             j_coord_offsetA  = DIM*jnrA;
782             j_coord_offsetB  = DIM*jnrB;
783             j_coord_offsetC  = DIM*jnrC;
784             j_coord_offsetD  = DIM*jnrD;
785             j_coord_offsetE  = DIM*jnrE;
786             j_coord_offsetF  = DIM*jnrF;
787             j_coord_offsetG  = DIM*jnrG;
788             j_coord_offsetH  = DIM*jnrH;
789
790             /* load j atom coordinates */
791             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
792                                                  x+j_coord_offsetC,x+j_coord_offsetD,
793                                                  x+j_coord_offsetE,x+j_coord_offsetF,
794                                                  x+j_coord_offsetG,x+j_coord_offsetH,
795                                                  &jx0,&jy0,&jz0);
796
797             /* Calculate displacement vector */
798             dx10             = _mm256_sub_ps(ix1,jx0);
799             dy10             = _mm256_sub_ps(iy1,jy0);
800             dz10             = _mm256_sub_ps(iz1,jz0);
801             dx20             = _mm256_sub_ps(ix2,jx0);
802             dy20             = _mm256_sub_ps(iy2,jy0);
803             dz20             = _mm256_sub_ps(iz2,jz0);
804             dx30             = _mm256_sub_ps(ix3,jx0);
805             dy30             = _mm256_sub_ps(iy3,jy0);
806             dz30             = _mm256_sub_ps(iz3,jz0);
807
808             /* Calculate squared distance and things based on it */
809             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
810             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
811             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
812
813             rinv10           = avx256_invsqrt_f(rsq10);
814             rinv20           = avx256_invsqrt_f(rsq20);
815             rinv30           = avx256_invsqrt_f(rsq30);
816
817             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
818             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
819             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
820
821             /* Load parameters for j particles */
822             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
823                                                                  charge+jnrC+0,charge+jnrD+0,
824                                                                  charge+jnrE+0,charge+jnrF+0,
825                                                                  charge+jnrG+0,charge+jnrH+0);
826
827             fjx0             = _mm256_setzero_ps();
828             fjy0             = _mm256_setzero_ps();
829             fjz0             = _mm256_setzero_ps();
830
831             /**************************
832              * CALCULATE INTERACTIONS *
833              **************************/
834
835             r10              = _mm256_mul_ps(rsq10,rinv10);
836
837             /* Compute parameters for interactions between i and j atoms */
838             qq10             = _mm256_mul_ps(iq1,jq0);
839
840             /* EWALD ELECTROSTATICS */
841             
842             /* Analytical PME correction */
843             zeta2            = _mm256_mul_ps(beta2,rsq10);
844             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
845             pmecorrF         = avx256_pmecorrF_f(zeta2);
846             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
847             felec            = _mm256_mul_ps(qq10,felec);
848             
849             fscal            = felec;
850
851             /* Calculate temporary vectorial force */
852             tx               = _mm256_mul_ps(fscal,dx10);
853             ty               = _mm256_mul_ps(fscal,dy10);
854             tz               = _mm256_mul_ps(fscal,dz10);
855
856             /* Update vectorial force */
857             fix1             = _mm256_add_ps(fix1,tx);
858             fiy1             = _mm256_add_ps(fiy1,ty);
859             fiz1             = _mm256_add_ps(fiz1,tz);
860
861             fjx0             = _mm256_add_ps(fjx0,tx);
862             fjy0             = _mm256_add_ps(fjy0,ty);
863             fjz0             = _mm256_add_ps(fjz0,tz);
864
865             /**************************
866              * CALCULATE INTERACTIONS *
867              **************************/
868
869             r20              = _mm256_mul_ps(rsq20,rinv20);
870
871             /* Compute parameters for interactions between i and j atoms */
872             qq20             = _mm256_mul_ps(iq2,jq0);
873
874             /* EWALD ELECTROSTATICS */
875             
876             /* Analytical PME correction */
877             zeta2            = _mm256_mul_ps(beta2,rsq20);
878             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
879             pmecorrF         = avx256_pmecorrF_f(zeta2);
880             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
881             felec            = _mm256_mul_ps(qq20,felec);
882             
883             fscal            = felec;
884
885             /* Calculate temporary vectorial force */
886             tx               = _mm256_mul_ps(fscal,dx20);
887             ty               = _mm256_mul_ps(fscal,dy20);
888             tz               = _mm256_mul_ps(fscal,dz20);
889
890             /* Update vectorial force */
891             fix2             = _mm256_add_ps(fix2,tx);
892             fiy2             = _mm256_add_ps(fiy2,ty);
893             fiz2             = _mm256_add_ps(fiz2,tz);
894
895             fjx0             = _mm256_add_ps(fjx0,tx);
896             fjy0             = _mm256_add_ps(fjy0,ty);
897             fjz0             = _mm256_add_ps(fjz0,tz);
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             r30              = _mm256_mul_ps(rsq30,rinv30);
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq30             = _mm256_mul_ps(iq3,jq0);
907
908             /* EWALD ELECTROSTATICS */
909             
910             /* Analytical PME correction */
911             zeta2            = _mm256_mul_ps(beta2,rsq30);
912             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
913             pmecorrF         = avx256_pmecorrF_f(zeta2);
914             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
915             felec            = _mm256_mul_ps(qq30,felec);
916             
917             fscal            = felec;
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm256_mul_ps(fscal,dx30);
921             ty               = _mm256_mul_ps(fscal,dy30);
922             tz               = _mm256_mul_ps(fscal,dz30);
923
924             /* Update vectorial force */
925             fix3             = _mm256_add_ps(fix3,tx);
926             fiy3             = _mm256_add_ps(fiy3,ty);
927             fiz3             = _mm256_add_ps(fiz3,tz);
928
929             fjx0             = _mm256_add_ps(fjx0,tx);
930             fjy0             = _mm256_add_ps(fjy0,ty);
931             fjz0             = _mm256_add_ps(fjz0,tz);
932
933             fjptrA             = f+j_coord_offsetA;
934             fjptrB             = f+j_coord_offsetB;
935             fjptrC             = f+j_coord_offsetC;
936             fjptrD             = f+j_coord_offsetD;
937             fjptrE             = f+j_coord_offsetE;
938             fjptrF             = f+j_coord_offsetF;
939             fjptrG             = f+j_coord_offsetG;
940             fjptrH             = f+j_coord_offsetH;
941
942             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
943
944             /* Inner loop uses 171 flops */
945         }
946
947         if(jidx<j_index_end)
948         {
949
950             /* Get j neighbor index, and coordinate index */
951             jnrlistA         = jjnr[jidx];
952             jnrlistB         = jjnr[jidx+1];
953             jnrlistC         = jjnr[jidx+2];
954             jnrlistD         = jjnr[jidx+3];
955             jnrlistE         = jjnr[jidx+4];
956             jnrlistF         = jjnr[jidx+5];
957             jnrlistG         = jjnr[jidx+6];
958             jnrlistH         = jjnr[jidx+7];
959             /* Sign of each element will be negative for non-real atoms.
960              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
961              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
962              */
963             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
964                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
965                                             
966             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
967             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
968             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
969             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
970             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
971             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
972             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
973             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
974             j_coord_offsetA  = DIM*jnrA;
975             j_coord_offsetB  = DIM*jnrB;
976             j_coord_offsetC  = DIM*jnrC;
977             j_coord_offsetD  = DIM*jnrD;
978             j_coord_offsetE  = DIM*jnrE;
979             j_coord_offsetF  = DIM*jnrF;
980             j_coord_offsetG  = DIM*jnrG;
981             j_coord_offsetH  = DIM*jnrH;
982
983             /* load j atom coordinates */
984             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
985                                                  x+j_coord_offsetC,x+j_coord_offsetD,
986                                                  x+j_coord_offsetE,x+j_coord_offsetF,
987                                                  x+j_coord_offsetG,x+j_coord_offsetH,
988                                                  &jx0,&jy0,&jz0);
989
990             /* Calculate displacement vector */
991             dx10             = _mm256_sub_ps(ix1,jx0);
992             dy10             = _mm256_sub_ps(iy1,jy0);
993             dz10             = _mm256_sub_ps(iz1,jz0);
994             dx20             = _mm256_sub_ps(ix2,jx0);
995             dy20             = _mm256_sub_ps(iy2,jy0);
996             dz20             = _mm256_sub_ps(iz2,jz0);
997             dx30             = _mm256_sub_ps(ix3,jx0);
998             dy30             = _mm256_sub_ps(iy3,jy0);
999             dz30             = _mm256_sub_ps(iz3,jz0);
1000
1001             /* Calculate squared distance and things based on it */
1002             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1003             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1004             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1005
1006             rinv10           = avx256_invsqrt_f(rsq10);
1007             rinv20           = avx256_invsqrt_f(rsq20);
1008             rinv30           = avx256_invsqrt_f(rsq30);
1009
1010             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1011             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1012             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1013
1014             /* Load parameters for j particles */
1015             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1016                                                                  charge+jnrC+0,charge+jnrD+0,
1017                                                                  charge+jnrE+0,charge+jnrF+0,
1018                                                                  charge+jnrG+0,charge+jnrH+0);
1019
1020             fjx0             = _mm256_setzero_ps();
1021             fjy0             = _mm256_setzero_ps();
1022             fjz0             = _mm256_setzero_ps();
1023
1024             /**************************
1025              * CALCULATE INTERACTIONS *
1026              **************************/
1027
1028             r10              = _mm256_mul_ps(rsq10,rinv10);
1029             r10              = _mm256_andnot_ps(dummy_mask,r10);
1030
1031             /* Compute parameters for interactions between i and j atoms */
1032             qq10             = _mm256_mul_ps(iq1,jq0);
1033
1034             /* EWALD ELECTROSTATICS */
1035             
1036             /* Analytical PME correction */
1037             zeta2            = _mm256_mul_ps(beta2,rsq10);
1038             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1039             pmecorrF         = avx256_pmecorrF_f(zeta2);
1040             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1041             felec            = _mm256_mul_ps(qq10,felec);
1042             
1043             fscal            = felec;
1044
1045             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1046
1047             /* Calculate temporary vectorial force */
1048             tx               = _mm256_mul_ps(fscal,dx10);
1049             ty               = _mm256_mul_ps(fscal,dy10);
1050             tz               = _mm256_mul_ps(fscal,dz10);
1051
1052             /* Update vectorial force */
1053             fix1             = _mm256_add_ps(fix1,tx);
1054             fiy1             = _mm256_add_ps(fiy1,ty);
1055             fiz1             = _mm256_add_ps(fiz1,tz);
1056
1057             fjx0             = _mm256_add_ps(fjx0,tx);
1058             fjy0             = _mm256_add_ps(fjy0,ty);
1059             fjz0             = _mm256_add_ps(fjz0,tz);
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             r20              = _mm256_mul_ps(rsq20,rinv20);
1066             r20              = _mm256_andnot_ps(dummy_mask,r20);
1067
1068             /* Compute parameters for interactions between i and j atoms */
1069             qq20             = _mm256_mul_ps(iq2,jq0);
1070
1071             /* EWALD ELECTROSTATICS */
1072             
1073             /* Analytical PME correction */
1074             zeta2            = _mm256_mul_ps(beta2,rsq20);
1075             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1076             pmecorrF         = avx256_pmecorrF_f(zeta2);
1077             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1078             felec            = _mm256_mul_ps(qq20,felec);
1079             
1080             fscal            = felec;
1081
1082             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm256_mul_ps(fscal,dx20);
1086             ty               = _mm256_mul_ps(fscal,dy20);
1087             tz               = _mm256_mul_ps(fscal,dz20);
1088
1089             /* Update vectorial force */
1090             fix2             = _mm256_add_ps(fix2,tx);
1091             fiy2             = _mm256_add_ps(fiy2,ty);
1092             fiz2             = _mm256_add_ps(fiz2,tz);
1093
1094             fjx0             = _mm256_add_ps(fjx0,tx);
1095             fjy0             = _mm256_add_ps(fjy0,ty);
1096             fjz0             = _mm256_add_ps(fjz0,tz);
1097
1098             /**************************
1099              * CALCULATE INTERACTIONS *
1100              **************************/
1101
1102             r30              = _mm256_mul_ps(rsq30,rinv30);
1103             r30              = _mm256_andnot_ps(dummy_mask,r30);
1104
1105             /* Compute parameters for interactions between i and j atoms */
1106             qq30             = _mm256_mul_ps(iq3,jq0);
1107
1108             /* EWALD ELECTROSTATICS */
1109             
1110             /* Analytical PME correction */
1111             zeta2            = _mm256_mul_ps(beta2,rsq30);
1112             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1113             pmecorrF         = avx256_pmecorrF_f(zeta2);
1114             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1115             felec            = _mm256_mul_ps(qq30,felec);
1116             
1117             fscal            = felec;
1118
1119             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1120
1121             /* Calculate temporary vectorial force */
1122             tx               = _mm256_mul_ps(fscal,dx30);
1123             ty               = _mm256_mul_ps(fscal,dy30);
1124             tz               = _mm256_mul_ps(fscal,dz30);
1125
1126             /* Update vectorial force */
1127             fix3             = _mm256_add_ps(fix3,tx);
1128             fiy3             = _mm256_add_ps(fiy3,ty);
1129             fiz3             = _mm256_add_ps(fiz3,tz);
1130
1131             fjx0             = _mm256_add_ps(fjx0,tx);
1132             fjy0             = _mm256_add_ps(fjy0,ty);
1133             fjz0             = _mm256_add_ps(fjz0,tz);
1134
1135             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1136             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1137             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1138             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1139             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1140             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1141             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1142             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1143
1144             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1145
1146             /* Inner loop uses 174 flops */
1147         }
1148
1149         /* End of innermost loop */
1150
1151         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1152                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1153
1154         /* Increment number of inner iterations */
1155         inneriter                  += j_index_end - j_index_start;
1156
1157         /* Outer loop uses 18 flops */
1158     }
1159
1160     /* Increment number of outer iterations */
1161     outeriter        += nri;
1162
1163     /* Update outer/inner flops */
1164
1165     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*174);
1166 }