Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr1;
87     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256i          ewitab;
100     __m128i          ewitab_lo,ewitab_hi;
101     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121
122     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
123     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
124     beta2            = _mm256_mul_ps(beta,beta);
125     beta3            = _mm256_mul_ps(beta,beta2);
126
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
134     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
135     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143     j_coord_offsetE = 0;
144     j_coord_offsetF = 0;
145     j_coord_offsetG = 0;
146     j_coord_offsetH = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
172                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
173
174         fix1             = _mm256_setzero_ps();
175         fiy1             = _mm256_setzero_ps();
176         fiz1             = _mm256_setzero_ps();
177         fix2             = _mm256_setzero_ps();
178         fiy2             = _mm256_setzero_ps();
179         fiz2             = _mm256_setzero_ps();
180         fix3             = _mm256_setzero_ps();
181         fiy3             = _mm256_setzero_ps();
182         fiz3             = _mm256_setzero_ps();
183
184         /* Reset potential sums */
185         velecsum         = _mm256_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             jnrE             = jjnr[jidx+4];
197             jnrF             = jjnr[jidx+5];
198             jnrG             = jjnr[jidx+6];
199             jnrH             = jjnr[jidx+7];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204             j_coord_offsetE  = DIM*jnrE;
205             j_coord_offsetF  = DIM*jnrF;
206             j_coord_offsetG  = DIM*jnrG;
207             j_coord_offsetH  = DIM*jnrH;
208
209             /* load j atom coordinates */
210             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                                  x+j_coord_offsetC,x+j_coord_offsetD,
212                                                  x+j_coord_offsetE,x+j_coord_offsetF,
213                                                  x+j_coord_offsetG,x+j_coord_offsetH,
214                                                  &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx10             = _mm256_sub_ps(ix1,jx0);
218             dy10             = _mm256_sub_ps(iy1,jy0);
219             dz10             = _mm256_sub_ps(iz1,jz0);
220             dx20             = _mm256_sub_ps(ix2,jx0);
221             dy20             = _mm256_sub_ps(iy2,jy0);
222             dz20             = _mm256_sub_ps(iz2,jz0);
223             dx30             = _mm256_sub_ps(ix3,jx0);
224             dy30             = _mm256_sub_ps(iy3,jy0);
225             dz30             = _mm256_sub_ps(iz3,jz0);
226
227             /* Calculate squared distance and things based on it */
228             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
229             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
230             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
231
232             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
233             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
234             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
235
236             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
237             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
238             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
239
240             /* Load parameters for j particles */
241             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
242                                                                  charge+jnrC+0,charge+jnrD+0,
243                                                                  charge+jnrE+0,charge+jnrF+0,
244                                                                  charge+jnrG+0,charge+jnrH+0);
245
246             fjx0             = _mm256_setzero_ps();
247             fjy0             = _mm256_setzero_ps();
248             fjz0             = _mm256_setzero_ps();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             r10              = _mm256_mul_ps(rsq10,rinv10);
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq10             = _mm256_mul_ps(iq1,jq0);
258
259             /* EWALD ELECTROSTATICS */
260             
261             /* Analytical PME correction */
262             zeta2            = _mm256_mul_ps(beta2,rsq10);
263             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
264             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
265             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
266             felec            = _mm256_mul_ps(qq10,felec);
267             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
268             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
269             velec            = _mm256_sub_ps(rinv10,pmecorrV);
270             velec            = _mm256_mul_ps(qq10,velec);
271             
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velecsum         = _mm256_add_ps(velecsum,velec);
274
275             fscal            = felec;
276
277             /* Calculate temporary vectorial force */
278             tx               = _mm256_mul_ps(fscal,dx10);
279             ty               = _mm256_mul_ps(fscal,dy10);
280             tz               = _mm256_mul_ps(fscal,dz10);
281
282             /* Update vectorial force */
283             fix1             = _mm256_add_ps(fix1,tx);
284             fiy1             = _mm256_add_ps(fiy1,ty);
285             fiz1             = _mm256_add_ps(fiz1,tz);
286
287             fjx0             = _mm256_add_ps(fjx0,tx);
288             fjy0             = _mm256_add_ps(fjy0,ty);
289             fjz0             = _mm256_add_ps(fjz0,tz);
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             r20              = _mm256_mul_ps(rsq20,rinv20);
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq20             = _mm256_mul_ps(iq2,jq0);
299
300             /* EWALD ELECTROSTATICS */
301             
302             /* Analytical PME correction */
303             zeta2            = _mm256_mul_ps(beta2,rsq20);
304             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
305             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
306             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
307             felec            = _mm256_mul_ps(qq20,felec);
308             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
309             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
310             velec            = _mm256_sub_ps(rinv20,pmecorrV);
311             velec            = _mm256_mul_ps(qq20,velec);
312             
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velecsum         = _mm256_add_ps(velecsum,velec);
315
316             fscal            = felec;
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm256_mul_ps(fscal,dx20);
320             ty               = _mm256_mul_ps(fscal,dy20);
321             tz               = _mm256_mul_ps(fscal,dz20);
322
323             /* Update vectorial force */
324             fix2             = _mm256_add_ps(fix2,tx);
325             fiy2             = _mm256_add_ps(fiy2,ty);
326             fiz2             = _mm256_add_ps(fiz2,tz);
327
328             fjx0             = _mm256_add_ps(fjx0,tx);
329             fjy0             = _mm256_add_ps(fjy0,ty);
330             fjz0             = _mm256_add_ps(fjz0,tz);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             r30              = _mm256_mul_ps(rsq30,rinv30);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq30             = _mm256_mul_ps(iq3,jq0);
340
341             /* EWALD ELECTROSTATICS */
342             
343             /* Analytical PME correction */
344             zeta2            = _mm256_mul_ps(beta2,rsq30);
345             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
346             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
347             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
348             felec            = _mm256_mul_ps(qq30,felec);
349             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
350             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
351             velec            = _mm256_sub_ps(rinv30,pmecorrV);
352             velec            = _mm256_mul_ps(qq30,velec);
353             
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velecsum         = _mm256_add_ps(velecsum,velec);
356
357             fscal            = felec;
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm256_mul_ps(fscal,dx30);
361             ty               = _mm256_mul_ps(fscal,dy30);
362             tz               = _mm256_mul_ps(fscal,dz30);
363
364             /* Update vectorial force */
365             fix3             = _mm256_add_ps(fix3,tx);
366             fiy3             = _mm256_add_ps(fiy3,ty);
367             fiz3             = _mm256_add_ps(fiz3,tz);
368
369             fjx0             = _mm256_add_ps(fjx0,tx);
370             fjy0             = _mm256_add_ps(fjy0,ty);
371             fjz0             = _mm256_add_ps(fjz0,tz);
372
373             fjptrA             = f+j_coord_offsetA;
374             fjptrB             = f+j_coord_offsetB;
375             fjptrC             = f+j_coord_offsetC;
376             fjptrD             = f+j_coord_offsetD;
377             fjptrE             = f+j_coord_offsetE;
378             fjptrF             = f+j_coord_offsetF;
379             fjptrG             = f+j_coord_offsetG;
380             fjptrH             = f+j_coord_offsetH;
381
382             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
383
384             /* Inner loop uses 255 flops */
385         }
386
387         if(jidx<j_index_end)
388         {
389
390             /* Get j neighbor index, and coordinate index */
391             jnrlistA         = jjnr[jidx];
392             jnrlistB         = jjnr[jidx+1];
393             jnrlistC         = jjnr[jidx+2];
394             jnrlistD         = jjnr[jidx+3];
395             jnrlistE         = jjnr[jidx+4];
396             jnrlistF         = jjnr[jidx+5];
397             jnrlistG         = jjnr[jidx+6];
398             jnrlistH         = jjnr[jidx+7];
399             /* Sign of each element will be negative for non-real atoms.
400              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
401              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
402              */
403             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
404                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
405                                             
406             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
407             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
408             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
409             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
410             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
411             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
412             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
413             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
414             j_coord_offsetA  = DIM*jnrA;
415             j_coord_offsetB  = DIM*jnrB;
416             j_coord_offsetC  = DIM*jnrC;
417             j_coord_offsetD  = DIM*jnrD;
418             j_coord_offsetE  = DIM*jnrE;
419             j_coord_offsetF  = DIM*jnrF;
420             j_coord_offsetG  = DIM*jnrG;
421             j_coord_offsetH  = DIM*jnrH;
422
423             /* load j atom coordinates */
424             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
425                                                  x+j_coord_offsetC,x+j_coord_offsetD,
426                                                  x+j_coord_offsetE,x+j_coord_offsetF,
427                                                  x+j_coord_offsetG,x+j_coord_offsetH,
428                                                  &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx10             = _mm256_sub_ps(ix1,jx0);
432             dy10             = _mm256_sub_ps(iy1,jy0);
433             dz10             = _mm256_sub_ps(iz1,jz0);
434             dx20             = _mm256_sub_ps(ix2,jx0);
435             dy20             = _mm256_sub_ps(iy2,jy0);
436             dz20             = _mm256_sub_ps(iz2,jz0);
437             dx30             = _mm256_sub_ps(ix3,jx0);
438             dy30             = _mm256_sub_ps(iy3,jy0);
439             dz30             = _mm256_sub_ps(iz3,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
443             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
444             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
445
446             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
447             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
448             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
449
450             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
451             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
452             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
453
454             /* Load parameters for j particles */
455             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
456                                                                  charge+jnrC+0,charge+jnrD+0,
457                                                                  charge+jnrE+0,charge+jnrF+0,
458                                                                  charge+jnrG+0,charge+jnrH+0);
459
460             fjx0             = _mm256_setzero_ps();
461             fjy0             = _mm256_setzero_ps();
462             fjz0             = _mm256_setzero_ps();
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             r10              = _mm256_mul_ps(rsq10,rinv10);
469             r10              = _mm256_andnot_ps(dummy_mask,r10);
470
471             /* Compute parameters for interactions between i and j atoms */
472             qq10             = _mm256_mul_ps(iq1,jq0);
473
474             /* EWALD ELECTROSTATICS */
475             
476             /* Analytical PME correction */
477             zeta2            = _mm256_mul_ps(beta2,rsq10);
478             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
479             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
480             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
481             felec            = _mm256_mul_ps(qq10,felec);
482             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
483             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
484             velec            = _mm256_sub_ps(rinv10,pmecorrV);
485             velec            = _mm256_mul_ps(qq10,velec);
486             
487             /* Update potential sum for this i atom from the interaction with this j atom. */
488             velec            = _mm256_andnot_ps(dummy_mask,velec);
489             velecsum         = _mm256_add_ps(velecsum,velec);
490
491             fscal            = felec;
492
493             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
494
495             /* Calculate temporary vectorial force */
496             tx               = _mm256_mul_ps(fscal,dx10);
497             ty               = _mm256_mul_ps(fscal,dy10);
498             tz               = _mm256_mul_ps(fscal,dz10);
499
500             /* Update vectorial force */
501             fix1             = _mm256_add_ps(fix1,tx);
502             fiy1             = _mm256_add_ps(fiy1,ty);
503             fiz1             = _mm256_add_ps(fiz1,tz);
504
505             fjx0             = _mm256_add_ps(fjx0,tx);
506             fjy0             = _mm256_add_ps(fjy0,ty);
507             fjz0             = _mm256_add_ps(fjz0,tz);
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             r20              = _mm256_mul_ps(rsq20,rinv20);
514             r20              = _mm256_andnot_ps(dummy_mask,r20);
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq20             = _mm256_mul_ps(iq2,jq0);
518
519             /* EWALD ELECTROSTATICS */
520             
521             /* Analytical PME correction */
522             zeta2            = _mm256_mul_ps(beta2,rsq20);
523             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
524             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
525             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
526             felec            = _mm256_mul_ps(qq20,felec);
527             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
528             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
529             velec            = _mm256_sub_ps(rinv20,pmecorrV);
530             velec            = _mm256_mul_ps(qq20,velec);
531             
532             /* Update potential sum for this i atom from the interaction with this j atom. */
533             velec            = _mm256_andnot_ps(dummy_mask,velec);
534             velecsum         = _mm256_add_ps(velecsum,velec);
535
536             fscal            = felec;
537
538             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
539
540             /* Calculate temporary vectorial force */
541             tx               = _mm256_mul_ps(fscal,dx20);
542             ty               = _mm256_mul_ps(fscal,dy20);
543             tz               = _mm256_mul_ps(fscal,dz20);
544
545             /* Update vectorial force */
546             fix2             = _mm256_add_ps(fix2,tx);
547             fiy2             = _mm256_add_ps(fiy2,ty);
548             fiz2             = _mm256_add_ps(fiz2,tz);
549
550             fjx0             = _mm256_add_ps(fjx0,tx);
551             fjy0             = _mm256_add_ps(fjy0,ty);
552             fjz0             = _mm256_add_ps(fjz0,tz);
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             r30              = _mm256_mul_ps(rsq30,rinv30);
559             r30              = _mm256_andnot_ps(dummy_mask,r30);
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq30             = _mm256_mul_ps(iq3,jq0);
563
564             /* EWALD ELECTROSTATICS */
565             
566             /* Analytical PME correction */
567             zeta2            = _mm256_mul_ps(beta2,rsq30);
568             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
569             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
570             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
571             felec            = _mm256_mul_ps(qq30,felec);
572             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
573             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
574             velec            = _mm256_sub_ps(rinv30,pmecorrV);
575             velec            = _mm256_mul_ps(qq30,velec);
576             
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm256_andnot_ps(dummy_mask,velec);
579             velecsum         = _mm256_add_ps(velecsum,velec);
580
581             fscal            = felec;
582
583             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm256_mul_ps(fscal,dx30);
587             ty               = _mm256_mul_ps(fscal,dy30);
588             tz               = _mm256_mul_ps(fscal,dz30);
589
590             /* Update vectorial force */
591             fix3             = _mm256_add_ps(fix3,tx);
592             fiy3             = _mm256_add_ps(fiy3,ty);
593             fiz3             = _mm256_add_ps(fiz3,tz);
594
595             fjx0             = _mm256_add_ps(fjx0,tx);
596             fjy0             = _mm256_add_ps(fjy0,ty);
597             fjz0             = _mm256_add_ps(fjz0,tz);
598
599             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
600             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
601             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
602             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
603             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
604             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
605             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
606             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
607
608             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
609
610             /* Inner loop uses 258 flops */
611         }
612
613         /* End of innermost loop */
614
615         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
616                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
617
618         ggid                        = gid[iidx];
619         /* Update potential energies */
620         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
621
622         /* Increment number of inner iterations */
623         inneriter                  += j_index_end - j_index_start;
624
625         /* Outer loop uses 19 flops */
626     }
627
628     /* Increment number of outer iterations */
629     outeriter        += nri;
630
631     /* Update outer/inner flops */
632
633     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*258);
634 }
635 /*
636  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_256_single
637  * Electrostatics interaction: Ewald
638  * VdW interaction:            None
639  * Geometry:                   Water4-Particle
640  * Calculate force/pot:        Force
641  */
642 void
643 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_256_single
644                     (t_nblist                    * gmx_restrict       nlist,
645                      rvec                        * gmx_restrict          xx,
646                      rvec                        * gmx_restrict          ff,
647                      t_forcerec                  * gmx_restrict          fr,
648                      t_mdatoms                   * gmx_restrict     mdatoms,
649                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
650                      t_nrnb                      * gmx_restrict        nrnb)
651 {
652     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
653      * just 0 for non-waters.
654      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
655      * jnr indices corresponding to data put in the four positions in the SIMD register.
656      */
657     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
658     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
659     int              jnrA,jnrB,jnrC,jnrD;
660     int              jnrE,jnrF,jnrG,jnrH;
661     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
662     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
663     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
664     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
665     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
666     real             rcutoff_scalar;
667     real             *shiftvec,*fshift,*x,*f;
668     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
669     real             scratch[4*DIM];
670     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
671     real *           vdwioffsetptr1;
672     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
673     real *           vdwioffsetptr2;
674     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
675     real *           vdwioffsetptr3;
676     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
677     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
678     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
679     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
680     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
681     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
682     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
683     real             *charge;
684     __m256i          ewitab;
685     __m128i          ewitab_lo,ewitab_hi;
686     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
687     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
688     real             *ewtab;
689     __m256           dummy_mask,cutoff_mask;
690     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
691     __m256           one     = _mm256_set1_ps(1.0);
692     __m256           two     = _mm256_set1_ps(2.0);
693     x                = xx[0];
694     f                = ff[0];
695
696     nri              = nlist->nri;
697     iinr             = nlist->iinr;
698     jindex           = nlist->jindex;
699     jjnr             = nlist->jjnr;
700     shiftidx         = nlist->shift;
701     gid              = nlist->gid;
702     shiftvec         = fr->shift_vec[0];
703     fshift           = fr->fshift[0];
704     facel            = _mm256_set1_ps(fr->epsfac);
705     charge           = mdatoms->chargeA;
706
707     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
708     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
709     beta2            = _mm256_mul_ps(beta,beta);
710     beta3            = _mm256_mul_ps(beta,beta2);
711
712     ewtab            = fr->ic->tabq_coul_F;
713     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
714     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
715
716     /* Setup water-specific parameters */
717     inr              = nlist->iinr[0];
718     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
719     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
720     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
721
722     /* Avoid stupid compiler warnings */
723     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
724     j_coord_offsetA = 0;
725     j_coord_offsetB = 0;
726     j_coord_offsetC = 0;
727     j_coord_offsetD = 0;
728     j_coord_offsetE = 0;
729     j_coord_offsetF = 0;
730     j_coord_offsetG = 0;
731     j_coord_offsetH = 0;
732
733     outeriter        = 0;
734     inneriter        = 0;
735
736     for(iidx=0;iidx<4*DIM;iidx++)
737     {
738         scratch[iidx] = 0.0;
739     }
740
741     /* Start outer loop over neighborlists */
742     for(iidx=0; iidx<nri; iidx++)
743     {
744         /* Load shift vector for this list */
745         i_shift_offset   = DIM*shiftidx[iidx];
746
747         /* Load limits for loop over neighbors */
748         j_index_start    = jindex[iidx];
749         j_index_end      = jindex[iidx+1];
750
751         /* Get outer coordinate index */
752         inr              = iinr[iidx];
753         i_coord_offset   = DIM*inr;
754
755         /* Load i particle coords and add shift vector */
756         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
757                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
758
759         fix1             = _mm256_setzero_ps();
760         fiy1             = _mm256_setzero_ps();
761         fiz1             = _mm256_setzero_ps();
762         fix2             = _mm256_setzero_ps();
763         fiy2             = _mm256_setzero_ps();
764         fiz2             = _mm256_setzero_ps();
765         fix3             = _mm256_setzero_ps();
766         fiy3             = _mm256_setzero_ps();
767         fiz3             = _mm256_setzero_ps();
768
769         /* Start inner kernel loop */
770         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
771         {
772
773             /* Get j neighbor index, and coordinate index */
774             jnrA             = jjnr[jidx];
775             jnrB             = jjnr[jidx+1];
776             jnrC             = jjnr[jidx+2];
777             jnrD             = jjnr[jidx+3];
778             jnrE             = jjnr[jidx+4];
779             jnrF             = jjnr[jidx+5];
780             jnrG             = jjnr[jidx+6];
781             jnrH             = jjnr[jidx+7];
782             j_coord_offsetA  = DIM*jnrA;
783             j_coord_offsetB  = DIM*jnrB;
784             j_coord_offsetC  = DIM*jnrC;
785             j_coord_offsetD  = DIM*jnrD;
786             j_coord_offsetE  = DIM*jnrE;
787             j_coord_offsetF  = DIM*jnrF;
788             j_coord_offsetG  = DIM*jnrG;
789             j_coord_offsetH  = DIM*jnrH;
790
791             /* load j atom coordinates */
792             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
793                                                  x+j_coord_offsetC,x+j_coord_offsetD,
794                                                  x+j_coord_offsetE,x+j_coord_offsetF,
795                                                  x+j_coord_offsetG,x+j_coord_offsetH,
796                                                  &jx0,&jy0,&jz0);
797
798             /* Calculate displacement vector */
799             dx10             = _mm256_sub_ps(ix1,jx0);
800             dy10             = _mm256_sub_ps(iy1,jy0);
801             dz10             = _mm256_sub_ps(iz1,jz0);
802             dx20             = _mm256_sub_ps(ix2,jx0);
803             dy20             = _mm256_sub_ps(iy2,jy0);
804             dz20             = _mm256_sub_ps(iz2,jz0);
805             dx30             = _mm256_sub_ps(ix3,jx0);
806             dy30             = _mm256_sub_ps(iy3,jy0);
807             dz30             = _mm256_sub_ps(iz3,jz0);
808
809             /* Calculate squared distance and things based on it */
810             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
811             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
812             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
813
814             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
815             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
816             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
817
818             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
819             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
820             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
821
822             /* Load parameters for j particles */
823             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
824                                                                  charge+jnrC+0,charge+jnrD+0,
825                                                                  charge+jnrE+0,charge+jnrF+0,
826                                                                  charge+jnrG+0,charge+jnrH+0);
827
828             fjx0             = _mm256_setzero_ps();
829             fjy0             = _mm256_setzero_ps();
830             fjz0             = _mm256_setzero_ps();
831
832             /**************************
833              * CALCULATE INTERACTIONS *
834              **************************/
835
836             r10              = _mm256_mul_ps(rsq10,rinv10);
837
838             /* Compute parameters for interactions between i and j atoms */
839             qq10             = _mm256_mul_ps(iq1,jq0);
840
841             /* EWALD ELECTROSTATICS */
842             
843             /* Analytical PME correction */
844             zeta2            = _mm256_mul_ps(beta2,rsq10);
845             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
846             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
847             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
848             felec            = _mm256_mul_ps(qq10,felec);
849             
850             fscal            = felec;
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm256_mul_ps(fscal,dx10);
854             ty               = _mm256_mul_ps(fscal,dy10);
855             tz               = _mm256_mul_ps(fscal,dz10);
856
857             /* Update vectorial force */
858             fix1             = _mm256_add_ps(fix1,tx);
859             fiy1             = _mm256_add_ps(fiy1,ty);
860             fiz1             = _mm256_add_ps(fiz1,tz);
861
862             fjx0             = _mm256_add_ps(fjx0,tx);
863             fjy0             = _mm256_add_ps(fjy0,ty);
864             fjz0             = _mm256_add_ps(fjz0,tz);
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             r20              = _mm256_mul_ps(rsq20,rinv20);
871
872             /* Compute parameters for interactions between i and j atoms */
873             qq20             = _mm256_mul_ps(iq2,jq0);
874
875             /* EWALD ELECTROSTATICS */
876             
877             /* Analytical PME correction */
878             zeta2            = _mm256_mul_ps(beta2,rsq20);
879             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
880             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
881             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
882             felec            = _mm256_mul_ps(qq20,felec);
883             
884             fscal            = felec;
885
886             /* Calculate temporary vectorial force */
887             tx               = _mm256_mul_ps(fscal,dx20);
888             ty               = _mm256_mul_ps(fscal,dy20);
889             tz               = _mm256_mul_ps(fscal,dz20);
890
891             /* Update vectorial force */
892             fix2             = _mm256_add_ps(fix2,tx);
893             fiy2             = _mm256_add_ps(fiy2,ty);
894             fiz2             = _mm256_add_ps(fiz2,tz);
895
896             fjx0             = _mm256_add_ps(fjx0,tx);
897             fjy0             = _mm256_add_ps(fjy0,ty);
898             fjz0             = _mm256_add_ps(fjz0,tz);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             r30              = _mm256_mul_ps(rsq30,rinv30);
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq30             = _mm256_mul_ps(iq3,jq0);
908
909             /* EWALD ELECTROSTATICS */
910             
911             /* Analytical PME correction */
912             zeta2            = _mm256_mul_ps(beta2,rsq30);
913             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
914             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
915             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
916             felec            = _mm256_mul_ps(qq30,felec);
917             
918             fscal            = felec;
919
920             /* Calculate temporary vectorial force */
921             tx               = _mm256_mul_ps(fscal,dx30);
922             ty               = _mm256_mul_ps(fscal,dy30);
923             tz               = _mm256_mul_ps(fscal,dz30);
924
925             /* Update vectorial force */
926             fix3             = _mm256_add_ps(fix3,tx);
927             fiy3             = _mm256_add_ps(fiy3,ty);
928             fiz3             = _mm256_add_ps(fiz3,tz);
929
930             fjx0             = _mm256_add_ps(fjx0,tx);
931             fjy0             = _mm256_add_ps(fjy0,ty);
932             fjz0             = _mm256_add_ps(fjz0,tz);
933
934             fjptrA             = f+j_coord_offsetA;
935             fjptrB             = f+j_coord_offsetB;
936             fjptrC             = f+j_coord_offsetC;
937             fjptrD             = f+j_coord_offsetD;
938             fjptrE             = f+j_coord_offsetE;
939             fjptrF             = f+j_coord_offsetF;
940             fjptrG             = f+j_coord_offsetG;
941             fjptrH             = f+j_coord_offsetH;
942
943             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
944
945             /* Inner loop uses 171 flops */
946         }
947
948         if(jidx<j_index_end)
949         {
950
951             /* Get j neighbor index, and coordinate index */
952             jnrlistA         = jjnr[jidx];
953             jnrlistB         = jjnr[jidx+1];
954             jnrlistC         = jjnr[jidx+2];
955             jnrlistD         = jjnr[jidx+3];
956             jnrlistE         = jjnr[jidx+4];
957             jnrlistF         = jjnr[jidx+5];
958             jnrlistG         = jjnr[jidx+6];
959             jnrlistH         = jjnr[jidx+7];
960             /* Sign of each element will be negative for non-real atoms.
961              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
962              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
963              */
964             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
965                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
966                                             
967             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
968             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
969             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
970             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
971             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
972             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
973             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
974             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
975             j_coord_offsetA  = DIM*jnrA;
976             j_coord_offsetB  = DIM*jnrB;
977             j_coord_offsetC  = DIM*jnrC;
978             j_coord_offsetD  = DIM*jnrD;
979             j_coord_offsetE  = DIM*jnrE;
980             j_coord_offsetF  = DIM*jnrF;
981             j_coord_offsetG  = DIM*jnrG;
982             j_coord_offsetH  = DIM*jnrH;
983
984             /* load j atom coordinates */
985             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
986                                                  x+j_coord_offsetC,x+j_coord_offsetD,
987                                                  x+j_coord_offsetE,x+j_coord_offsetF,
988                                                  x+j_coord_offsetG,x+j_coord_offsetH,
989                                                  &jx0,&jy0,&jz0);
990
991             /* Calculate displacement vector */
992             dx10             = _mm256_sub_ps(ix1,jx0);
993             dy10             = _mm256_sub_ps(iy1,jy0);
994             dz10             = _mm256_sub_ps(iz1,jz0);
995             dx20             = _mm256_sub_ps(ix2,jx0);
996             dy20             = _mm256_sub_ps(iy2,jy0);
997             dz20             = _mm256_sub_ps(iz2,jz0);
998             dx30             = _mm256_sub_ps(ix3,jx0);
999             dy30             = _mm256_sub_ps(iy3,jy0);
1000             dz30             = _mm256_sub_ps(iz3,jz0);
1001
1002             /* Calculate squared distance and things based on it */
1003             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1004             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1005             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1006
1007             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1008             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1009             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1010
1011             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1012             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1013             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1014
1015             /* Load parameters for j particles */
1016             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1017                                                                  charge+jnrC+0,charge+jnrD+0,
1018                                                                  charge+jnrE+0,charge+jnrF+0,
1019                                                                  charge+jnrG+0,charge+jnrH+0);
1020
1021             fjx0             = _mm256_setzero_ps();
1022             fjy0             = _mm256_setzero_ps();
1023             fjz0             = _mm256_setzero_ps();
1024
1025             /**************************
1026              * CALCULATE INTERACTIONS *
1027              **************************/
1028
1029             r10              = _mm256_mul_ps(rsq10,rinv10);
1030             r10              = _mm256_andnot_ps(dummy_mask,r10);
1031
1032             /* Compute parameters for interactions between i and j atoms */
1033             qq10             = _mm256_mul_ps(iq1,jq0);
1034
1035             /* EWALD ELECTROSTATICS */
1036             
1037             /* Analytical PME correction */
1038             zeta2            = _mm256_mul_ps(beta2,rsq10);
1039             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1040             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1041             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1042             felec            = _mm256_mul_ps(qq10,felec);
1043             
1044             fscal            = felec;
1045
1046             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1047
1048             /* Calculate temporary vectorial force */
1049             tx               = _mm256_mul_ps(fscal,dx10);
1050             ty               = _mm256_mul_ps(fscal,dy10);
1051             tz               = _mm256_mul_ps(fscal,dz10);
1052
1053             /* Update vectorial force */
1054             fix1             = _mm256_add_ps(fix1,tx);
1055             fiy1             = _mm256_add_ps(fiy1,ty);
1056             fiz1             = _mm256_add_ps(fiz1,tz);
1057
1058             fjx0             = _mm256_add_ps(fjx0,tx);
1059             fjy0             = _mm256_add_ps(fjy0,ty);
1060             fjz0             = _mm256_add_ps(fjz0,tz);
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             r20              = _mm256_mul_ps(rsq20,rinv20);
1067             r20              = _mm256_andnot_ps(dummy_mask,r20);
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq20             = _mm256_mul_ps(iq2,jq0);
1071
1072             /* EWALD ELECTROSTATICS */
1073             
1074             /* Analytical PME correction */
1075             zeta2            = _mm256_mul_ps(beta2,rsq20);
1076             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1077             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1078             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1079             felec            = _mm256_mul_ps(qq20,felec);
1080             
1081             fscal            = felec;
1082
1083             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1084
1085             /* Calculate temporary vectorial force */
1086             tx               = _mm256_mul_ps(fscal,dx20);
1087             ty               = _mm256_mul_ps(fscal,dy20);
1088             tz               = _mm256_mul_ps(fscal,dz20);
1089
1090             /* Update vectorial force */
1091             fix2             = _mm256_add_ps(fix2,tx);
1092             fiy2             = _mm256_add_ps(fiy2,ty);
1093             fiz2             = _mm256_add_ps(fiz2,tz);
1094
1095             fjx0             = _mm256_add_ps(fjx0,tx);
1096             fjy0             = _mm256_add_ps(fjy0,ty);
1097             fjz0             = _mm256_add_ps(fjz0,tz);
1098
1099             /**************************
1100              * CALCULATE INTERACTIONS *
1101              **************************/
1102
1103             r30              = _mm256_mul_ps(rsq30,rinv30);
1104             r30              = _mm256_andnot_ps(dummy_mask,r30);
1105
1106             /* Compute parameters for interactions between i and j atoms */
1107             qq30             = _mm256_mul_ps(iq3,jq0);
1108
1109             /* EWALD ELECTROSTATICS */
1110             
1111             /* Analytical PME correction */
1112             zeta2            = _mm256_mul_ps(beta2,rsq30);
1113             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1114             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1115             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1116             felec            = _mm256_mul_ps(qq30,felec);
1117             
1118             fscal            = felec;
1119
1120             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1121
1122             /* Calculate temporary vectorial force */
1123             tx               = _mm256_mul_ps(fscal,dx30);
1124             ty               = _mm256_mul_ps(fscal,dy30);
1125             tz               = _mm256_mul_ps(fscal,dz30);
1126
1127             /* Update vectorial force */
1128             fix3             = _mm256_add_ps(fix3,tx);
1129             fiy3             = _mm256_add_ps(fiy3,ty);
1130             fiz3             = _mm256_add_ps(fiz3,tz);
1131
1132             fjx0             = _mm256_add_ps(fjx0,tx);
1133             fjy0             = _mm256_add_ps(fjy0,ty);
1134             fjz0             = _mm256_add_ps(fjz0,tz);
1135
1136             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1137             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1138             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1139             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1140             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1141             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1142             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1143             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1144
1145             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1146
1147             /* Inner loop uses 174 flops */
1148         }
1149
1150         /* End of innermost loop */
1151
1152         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1153                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1154
1155         /* Increment number of inner iterations */
1156         inneriter                  += j_index_end - j_index_start;
1157
1158         /* Outer loop uses 18 flops */
1159     }
1160
1161     /* Increment number of outer iterations */
1162     outeriter        += nri;
1163
1164     /* Update outer/inner flops */
1165
1166     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*174);
1167 }