Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwNone_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     __m256i          ewitab;
102     __m128i          ewitab_lo,ewitab_hi;
103     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123
124     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
125     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
126     beta2            = _mm256_mul_ps(beta,beta);
127     beta3            = _mm256_mul_ps(beta,beta2);
128
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
136     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
137     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145     j_coord_offsetE = 0;
146     j_coord_offsetF = 0;
147     j_coord_offsetG = 0;
148     j_coord_offsetH = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
175
176         fix0             = _mm256_setzero_ps();
177         fiy0             = _mm256_setzero_ps();
178         fiz0             = _mm256_setzero_ps();
179         fix1             = _mm256_setzero_ps();
180         fiy1             = _mm256_setzero_ps();
181         fiz1             = _mm256_setzero_ps();
182         fix2             = _mm256_setzero_ps();
183         fiy2             = _mm256_setzero_ps();
184         fiz2             = _mm256_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             jnrE             = jjnr[jidx+4];
199             jnrF             = jjnr[jidx+5];
200             jnrG             = jjnr[jidx+6];
201             jnrH             = jjnr[jidx+7];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206             j_coord_offsetE  = DIM*jnrE;
207             j_coord_offsetF  = DIM*jnrF;
208             j_coord_offsetG  = DIM*jnrG;
209             j_coord_offsetH  = DIM*jnrH;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  x+j_coord_offsetE,x+j_coord_offsetF,
215                                                  x+j_coord_offsetG,x+j_coord_offsetH,
216                                                  &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm256_sub_ps(ix0,jx0);
220             dy00             = _mm256_sub_ps(iy0,jy0);
221             dz00             = _mm256_sub_ps(iz0,jz0);
222             dx10             = _mm256_sub_ps(ix1,jx0);
223             dy10             = _mm256_sub_ps(iy1,jy0);
224             dz10             = _mm256_sub_ps(iz1,jz0);
225             dx20             = _mm256_sub_ps(ix2,jx0);
226             dy20             = _mm256_sub_ps(iy2,jy0);
227             dz20             = _mm256_sub_ps(iz2,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
231             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
232             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
233
234             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
235             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
236             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
237
238             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
239             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
240             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
244                                                                  charge+jnrC+0,charge+jnrD+0,
245                                                                  charge+jnrE+0,charge+jnrF+0,
246                                                                  charge+jnrG+0,charge+jnrH+0);
247
248             fjx0             = _mm256_setzero_ps();
249             fjy0             = _mm256_setzero_ps();
250             fjz0             = _mm256_setzero_ps();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             r00              = _mm256_mul_ps(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq00             = _mm256_mul_ps(iq0,jq0);
260
261             /* EWALD ELECTROSTATICS */
262             
263             /* Analytical PME correction */
264             zeta2            = _mm256_mul_ps(beta2,rsq00);
265             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
266             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
267             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
268             felec            = _mm256_mul_ps(qq00,felec);
269             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
270             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
271             velec            = _mm256_sub_ps(rinv00,pmecorrV);
272             velec            = _mm256_mul_ps(qq00,velec);
273             
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velecsum         = _mm256_add_ps(velecsum,velec);
276
277             fscal            = felec;
278
279             /* Calculate temporary vectorial force */
280             tx               = _mm256_mul_ps(fscal,dx00);
281             ty               = _mm256_mul_ps(fscal,dy00);
282             tz               = _mm256_mul_ps(fscal,dz00);
283
284             /* Update vectorial force */
285             fix0             = _mm256_add_ps(fix0,tx);
286             fiy0             = _mm256_add_ps(fiy0,ty);
287             fiz0             = _mm256_add_ps(fiz0,tz);
288
289             fjx0             = _mm256_add_ps(fjx0,tx);
290             fjy0             = _mm256_add_ps(fjy0,ty);
291             fjz0             = _mm256_add_ps(fjz0,tz);
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r10              = _mm256_mul_ps(rsq10,rinv10);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq10             = _mm256_mul_ps(iq1,jq0);
301
302             /* EWALD ELECTROSTATICS */
303             
304             /* Analytical PME correction */
305             zeta2            = _mm256_mul_ps(beta2,rsq10);
306             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
307             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
308             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
309             felec            = _mm256_mul_ps(qq10,felec);
310             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
311             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
312             velec            = _mm256_sub_ps(rinv10,pmecorrV);
313             velec            = _mm256_mul_ps(qq10,velec);
314             
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velecsum         = _mm256_add_ps(velecsum,velec);
317
318             fscal            = felec;
319
320             /* Calculate temporary vectorial force */
321             tx               = _mm256_mul_ps(fscal,dx10);
322             ty               = _mm256_mul_ps(fscal,dy10);
323             tz               = _mm256_mul_ps(fscal,dz10);
324
325             /* Update vectorial force */
326             fix1             = _mm256_add_ps(fix1,tx);
327             fiy1             = _mm256_add_ps(fiy1,ty);
328             fiz1             = _mm256_add_ps(fiz1,tz);
329
330             fjx0             = _mm256_add_ps(fjx0,tx);
331             fjy0             = _mm256_add_ps(fjy0,ty);
332             fjz0             = _mm256_add_ps(fjz0,tz);
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r20              = _mm256_mul_ps(rsq20,rinv20);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq20             = _mm256_mul_ps(iq2,jq0);
342
343             /* EWALD ELECTROSTATICS */
344             
345             /* Analytical PME correction */
346             zeta2            = _mm256_mul_ps(beta2,rsq20);
347             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
348             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
349             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
350             felec            = _mm256_mul_ps(qq20,felec);
351             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
352             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
353             velec            = _mm256_sub_ps(rinv20,pmecorrV);
354             velec            = _mm256_mul_ps(qq20,velec);
355             
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm256_add_ps(velecsum,velec);
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm256_mul_ps(fscal,dx20);
363             ty               = _mm256_mul_ps(fscal,dy20);
364             tz               = _mm256_mul_ps(fscal,dz20);
365
366             /* Update vectorial force */
367             fix2             = _mm256_add_ps(fix2,tx);
368             fiy2             = _mm256_add_ps(fiy2,ty);
369             fiz2             = _mm256_add_ps(fiz2,tz);
370
371             fjx0             = _mm256_add_ps(fjx0,tx);
372             fjy0             = _mm256_add_ps(fjy0,ty);
373             fjz0             = _mm256_add_ps(fjz0,tz);
374
375             fjptrA             = f+j_coord_offsetA;
376             fjptrB             = f+j_coord_offsetB;
377             fjptrC             = f+j_coord_offsetC;
378             fjptrD             = f+j_coord_offsetD;
379             fjptrE             = f+j_coord_offsetE;
380             fjptrF             = f+j_coord_offsetF;
381             fjptrG             = f+j_coord_offsetG;
382             fjptrH             = f+j_coord_offsetH;
383
384             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
385
386             /* Inner loop uses 255 flops */
387         }
388
389         if(jidx<j_index_end)
390         {
391
392             /* Get j neighbor index, and coordinate index */
393             jnrlistA         = jjnr[jidx];
394             jnrlistB         = jjnr[jidx+1];
395             jnrlistC         = jjnr[jidx+2];
396             jnrlistD         = jjnr[jidx+3];
397             jnrlistE         = jjnr[jidx+4];
398             jnrlistF         = jjnr[jidx+5];
399             jnrlistG         = jjnr[jidx+6];
400             jnrlistH         = jjnr[jidx+7];
401             /* Sign of each element will be negative for non-real atoms.
402              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
403              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
404              */
405             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
406                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
407                                             
408             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
409             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
410             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
411             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
412             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
413             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
414             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
415             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
416             j_coord_offsetA  = DIM*jnrA;
417             j_coord_offsetB  = DIM*jnrB;
418             j_coord_offsetC  = DIM*jnrC;
419             j_coord_offsetD  = DIM*jnrD;
420             j_coord_offsetE  = DIM*jnrE;
421             j_coord_offsetF  = DIM*jnrF;
422             j_coord_offsetG  = DIM*jnrG;
423             j_coord_offsetH  = DIM*jnrH;
424
425             /* load j atom coordinates */
426             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
427                                                  x+j_coord_offsetC,x+j_coord_offsetD,
428                                                  x+j_coord_offsetE,x+j_coord_offsetF,
429                                                  x+j_coord_offsetG,x+j_coord_offsetH,
430                                                  &jx0,&jy0,&jz0);
431
432             /* Calculate displacement vector */
433             dx00             = _mm256_sub_ps(ix0,jx0);
434             dy00             = _mm256_sub_ps(iy0,jy0);
435             dz00             = _mm256_sub_ps(iz0,jz0);
436             dx10             = _mm256_sub_ps(ix1,jx0);
437             dy10             = _mm256_sub_ps(iy1,jy0);
438             dz10             = _mm256_sub_ps(iz1,jz0);
439             dx20             = _mm256_sub_ps(ix2,jx0);
440             dy20             = _mm256_sub_ps(iy2,jy0);
441             dz20             = _mm256_sub_ps(iz2,jz0);
442
443             /* Calculate squared distance and things based on it */
444             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
445             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
446             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
447
448             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
449             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
450             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
451
452             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
453             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
454             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
455
456             /* Load parameters for j particles */
457             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
458                                                                  charge+jnrC+0,charge+jnrD+0,
459                                                                  charge+jnrE+0,charge+jnrF+0,
460                                                                  charge+jnrG+0,charge+jnrH+0);
461
462             fjx0             = _mm256_setzero_ps();
463             fjy0             = _mm256_setzero_ps();
464             fjz0             = _mm256_setzero_ps();
465
466             /**************************
467              * CALCULATE INTERACTIONS *
468              **************************/
469
470             r00              = _mm256_mul_ps(rsq00,rinv00);
471             r00              = _mm256_andnot_ps(dummy_mask,r00);
472
473             /* Compute parameters for interactions between i and j atoms */
474             qq00             = _mm256_mul_ps(iq0,jq0);
475
476             /* EWALD ELECTROSTATICS */
477             
478             /* Analytical PME correction */
479             zeta2            = _mm256_mul_ps(beta2,rsq00);
480             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
481             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
482             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
483             felec            = _mm256_mul_ps(qq00,felec);
484             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
485             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
486             velec            = _mm256_sub_ps(rinv00,pmecorrV);
487             velec            = _mm256_mul_ps(qq00,velec);
488             
489             /* Update potential sum for this i atom from the interaction with this j atom. */
490             velec            = _mm256_andnot_ps(dummy_mask,velec);
491             velecsum         = _mm256_add_ps(velecsum,velec);
492
493             fscal            = felec;
494
495             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
496
497             /* Calculate temporary vectorial force */
498             tx               = _mm256_mul_ps(fscal,dx00);
499             ty               = _mm256_mul_ps(fscal,dy00);
500             tz               = _mm256_mul_ps(fscal,dz00);
501
502             /* Update vectorial force */
503             fix0             = _mm256_add_ps(fix0,tx);
504             fiy0             = _mm256_add_ps(fiy0,ty);
505             fiz0             = _mm256_add_ps(fiz0,tz);
506
507             fjx0             = _mm256_add_ps(fjx0,tx);
508             fjy0             = _mm256_add_ps(fjy0,ty);
509             fjz0             = _mm256_add_ps(fjz0,tz);
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             r10              = _mm256_mul_ps(rsq10,rinv10);
516             r10              = _mm256_andnot_ps(dummy_mask,r10);
517
518             /* Compute parameters for interactions between i and j atoms */
519             qq10             = _mm256_mul_ps(iq1,jq0);
520
521             /* EWALD ELECTROSTATICS */
522             
523             /* Analytical PME correction */
524             zeta2            = _mm256_mul_ps(beta2,rsq10);
525             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
526             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
527             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
528             felec            = _mm256_mul_ps(qq10,felec);
529             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
530             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
531             velec            = _mm256_sub_ps(rinv10,pmecorrV);
532             velec            = _mm256_mul_ps(qq10,velec);
533             
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm256_andnot_ps(dummy_mask,velec);
536             velecsum         = _mm256_add_ps(velecsum,velec);
537
538             fscal            = felec;
539
540             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm256_mul_ps(fscal,dx10);
544             ty               = _mm256_mul_ps(fscal,dy10);
545             tz               = _mm256_mul_ps(fscal,dz10);
546
547             /* Update vectorial force */
548             fix1             = _mm256_add_ps(fix1,tx);
549             fiy1             = _mm256_add_ps(fiy1,ty);
550             fiz1             = _mm256_add_ps(fiz1,tz);
551
552             fjx0             = _mm256_add_ps(fjx0,tx);
553             fjy0             = _mm256_add_ps(fjy0,ty);
554             fjz0             = _mm256_add_ps(fjz0,tz);
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r20              = _mm256_mul_ps(rsq20,rinv20);
561             r20              = _mm256_andnot_ps(dummy_mask,r20);
562
563             /* Compute parameters for interactions between i and j atoms */
564             qq20             = _mm256_mul_ps(iq2,jq0);
565
566             /* EWALD ELECTROSTATICS */
567             
568             /* Analytical PME correction */
569             zeta2            = _mm256_mul_ps(beta2,rsq20);
570             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
571             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
572             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
573             felec            = _mm256_mul_ps(qq20,felec);
574             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
575             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
576             velec            = _mm256_sub_ps(rinv20,pmecorrV);
577             velec            = _mm256_mul_ps(qq20,velec);
578             
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             velec            = _mm256_andnot_ps(dummy_mask,velec);
581             velecsum         = _mm256_add_ps(velecsum,velec);
582
583             fscal            = felec;
584
585             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm256_mul_ps(fscal,dx20);
589             ty               = _mm256_mul_ps(fscal,dy20);
590             tz               = _mm256_mul_ps(fscal,dz20);
591
592             /* Update vectorial force */
593             fix2             = _mm256_add_ps(fix2,tx);
594             fiy2             = _mm256_add_ps(fiy2,ty);
595             fiz2             = _mm256_add_ps(fiz2,tz);
596
597             fjx0             = _mm256_add_ps(fjx0,tx);
598             fjy0             = _mm256_add_ps(fjy0,ty);
599             fjz0             = _mm256_add_ps(fjz0,tz);
600
601             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
602             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
603             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
604             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
605             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
606             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
607             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
608             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
609
610             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
611
612             /* Inner loop uses 258 flops */
613         }
614
615         /* End of innermost loop */
616
617         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
618                                                  f+i_coord_offset,fshift+i_shift_offset);
619
620         ggid                        = gid[iidx];
621         /* Update potential energies */
622         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
623
624         /* Increment number of inner iterations */
625         inneriter                  += j_index_end - j_index_start;
626
627         /* Outer loop uses 19 flops */
628     }
629
630     /* Increment number of outer iterations */
631     outeriter        += nri;
632
633     /* Update outer/inner flops */
634
635     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*258);
636 }
637 /*
638  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_256_single
639  * Electrostatics interaction: Ewald
640  * VdW interaction:            None
641  * Geometry:                   Water3-Particle
642  * Calculate force/pot:        Force
643  */
644 void
645 nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_256_single
646                     (t_nblist                    * gmx_restrict       nlist,
647                      rvec                        * gmx_restrict          xx,
648                      rvec                        * gmx_restrict          ff,
649                      t_forcerec                  * gmx_restrict          fr,
650                      t_mdatoms                   * gmx_restrict     mdatoms,
651                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
652                      t_nrnb                      * gmx_restrict        nrnb)
653 {
654     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
655      * just 0 for non-waters.
656      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
657      * jnr indices corresponding to data put in the four positions in the SIMD register.
658      */
659     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
660     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
661     int              jnrA,jnrB,jnrC,jnrD;
662     int              jnrE,jnrF,jnrG,jnrH;
663     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
664     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
665     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
666     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
667     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
668     real             rcutoff_scalar;
669     real             *shiftvec,*fshift,*x,*f;
670     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
671     real             scratch[4*DIM];
672     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
673     real *           vdwioffsetptr0;
674     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
675     real *           vdwioffsetptr1;
676     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
677     real *           vdwioffsetptr2;
678     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
679     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
680     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
681     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
682     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
683     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
684     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
685     real             *charge;
686     __m256i          ewitab;
687     __m128i          ewitab_lo,ewitab_hi;
688     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
689     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
690     real             *ewtab;
691     __m256           dummy_mask,cutoff_mask;
692     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
693     __m256           one     = _mm256_set1_ps(1.0);
694     __m256           two     = _mm256_set1_ps(2.0);
695     x                = xx[0];
696     f                = ff[0];
697
698     nri              = nlist->nri;
699     iinr             = nlist->iinr;
700     jindex           = nlist->jindex;
701     jjnr             = nlist->jjnr;
702     shiftidx         = nlist->shift;
703     gid              = nlist->gid;
704     shiftvec         = fr->shift_vec[0];
705     fshift           = fr->fshift[0];
706     facel            = _mm256_set1_ps(fr->epsfac);
707     charge           = mdatoms->chargeA;
708
709     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
710     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
711     beta2            = _mm256_mul_ps(beta,beta);
712     beta3            = _mm256_mul_ps(beta,beta2);
713
714     ewtab            = fr->ic->tabq_coul_F;
715     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
716     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
717
718     /* Setup water-specific parameters */
719     inr              = nlist->iinr[0];
720     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
721     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
722     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
723
724     /* Avoid stupid compiler warnings */
725     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
726     j_coord_offsetA = 0;
727     j_coord_offsetB = 0;
728     j_coord_offsetC = 0;
729     j_coord_offsetD = 0;
730     j_coord_offsetE = 0;
731     j_coord_offsetF = 0;
732     j_coord_offsetG = 0;
733     j_coord_offsetH = 0;
734
735     outeriter        = 0;
736     inneriter        = 0;
737
738     for(iidx=0;iidx<4*DIM;iidx++)
739     {
740         scratch[iidx] = 0.0;
741     }
742
743     /* Start outer loop over neighborlists */
744     for(iidx=0; iidx<nri; iidx++)
745     {
746         /* Load shift vector for this list */
747         i_shift_offset   = DIM*shiftidx[iidx];
748
749         /* Load limits for loop over neighbors */
750         j_index_start    = jindex[iidx];
751         j_index_end      = jindex[iidx+1];
752
753         /* Get outer coordinate index */
754         inr              = iinr[iidx];
755         i_coord_offset   = DIM*inr;
756
757         /* Load i particle coords and add shift vector */
758         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
759                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
760
761         fix0             = _mm256_setzero_ps();
762         fiy0             = _mm256_setzero_ps();
763         fiz0             = _mm256_setzero_ps();
764         fix1             = _mm256_setzero_ps();
765         fiy1             = _mm256_setzero_ps();
766         fiz1             = _mm256_setzero_ps();
767         fix2             = _mm256_setzero_ps();
768         fiy2             = _mm256_setzero_ps();
769         fiz2             = _mm256_setzero_ps();
770
771         /* Start inner kernel loop */
772         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
773         {
774
775             /* Get j neighbor index, and coordinate index */
776             jnrA             = jjnr[jidx];
777             jnrB             = jjnr[jidx+1];
778             jnrC             = jjnr[jidx+2];
779             jnrD             = jjnr[jidx+3];
780             jnrE             = jjnr[jidx+4];
781             jnrF             = jjnr[jidx+5];
782             jnrG             = jjnr[jidx+6];
783             jnrH             = jjnr[jidx+7];
784             j_coord_offsetA  = DIM*jnrA;
785             j_coord_offsetB  = DIM*jnrB;
786             j_coord_offsetC  = DIM*jnrC;
787             j_coord_offsetD  = DIM*jnrD;
788             j_coord_offsetE  = DIM*jnrE;
789             j_coord_offsetF  = DIM*jnrF;
790             j_coord_offsetG  = DIM*jnrG;
791             j_coord_offsetH  = DIM*jnrH;
792
793             /* load j atom coordinates */
794             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
795                                                  x+j_coord_offsetC,x+j_coord_offsetD,
796                                                  x+j_coord_offsetE,x+j_coord_offsetF,
797                                                  x+j_coord_offsetG,x+j_coord_offsetH,
798                                                  &jx0,&jy0,&jz0);
799
800             /* Calculate displacement vector */
801             dx00             = _mm256_sub_ps(ix0,jx0);
802             dy00             = _mm256_sub_ps(iy0,jy0);
803             dz00             = _mm256_sub_ps(iz0,jz0);
804             dx10             = _mm256_sub_ps(ix1,jx0);
805             dy10             = _mm256_sub_ps(iy1,jy0);
806             dz10             = _mm256_sub_ps(iz1,jz0);
807             dx20             = _mm256_sub_ps(ix2,jx0);
808             dy20             = _mm256_sub_ps(iy2,jy0);
809             dz20             = _mm256_sub_ps(iz2,jz0);
810
811             /* Calculate squared distance and things based on it */
812             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
813             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
814             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
815
816             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
817             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
818             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
819
820             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
821             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
822             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
823
824             /* Load parameters for j particles */
825             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
826                                                                  charge+jnrC+0,charge+jnrD+0,
827                                                                  charge+jnrE+0,charge+jnrF+0,
828                                                                  charge+jnrG+0,charge+jnrH+0);
829
830             fjx0             = _mm256_setzero_ps();
831             fjy0             = _mm256_setzero_ps();
832             fjz0             = _mm256_setzero_ps();
833
834             /**************************
835              * CALCULATE INTERACTIONS *
836              **************************/
837
838             r00              = _mm256_mul_ps(rsq00,rinv00);
839
840             /* Compute parameters for interactions between i and j atoms */
841             qq00             = _mm256_mul_ps(iq0,jq0);
842
843             /* EWALD ELECTROSTATICS */
844             
845             /* Analytical PME correction */
846             zeta2            = _mm256_mul_ps(beta2,rsq00);
847             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
848             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
849             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
850             felec            = _mm256_mul_ps(qq00,felec);
851             
852             fscal            = felec;
853
854             /* Calculate temporary vectorial force */
855             tx               = _mm256_mul_ps(fscal,dx00);
856             ty               = _mm256_mul_ps(fscal,dy00);
857             tz               = _mm256_mul_ps(fscal,dz00);
858
859             /* Update vectorial force */
860             fix0             = _mm256_add_ps(fix0,tx);
861             fiy0             = _mm256_add_ps(fiy0,ty);
862             fiz0             = _mm256_add_ps(fiz0,tz);
863
864             fjx0             = _mm256_add_ps(fjx0,tx);
865             fjy0             = _mm256_add_ps(fjy0,ty);
866             fjz0             = _mm256_add_ps(fjz0,tz);
867
868             /**************************
869              * CALCULATE INTERACTIONS *
870              **************************/
871
872             r10              = _mm256_mul_ps(rsq10,rinv10);
873
874             /* Compute parameters for interactions between i and j atoms */
875             qq10             = _mm256_mul_ps(iq1,jq0);
876
877             /* EWALD ELECTROSTATICS */
878             
879             /* Analytical PME correction */
880             zeta2            = _mm256_mul_ps(beta2,rsq10);
881             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
882             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
883             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
884             felec            = _mm256_mul_ps(qq10,felec);
885             
886             fscal            = felec;
887
888             /* Calculate temporary vectorial force */
889             tx               = _mm256_mul_ps(fscal,dx10);
890             ty               = _mm256_mul_ps(fscal,dy10);
891             tz               = _mm256_mul_ps(fscal,dz10);
892
893             /* Update vectorial force */
894             fix1             = _mm256_add_ps(fix1,tx);
895             fiy1             = _mm256_add_ps(fiy1,ty);
896             fiz1             = _mm256_add_ps(fiz1,tz);
897
898             fjx0             = _mm256_add_ps(fjx0,tx);
899             fjy0             = _mm256_add_ps(fjy0,ty);
900             fjz0             = _mm256_add_ps(fjz0,tz);
901
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             r20              = _mm256_mul_ps(rsq20,rinv20);
907
908             /* Compute parameters for interactions between i and j atoms */
909             qq20             = _mm256_mul_ps(iq2,jq0);
910
911             /* EWALD ELECTROSTATICS */
912             
913             /* Analytical PME correction */
914             zeta2            = _mm256_mul_ps(beta2,rsq20);
915             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
916             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
917             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
918             felec            = _mm256_mul_ps(qq20,felec);
919             
920             fscal            = felec;
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm256_mul_ps(fscal,dx20);
924             ty               = _mm256_mul_ps(fscal,dy20);
925             tz               = _mm256_mul_ps(fscal,dz20);
926
927             /* Update vectorial force */
928             fix2             = _mm256_add_ps(fix2,tx);
929             fiy2             = _mm256_add_ps(fiy2,ty);
930             fiz2             = _mm256_add_ps(fiz2,tz);
931
932             fjx0             = _mm256_add_ps(fjx0,tx);
933             fjy0             = _mm256_add_ps(fjy0,ty);
934             fjz0             = _mm256_add_ps(fjz0,tz);
935
936             fjptrA             = f+j_coord_offsetA;
937             fjptrB             = f+j_coord_offsetB;
938             fjptrC             = f+j_coord_offsetC;
939             fjptrD             = f+j_coord_offsetD;
940             fjptrE             = f+j_coord_offsetE;
941             fjptrF             = f+j_coord_offsetF;
942             fjptrG             = f+j_coord_offsetG;
943             fjptrH             = f+j_coord_offsetH;
944
945             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
946
947             /* Inner loop uses 171 flops */
948         }
949
950         if(jidx<j_index_end)
951         {
952
953             /* Get j neighbor index, and coordinate index */
954             jnrlistA         = jjnr[jidx];
955             jnrlistB         = jjnr[jidx+1];
956             jnrlistC         = jjnr[jidx+2];
957             jnrlistD         = jjnr[jidx+3];
958             jnrlistE         = jjnr[jidx+4];
959             jnrlistF         = jjnr[jidx+5];
960             jnrlistG         = jjnr[jidx+6];
961             jnrlistH         = jjnr[jidx+7];
962             /* Sign of each element will be negative for non-real atoms.
963              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
964              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
965              */
966             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
967                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
968                                             
969             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
970             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
971             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
972             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
973             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
974             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
975             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
976             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
977             j_coord_offsetA  = DIM*jnrA;
978             j_coord_offsetB  = DIM*jnrB;
979             j_coord_offsetC  = DIM*jnrC;
980             j_coord_offsetD  = DIM*jnrD;
981             j_coord_offsetE  = DIM*jnrE;
982             j_coord_offsetF  = DIM*jnrF;
983             j_coord_offsetG  = DIM*jnrG;
984             j_coord_offsetH  = DIM*jnrH;
985
986             /* load j atom coordinates */
987             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
988                                                  x+j_coord_offsetC,x+j_coord_offsetD,
989                                                  x+j_coord_offsetE,x+j_coord_offsetF,
990                                                  x+j_coord_offsetG,x+j_coord_offsetH,
991                                                  &jx0,&jy0,&jz0);
992
993             /* Calculate displacement vector */
994             dx00             = _mm256_sub_ps(ix0,jx0);
995             dy00             = _mm256_sub_ps(iy0,jy0);
996             dz00             = _mm256_sub_ps(iz0,jz0);
997             dx10             = _mm256_sub_ps(ix1,jx0);
998             dy10             = _mm256_sub_ps(iy1,jy0);
999             dz10             = _mm256_sub_ps(iz1,jz0);
1000             dx20             = _mm256_sub_ps(ix2,jx0);
1001             dy20             = _mm256_sub_ps(iy2,jy0);
1002             dz20             = _mm256_sub_ps(iz2,jz0);
1003
1004             /* Calculate squared distance and things based on it */
1005             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1006             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1007             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1008
1009             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1010             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1011             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1012
1013             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1014             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1015             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1016
1017             /* Load parameters for j particles */
1018             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1019                                                                  charge+jnrC+0,charge+jnrD+0,
1020                                                                  charge+jnrE+0,charge+jnrF+0,
1021                                                                  charge+jnrG+0,charge+jnrH+0);
1022
1023             fjx0             = _mm256_setzero_ps();
1024             fjy0             = _mm256_setzero_ps();
1025             fjz0             = _mm256_setzero_ps();
1026
1027             /**************************
1028              * CALCULATE INTERACTIONS *
1029              **************************/
1030
1031             r00              = _mm256_mul_ps(rsq00,rinv00);
1032             r00              = _mm256_andnot_ps(dummy_mask,r00);
1033
1034             /* Compute parameters for interactions between i and j atoms */
1035             qq00             = _mm256_mul_ps(iq0,jq0);
1036
1037             /* EWALD ELECTROSTATICS */
1038             
1039             /* Analytical PME correction */
1040             zeta2            = _mm256_mul_ps(beta2,rsq00);
1041             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1042             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1043             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1044             felec            = _mm256_mul_ps(qq00,felec);
1045             
1046             fscal            = felec;
1047
1048             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = _mm256_mul_ps(fscal,dx00);
1052             ty               = _mm256_mul_ps(fscal,dy00);
1053             tz               = _mm256_mul_ps(fscal,dz00);
1054
1055             /* Update vectorial force */
1056             fix0             = _mm256_add_ps(fix0,tx);
1057             fiy0             = _mm256_add_ps(fiy0,ty);
1058             fiz0             = _mm256_add_ps(fiz0,tz);
1059
1060             fjx0             = _mm256_add_ps(fjx0,tx);
1061             fjy0             = _mm256_add_ps(fjy0,ty);
1062             fjz0             = _mm256_add_ps(fjz0,tz);
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             r10              = _mm256_mul_ps(rsq10,rinv10);
1069             r10              = _mm256_andnot_ps(dummy_mask,r10);
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq10             = _mm256_mul_ps(iq1,jq0);
1073
1074             /* EWALD ELECTROSTATICS */
1075             
1076             /* Analytical PME correction */
1077             zeta2            = _mm256_mul_ps(beta2,rsq10);
1078             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1079             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1080             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1081             felec            = _mm256_mul_ps(qq10,felec);
1082             
1083             fscal            = felec;
1084
1085             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1086
1087             /* Calculate temporary vectorial force */
1088             tx               = _mm256_mul_ps(fscal,dx10);
1089             ty               = _mm256_mul_ps(fscal,dy10);
1090             tz               = _mm256_mul_ps(fscal,dz10);
1091
1092             /* Update vectorial force */
1093             fix1             = _mm256_add_ps(fix1,tx);
1094             fiy1             = _mm256_add_ps(fiy1,ty);
1095             fiz1             = _mm256_add_ps(fiz1,tz);
1096
1097             fjx0             = _mm256_add_ps(fjx0,tx);
1098             fjy0             = _mm256_add_ps(fjy0,ty);
1099             fjz0             = _mm256_add_ps(fjz0,tz);
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             r20              = _mm256_mul_ps(rsq20,rinv20);
1106             r20              = _mm256_andnot_ps(dummy_mask,r20);
1107
1108             /* Compute parameters for interactions between i and j atoms */
1109             qq20             = _mm256_mul_ps(iq2,jq0);
1110
1111             /* EWALD ELECTROSTATICS */
1112             
1113             /* Analytical PME correction */
1114             zeta2            = _mm256_mul_ps(beta2,rsq20);
1115             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1116             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1117             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1118             felec            = _mm256_mul_ps(qq20,felec);
1119             
1120             fscal            = felec;
1121
1122             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1123
1124             /* Calculate temporary vectorial force */
1125             tx               = _mm256_mul_ps(fscal,dx20);
1126             ty               = _mm256_mul_ps(fscal,dy20);
1127             tz               = _mm256_mul_ps(fscal,dz20);
1128
1129             /* Update vectorial force */
1130             fix2             = _mm256_add_ps(fix2,tx);
1131             fiy2             = _mm256_add_ps(fiy2,ty);
1132             fiz2             = _mm256_add_ps(fiz2,tz);
1133
1134             fjx0             = _mm256_add_ps(fjx0,tx);
1135             fjy0             = _mm256_add_ps(fjy0,ty);
1136             fjz0             = _mm256_add_ps(fjz0,tz);
1137
1138             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1139             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1140             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1141             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1142             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1143             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1144             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1145             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1146
1147             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1148
1149             /* Inner loop uses 174 flops */
1150         }
1151
1152         /* End of innermost loop */
1153
1154         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1155                                                  f+i_coord_offset,fshift+i_shift_offset);
1156
1157         /* Increment number of inner iterations */
1158         inneriter                  += j_index_end - j_index_start;
1159
1160         /* Outer loop uses 18 flops */
1161     }
1162
1163     /* Increment number of outer iterations */
1164     outeriter        += nri;
1165
1166     /* Update outer/inner flops */
1167
1168     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*174);
1169 }