Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m256i          ewitab;
96     __m128i          ewitab_lo,ewitab_hi;
97     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99     real             *ewtab;
100     __m256           dummy_mask,cutoff_mask;
101     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
102     __m256           one     = _mm256_set1_ps(1.0);
103     __m256           two     = _mm256_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
119     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
120     beta2            = _mm256_mul_ps(beta,beta);
121     beta3            = _mm256_mul_ps(beta,beta2);
122
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133     j_coord_offsetE = 0;
134     j_coord_offsetF = 0;
135     j_coord_offsetG = 0;
136     j_coord_offsetH = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm256_setzero_ps();
164         fiy0             = _mm256_setzero_ps();
165         fiz0             = _mm256_setzero_ps();
166
167         /* Load parameters for i particles */
168         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
169
170         /* Reset potential sums */
171         velecsum         = _mm256_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             jnrE             = jjnr[jidx+4];
183             jnrF             = jjnr[jidx+5];
184             jnrG             = jjnr[jidx+6];
185             jnrH             = jjnr[jidx+7];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190             j_coord_offsetE  = DIM*jnrE;
191             j_coord_offsetF  = DIM*jnrF;
192             j_coord_offsetG  = DIM*jnrG;
193             j_coord_offsetH  = DIM*jnrH;
194
195             /* load j atom coordinates */
196             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
198                                                  x+j_coord_offsetE,x+j_coord_offsetF,
199                                                  x+j_coord_offsetG,x+j_coord_offsetH,
200                                                  &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm256_sub_ps(ix0,jx0);
204             dy00             = _mm256_sub_ps(iy0,jy0);
205             dz00             = _mm256_sub_ps(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
211
212             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                                  charge+jnrC+0,charge+jnrD+0,
217                                                                  charge+jnrE+0,charge+jnrF+0,
218                                                                  charge+jnrG+0,charge+jnrH+0);
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             r00              = _mm256_mul_ps(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm256_mul_ps(iq0,jq0);
228
229             /* EWALD ELECTROSTATICS */
230             
231             /* Analytical PME correction */
232             zeta2            = _mm256_mul_ps(beta2,rsq00);
233             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
234             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
235             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
236             felec            = _mm256_mul_ps(qq00,felec);
237             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
238             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
239             velec            = _mm256_sub_ps(rinv00,pmecorrV);
240             velec            = _mm256_mul_ps(qq00,velec);
241             
242             /* Update potential sum for this i atom from the interaction with this j atom. */
243             velecsum         = _mm256_add_ps(velecsum,velec);
244
245             fscal            = felec;
246
247             /* Calculate temporary vectorial force */
248             tx               = _mm256_mul_ps(fscal,dx00);
249             ty               = _mm256_mul_ps(fscal,dy00);
250             tz               = _mm256_mul_ps(fscal,dz00);
251
252             /* Update vectorial force */
253             fix0             = _mm256_add_ps(fix0,tx);
254             fiy0             = _mm256_add_ps(fiy0,ty);
255             fiz0             = _mm256_add_ps(fiz0,tz);
256
257             fjptrA             = f+j_coord_offsetA;
258             fjptrB             = f+j_coord_offsetB;
259             fjptrC             = f+j_coord_offsetC;
260             fjptrD             = f+j_coord_offsetD;
261             fjptrE             = f+j_coord_offsetE;
262             fjptrF             = f+j_coord_offsetF;
263             fjptrG             = f+j_coord_offsetG;
264             fjptrH             = f+j_coord_offsetH;
265             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
266
267             /* Inner loop uses 84 flops */
268         }
269
270         if(jidx<j_index_end)
271         {
272
273             /* Get j neighbor index, and coordinate index */
274             jnrlistA         = jjnr[jidx];
275             jnrlistB         = jjnr[jidx+1];
276             jnrlistC         = jjnr[jidx+2];
277             jnrlistD         = jjnr[jidx+3];
278             jnrlistE         = jjnr[jidx+4];
279             jnrlistF         = jjnr[jidx+5];
280             jnrlistG         = jjnr[jidx+6];
281             jnrlistH         = jjnr[jidx+7];
282             /* Sign of each element will be negative for non-real atoms.
283              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
284              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
285              */
286             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
287                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
288                                             
289             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
290             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
291             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
292             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
293             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
294             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
295             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
296             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
297             j_coord_offsetA  = DIM*jnrA;
298             j_coord_offsetB  = DIM*jnrB;
299             j_coord_offsetC  = DIM*jnrC;
300             j_coord_offsetD  = DIM*jnrD;
301             j_coord_offsetE  = DIM*jnrE;
302             j_coord_offsetF  = DIM*jnrF;
303             j_coord_offsetG  = DIM*jnrG;
304             j_coord_offsetH  = DIM*jnrH;
305
306             /* load j atom coordinates */
307             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
308                                                  x+j_coord_offsetC,x+j_coord_offsetD,
309                                                  x+j_coord_offsetE,x+j_coord_offsetF,
310                                                  x+j_coord_offsetG,x+j_coord_offsetH,
311                                                  &jx0,&jy0,&jz0);
312
313             /* Calculate displacement vector */
314             dx00             = _mm256_sub_ps(ix0,jx0);
315             dy00             = _mm256_sub_ps(iy0,jy0);
316             dz00             = _mm256_sub_ps(iz0,jz0);
317
318             /* Calculate squared distance and things based on it */
319             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
320
321             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
322
323             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
324
325             /* Load parameters for j particles */
326             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
327                                                                  charge+jnrC+0,charge+jnrD+0,
328                                                                  charge+jnrE+0,charge+jnrF+0,
329                                                                  charge+jnrG+0,charge+jnrH+0);
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             r00              = _mm256_mul_ps(rsq00,rinv00);
336             r00              = _mm256_andnot_ps(dummy_mask,r00);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq00             = _mm256_mul_ps(iq0,jq0);
340
341             /* EWALD ELECTROSTATICS */
342             
343             /* Analytical PME correction */
344             zeta2            = _mm256_mul_ps(beta2,rsq00);
345             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
346             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
347             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
348             felec            = _mm256_mul_ps(qq00,felec);
349             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
350             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
351             velec            = _mm256_sub_ps(rinv00,pmecorrV);
352             velec            = _mm256_mul_ps(qq00,velec);
353             
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm256_andnot_ps(dummy_mask,velec);
356             velecsum         = _mm256_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm256_mul_ps(fscal,dx00);
364             ty               = _mm256_mul_ps(fscal,dy00);
365             tz               = _mm256_mul_ps(fscal,dz00);
366
367             /* Update vectorial force */
368             fix0             = _mm256_add_ps(fix0,tx);
369             fiy0             = _mm256_add_ps(fiy0,ty);
370             fiz0             = _mm256_add_ps(fiz0,tz);
371
372             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
373             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
374             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
375             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
376             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
377             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
378             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
379             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
380             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
381
382             /* Inner loop uses 85 flops */
383         }
384
385         /* End of innermost loop */
386
387         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
388                                                  f+i_coord_offset,fshift+i_shift_offset);
389
390         ggid                        = gid[iidx];
391         /* Update potential energies */
392         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
393
394         /* Increment number of inner iterations */
395         inneriter                  += j_index_end - j_index_start;
396
397         /* Outer loop uses 8 flops */
398     }
399
400     /* Increment number of outer iterations */
401     outeriter        += nri;
402
403     /* Update outer/inner flops */
404
405     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*85);
406 }
407 /*
408  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_256_single
409  * Electrostatics interaction: Ewald
410  * VdW interaction:            None
411  * Geometry:                   Particle-Particle
412  * Calculate force/pot:        Force
413  */
414 void
415 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_256_single
416                     (t_nblist                    * gmx_restrict       nlist,
417                      rvec                        * gmx_restrict          xx,
418                      rvec                        * gmx_restrict          ff,
419                      t_forcerec                  * gmx_restrict          fr,
420                      t_mdatoms                   * gmx_restrict     mdatoms,
421                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
422                      t_nrnb                      * gmx_restrict        nrnb)
423 {
424     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
425      * just 0 for non-waters.
426      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
427      * jnr indices corresponding to data put in the four positions in the SIMD register.
428      */
429     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
430     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
431     int              jnrA,jnrB,jnrC,jnrD;
432     int              jnrE,jnrF,jnrG,jnrH;
433     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
434     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
435     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
436     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
437     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
438     real             rcutoff_scalar;
439     real             *shiftvec,*fshift,*x,*f;
440     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
441     real             scratch[4*DIM];
442     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
443     real *           vdwioffsetptr0;
444     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
445     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
446     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
447     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
448     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
449     real             *charge;
450     __m256i          ewitab;
451     __m128i          ewitab_lo,ewitab_hi;
452     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
453     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
454     real             *ewtab;
455     __m256           dummy_mask,cutoff_mask;
456     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
457     __m256           one     = _mm256_set1_ps(1.0);
458     __m256           two     = _mm256_set1_ps(2.0);
459     x                = xx[0];
460     f                = ff[0];
461
462     nri              = nlist->nri;
463     iinr             = nlist->iinr;
464     jindex           = nlist->jindex;
465     jjnr             = nlist->jjnr;
466     shiftidx         = nlist->shift;
467     gid              = nlist->gid;
468     shiftvec         = fr->shift_vec[0];
469     fshift           = fr->fshift[0];
470     facel            = _mm256_set1_ps(fr->epsfac);
471     charge           = mdatoms->chargeA;
472
473     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
474     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
475     beta2            = _mm256_mul_ps(beta,beta);
476     beta3            = _mm256_mul_ps(beta,beta2);
477
478     ewtab            = fr->ic->tabq_coul_F;
479     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
480     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
481
482     /* Avoid stupid compiler warnings */
483     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
484     j_coord_offsetA = 0;
485     j_coord_offsetB = 0;
486     j_coord_offsetC = 0;
487     j_coord_offsetD = 0;
488     j_coord_offsetE = 0;
489     j_coord_offsetF = 0;
490     j_coord_offsetG = 0;
491     j_coord_offsetH = 0;
492
493     outeriter        = 0;
494     inneriter        = 0;
495
496     for(iidx=0;iidx<4*DIM;iidx++)
497     {
498         scratch[iidx] = 0.0;
499     }
500
501     /* Start outer loop over neighborlists */
502     for(iidx=0; iidx<nri; iidx++)
503     {
504         /* Load shift vector for this list */
505         i_shift_offset   = DIM*shiftidx[iidx];
506
507         /* Load limits for loop over neighbors */
508         j_index_start    = jindex[iidx];
509         j_index_end      = jindex[iidx+1];
510
511         /* Get outer coordinate index */
512         inr              = iinr[iidx];
513         i_coord_offset   = DIM*inr;
514
515         /* Load i particle coords and add shift vector */
516         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
517
518         fix0             = _mm256_setzero_ps();
519         fiy0             = _mm256_setzero_ps();
520         fiz0             = _mm256_setzero_ps();
521
522         /* Load parameters for i particles */
523         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
524
525         /* Start inner kernel loop */
526         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
527         {
528
529             /* Get j neighbor index, and coordinate index */
530             jnrA             = jjnr[jidx];
531             jnrB             = jjnr[jidx+1];
532             jnrC             = jjnr[jidx+2];
533             jnrD             = jjnr[jidx+3];
534             jnrE             = jjnr[jidx+4];
535             jnrF             = jjnr[jidx+5];
536             jnrG             = jjnr[jidx+6];
537             jnrH             = jjnr[jidx+7];
538             j_coord_offsetA  = DIM*jnrA;
539             j_coord_offsetB  = DIM*jnrB;
540             j_coord_offsetC  = DIM*jnrC;
541             j_coord_offsetD  = DIM*jnrD;
542             j_coord_offsetE  = DIM*jnrE;
543             j_coord_offsetF  = DIM*jnrF;
544             j_coord_offsetG  = DIM*jnrG;
545             j_coord_offsetH  = DIM*jnrH;
546
547             /* load j atom coordinates */
548             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
549                                                  x+j_coord_offsetC,x+j_coord_offsetD,
550                                                  x+j_coord_offsetE,x+j_coord_offsetF,
551                                                  x+j_coord_offsetG,x+j_coord_offsetH,
552                                                  &jx0,&jy0,&jz0);
553
554             /* Calculate displacement vector */
555             dx00             = _mm256_sub_ps(ix0,jx0);
556             dy00             = _mm256_sub_ps(iy0,jy0);
557             dz00             = _mm256_sub_ps(iz0,jz0);
558
559             /* Calculate squared distance and things based on it */
560             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
561
562             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
563
564             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
565
566             /* Load parameters for j particles */
567             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
568                                                                  charge+jnrC+0,charge+jnrD+0,
569                                                                  charge+jnrE+0,charge+jnrF+0,
570                                                                  charge+jnrG+0,charge+jnrH+0);
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             r00              = _mm256_mul_ps(rsq00,rinv00);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq00             = _mm256_mul_ps(iq0,jq0);
580
581             /* EWALD ELECTROSTATICS */
582             
583             /* Analytical PME correction */
584             zeta2            = _mm256_mul_ps(beta2,rsq00);
585             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
586             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
587             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
588             felec            = _mm256_mul_ps(qq00,felec);
589             
590             fscal            = felec;
591
592             /* Calculate temporary vectorial force */
593             tx               = _mm256_mul_ps(fscal,dx00);
594             ty               = _mm256_mul_ps(fscal,dy00);
595             tz               = _mm256_mul_ps(fscal,dz00);
596
597             /* Update vectorial force */
598             fix0             = _mm256_add_ps(fix0,tx);
599             fiy0             = _mm256_add_ps(fiy0,ty);
600             fiz0             = _mm256_add_ps(fiz0,tz);
601
602             fjptrA             = f+j_coord_offsetA;
603             fjptrB             = f+j_coord_offsetB;
604             fjptrC             = f+j_coord_offsetC;
605             fjptrD             = f+j_coord_offsetD;
606             fjptrE             = f+j_coord_offsetE;
607             fjptrF             = f+j_coord_offsetF;
608             fjptrG             = f+j_coord_offsetG;
609             fjptrH             = f+j_coord_offsetH;
610             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
611
612             /* Inner loop uses 56 flops */
613         }
614
615         if(jidx<j_index_end)
616         {
617
618             /* Get j neighbor index, and coordinate index */
619             jnrlistA         = jjnr[jidx];
620             jnrlistB         = jjnr[jidx+1];
621             jnrlistC         = jjnr[jidx+2];
622             jnrlistD         = jjnr[jidx+3];
623             jnrlistE         = jjnr[jidx+4];
624             jnrlistF         = jjnr[jidx+5];
625             jnrlistG         = jjnr[jidx+6];
626             jnrlistH         = jjnr[jidx+7];
627             /* Sign of each element will be negative for non-real atoms.
628              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
629              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
630              */
631             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
632                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
633                                             
634             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
635             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
636             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
637             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
638             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
639             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
640             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
641             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
642             j_coord_offsetA  = DIM*jnrA;
643             j_coord_offsetB  = DIM*jnrB;
644             j_coord_offsetC  = DIM*jnrC;
645             j_coord_offsetD  = DIM*jnrD;
646             j_coord_offsetE  = DIM*jnrE;
647             j_coord_offsetF  = DIM*jnrF;
648             j_coord_offsetG  = DIM*jnrG;
649             j_coord_offsetH  = DIM*jnrH;
650
651             /* load j atom coordinates */
652             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
653                                                  x+j_coord_offsetC,x+j_coord_offsetD,
654                                                  x+j_coord_offsetE,x+j_coord_offsetF,
655                                                  x+j_coord_offsetG,x+j_coord_offsetH,
656                                                  &jx0,&jy0,&jz0);
657
658             /* Calculate displacement vector */
659             dx00             = _mm256_sub_ps(ix0,jx0);
660             dy00             = _mm256_sub_ps(iy0,jy0);
661             dz00             = _mm256_sub_ps(iz0,jz0);
662
663             /* Calculate squared distance and things based on it */
664             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
665
666             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
667
668             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
669
670             /* Load parameters for j particles */
671             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
672                                                                  charge+jnrC+0,charge+jnrD+0,
673                                                                  charge+jnrE+0,charge+jnrF+0,
674                                                                  charge+jnrG+0,charge+jnrH+0);
675
676             /**************************
677              * CALCULATE INTERACTIONS *
678              **************************/
679
680             r00              = _mm256_mul_ps(rsq00,rinv00);
681             r00              = _mm256_andnot_ps(dummy_mask,r00);
682
683             /* Compute parameters for interactions between i and j atoms */
684             qq00             = _mm256_mul_ps(iq0,jq0);
685
686             /* EWALD ELECTROSTATICS */
687             
688             /* Analytical PME correction */
689             zeta2            = _mm256_mul_ps(beta2,rsq00);
690             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
691             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
692             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
693             felec            = _mm256_mul_ps(qq00,felec);
694             
695             fscal            = felec;
696
697             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
698
699             /* Calculate temporary vectorial force */
700             tx               = _mm256_mul_ps(fscal,dx00);
701             ty               = _mm256_mul_ps(fscal,dy00);
702             tz               = _mm256_mul_ps(fscal,dz00);
703
704             /* Update vectorial force */
705             fix0             = _mm256_add_ps(fix0,tx);
706             fiy0             = _mm256_add_ps(fiy0,ty);
707             fiz0             = _mm256_add_ps(fiz0,tz);
708
709             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
710             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
711             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
712             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
713             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
714             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
715             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
716             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
717             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
718
719             /* Inner loop uses 57 flops */
720         }
721
722         /* End of innermost loop */
723
724         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
725                                                  f+i_coord_offset,fshift+i_shift_offset);
726
727         /* Increment number of inner iterations */
728         inneriter                  += j_index_end - j_index_start;
729
730         /* Outer loop uses 7 flops */
731     }
732
733     /* Increment number of outer iterations */
734     outeriter        += nri;
735
736     /* Update outer/inner flops */
737
738     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*57);
739 }