deb54f3ecd89372682176308c13e1b6792867fff
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256i          ewitab;
94     __m128i          ewitab_lo,ewitab_hi;
95     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
96     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
97     real             *ewtab;
98     __m256           dummy_mask,cutoff_mask;
99     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
100     __m256           one     = _mm256_set1_ps(1.0);
101     __m256           two     = _mm256_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
117     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
118     beta2            = _mm256_mul_ps(beta,beta);
119     beta3            = _mm256_mul_ps(beta,beta2);
120
121     ewtab            = fr->ic->tabq_coul_FDV0;
122     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
123     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131     j_coord_offsetE = 0;
132     j_coord_offsetF = 0;
133     j_coord_offsetG = 0;
134     j_coord_offsetH = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160
161         fix0             = _mm256_setzero_ps();
162         fiy0             = _mm256_setzero_ps();
163         fiz0             = _mm256_setzero_ps();
164
165         /* Load parameters for i particles */
166         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
167
168         /* Reset potential sums */
169         velecsum         = _mm256_setzero_ps();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             jnrE             = jjnr[jidx+4];
181             jnrF             = jjnr[jidx+5];
182             jnrG             = jjnr[jidx+6];
183             jnrH             = jjnr[jidx+7];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188             j_coord_offsetE  = DIM*jnrE;
189             j_coord_offsetF  = DIM*jnrF;
190             j_coord_offsetG  = DIM*jnrG;
191             j_coord_offsetH  = DIM*jnrH;
192
193             /* load j atom coordinates */
194             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                                  x+j_coord_offsetC,x+j_coord_offsetD,
196                                                  x+j_coord_offsetE,x+j_coord_offsetF,
197                                                  x+j_coord_offsetG,x+j_coord_offsetH,
198                                                  &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm256_sub_ps(ix0,jx0);
202             dy00             = _mm256_sub_ps(iy0,jy0);
203             dz00             = _mm256_sub_ps(iz0,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
207
208             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
209
210             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
214                                                                  charge+jnrC+0,charge+jnrD+0,
215                                                                  charge+jnrE+0,charge+jnrF+0,
216                                                                  charge+jnrG+0,charge+jnrH+0);
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm256_mul_ps(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm256_mul_ps(iq0,jq0);
226
227             /* EWALD ELECTROSTATICS */
228             
229             /* Analytical PME correction */
230             zeta2            = _mm256_mul_ps(beta2,rsq00);
231             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
232             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
233             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
234             felec            = _mm256_mul_ps(qq00,felec);
235             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
236             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
237             velec            = _mm256_sub_ps(rinv00,pmecorrV);
238             velec            = _mm256_mul_ps(qq00,velec);
239             
240             /* Update potential sum for this i atom from the interaction with this j atom. */
241             velecsum         = _mm256_add_ps(velecsum,velec);
242
243             fscal            = felec;
244
245             /* Calculate temporary vectorial force */
246             tx               = _mm256_mul_ps(fscal,dx00);
247             ty               = _mm256_mul_ps(fscal,dy00);
248             tz               = _mm256_mul_ps(fscal,dz00);
249
250             /* Update vectorial force */
251             fix0             = _mm256_add_ps(fix0,tx);
252             fiy0             = _mm256_add_ps(fiy0,ty);
253             fiz0             = _mm256_add_ps(fiz0,tz);
254
255             fjptrA             = f+j_coord_offsetA;
256             fjptrB             = f+j_coord_offsetB;
257             fjptrC             = f+j_coord_offsetC;
258             fjptrD             = f+j_coord_offsetD;
259             fjptrE             = f+j_coord_offsetE;
260             fjptrF             = f+j_coord_offsetF;
261             fjptrG             = f+j_coord_offsetG;
262             fjptrH             = f+j_coord_offsetH;
263             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
264
265             /* Inner loop uses 84 flops */
266         }
267
268         if(jidx<j_index_end)
269         {
270
271             /* Get j neighbor index, and coordinate index */
272             jnrlistA         = jjnr[jidx];
273             jnrlistB         = jjnr[jidx+1];
274             jnrlistC         = jjnr[jidx+2];
275             jnrlistD         = jjnr[jidx+3];
276             jnrlistE         = jjnr[jidx+4];
277             jnrlistF         = jjnr[jidx+5];
278             jnrlistG         = jjnr[jidx+6];
279             jnrlistH         = jjnr[jidx+7];
280             /* Sign of each element will be negative for non-real atoms.
281              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
282              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
283              */
284             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
285                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
286                                             
287             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
288             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
289             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
290             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
291             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
292             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
293             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
294             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
295             j_coord_offsetA  = DIM*jnrA;
296             j_coord_offsetB  = DIM*jnrB;
297             j_coord_offsetC  = DIM*jnrC;
298             j_coord_offsetD  = DIM*jnrD;
299             j_coord_offsetE  = DIM*jnrE;
300             j_coord_offsetF  = DIM*jnrF;
301             j_coord_offsetG  = DIM*jnrG;
302             j_coord_offsetH  = DIM*jnrH;
303
304             /* load j atom coordinates */
305             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
306                                                  x+j_coord_offsetC,x+j_coord_offsetD,
307                                                  x+j_coord_offsetE,x+j_coord_offsetF,
308                                                  x+j_coord_offsetG,x+j_coord_offsetH,
309                                                  &jx0,&jy0,&jz0);
310
311             /* Calculate displacement vector */
312             dx00             = _mm256_sub_ps(ix0,jx0);
313             dy00             = _mm256_sub_ps(iy0,jy0);
314             dz00             = _mm256_sub_ps(iz0,jz0);
315
316             /* Calculate squared distance and things based on it */
317             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
318
319             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
320
321             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
322
323             /* Load parameters for j particles */
324             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
325                                                                  charge+jnrC+0,charge+jnrD+0,
326                                                                  charge+jnrE+0,charge+jnrF+0,
327                                                                  charge+jnrG+0,charge+jnrH+0);
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             r00              = _mm256_mul_ps(rsq00,rinv00);
334             r00              = _mm256_andnot_ps(dummy_mask,r00);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq00             = _mm256_mul_ps(iq0,jq0);
338
339             /* EWALD ELECTROSTATICS */
340             
341             /* Analytical PME correction */
342             zeta2            = _mm256_mul_ps(beta2,rsq00);
343             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
344             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
345             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
346             felec            = _mm256_mul_ps(qq00,felec);
347             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
348             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
349             velec            = _mm256_sub_ps(rinv00,pmecorrV);
350             velec            = _mm256_mul_ps(qq00,velec);
351             
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             velec            = _mm256_andnot_ps(dummy_mask,velec);
354             velecsum         = _mm256_add_ps(velecsum,velec);
355
356             fscal            = felec;
357
358             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm256_mul_ps(fscal,dx00);
362             ty               = _mm256_mul_ps(fscal,dy00);
363             tz               = _mm256_mul_ps(fscal,dz00);
364
365             /* Update vectorial force */
366             fix0             = _mm256_add_ps(fix0,tx);
367             fiy0             = _mm256_add_ps(fiy0,ty);
368             fiz0             = _mm256_add_ps(fiz0,tz);
369
370             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
371             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
372             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
373             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
374             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
375             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
376             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
377             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
378             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
379
380             /* Inner loop uses 85 flops */
381         }
382
383         /* End of innermost loop */
384
385         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
386                                                  f+i_coord_offset,fshift+i_shift_offset);
387
388         ggid                        = gid[iidx];
389         /* Update potential energies */
390         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
391
392         /* Increment number of inner iterations */
393         inneriter                  += j_index_end - j_index_start;
394
395         /* Outer loop uses 8 flops */
396     }
397
398     /* Increment number of outer iterations */
399     outeriter        += nri;
400
401     /* Update outer/inner flops */
402
403     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*85);
404 }
405 /*
406  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_256_single
407  * Electrostatics interaction: Ewald
408  * VdW interaction:            None
409  * Geometry:                   Particle-Particle
410  * Calculate force/pot:        Force
411  */
412 void
413 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_256_single
414                     (t_nblist                    * gmx_restrict       nlist,
415                      rvec                        * gmx_restrict          xx,
416                      rvec                        * gmx_restrict          ff,
417                      t_forcerec                  * gmx_restrict          fr,
418                      t_mdatoms                   * gmx_restrict     mdatoms,
419                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
420                      t_nrnb                      * gmx_restrict        nrnb)
421 {
422     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
423      * just 0 for non-waters.
424      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
425      * jnr indices corresponding to data put in the four positions in the SIMD register.
426      */
427     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
428     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
429     int              jnrA,jnrB,jnrC,jnrD;
430     int              jnrE,jnrF,jnrG,jnrH;
431     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
432     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
433     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
434     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
435     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
436     real             rcutoff_scalar;
437     real             *shiftvec,*fshift,*x,*f;
438     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
439     real             scratch[4*DIM];
440     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
441     real *           vdwioffsetptr0;
442     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
443     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
444     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
445     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
446     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
447     real             *charge;
448     __m256i          ewitab;
449     __m128i          ewitab_lo,ewitab_hi;
450     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
451     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
452     real             *ewtab;
453     __m256           dummy_mask,cutoff_mask;
454     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
455     __m256           one     = _mm256_set1_ps(1.0);
456     __m256           two     = _mm256_set1_ps(2.0);
457     x                = xx[0];
458     f                = ff[0];
459
460     nri              = nlist->nri;
461     iinr             = nlist->iinr;
462     jindex           = nlist->jindex;
463     jjnr             = nlist->jjnr;
464     shiftidx         = nlist->shift;
465     gid              = nlist->gid;
466     shiftvec         = fr->shift_vec[0];
467     fshift           = fr->fshift[0];
468     facel            = _mm256_set1_ps(fr->epsfac);
469     charge           = mdatoms->chargeA;
470
471     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
472     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
473     beta2            = _mm256_mul_ps(beta,beta);
474     beta3            = _mm256_mul_ps(beta,beta2);
475
476     ewtab            = fr->ic->tabq_coul_F;
477     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
478     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
479
480     /* Avoid stupid compiler warnings */
481     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
482     j_coord_offsetA = 0;
483     j_coord_offsetB = 0;
484     j_coord_offsetC = 0;
485     j_coord_offsetD = 0;
486     j_coord_offsetE = 0;
487     j_coord_offsetF = 0;
488     j_coord_offsetG = 0;
489     j_coord_offsetH = 0;
490
491     outeriter        = 0;
492     inneriter        = 0;
493
494     for(iidx=0;iidx<4*DIM;iidx++)
495     {
496         scratch[iidx] = 0.0;
497     }
498
499     /* Start outer loop over neighborlists */
500     for(iidx=0; iidx<nri; iidx++)
501     {
502         /* Load shift vector for this list */
503         i_shift_offset   = DIM*shiftidx[iidx];
504
505         /* Load limits for loop over neighbors */
506         j_index_start    = jindex[iidx];
507         j_index_end      = jindex[iidx+1];
508
509         /* Get outer coordinate index */
510         inr              = iinr[iidx];
511         i_coord_offset   = DIM*inr;
512
513         /* Load i particle coords and add shift vector */
514         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
515
516         fix0             = _mm256_setzero_ps();
517         fiy0             = _mm256_setzero_ps();
518         fiz0             = _mm256_setzero_ps();
519
520         /* Load parameters for i particles */
521         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
522
523         /* Start inner kernel loop */
524         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
525         {
526
527             /* Get j neighbor index, and coordinate index */
528             jnrA             = jjnr[jidx];
529             jnrB             = jjnr[jidx+1];
530             jnrC             = jjnr[jidx+2];
531             jnrD             = jjnr[jidx+3];
532             jnrE             = jjnr[jidx+4];
533             jnrF             = jjnr[jidx+5];
534             jnrG             = jjnr[jidx+6];
535             jnrH             = jjnr[jidx+7];
536             j_coord_offsetA  = DIM*jnrA;
537             j_coord_offsetB  = DIM*jnrB;
538             j_coord_offsetC  = DIM*jnrC;
539             j_coord_offsetD  = DIM*jnrD;
540             j_coord_offsetE  = DIM*jnrE;
541             j_coord_offsetF  = DIM*jnrF;
542             j_coord_offsetG  = DIM*jnrG;
543             j_coord_offsetH  = DIM*jnrH;
544
545             /* load j atom coordinates */
546             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
547                                                  x+j_coord_offsetC,x+j_coord_offsetD,
548                                                  x+j_coord_offsetE,x+j_coord_offsetF,
549                                                  x+j_coord_offsetG,x+j_coord_offsetH,
550                                                  &jx0,&jy0,&jz0);
551
552             /* Calculate displacement vector */
553             dx00             = _mm256_sub_ps(ix0,jx0);
554             dy00             = _mm256_sub_ps(iy0,jy0);
555             dz00             = _mm256_sub_ps(iz0,jz0);
556
557             /* Calculate squared distance and things based on it */
558             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
559
560             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
561
562             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
563
564             /* Load parameters for j particles */
565             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
566                                                                  charge+jnrC+0,charge+jnrD+0,
567                                                                  charge+jnrE+0,charge+jnrF+0,
568                                                                  charge+jnrG+0,charge+jnrH+0);
569
570             /**************************
571              * CALCULATE INTERACTIONS *
572              **************************/
573
574             r00              = _mm256_mul_ps(rsq00,rinv00);
575
576             /* Compute parameters for interactions between i and j atoms */
577             qq00             = _mm256_mul_ps(iq0,jq0);
578
579             /* EWALD ELECTROSTATICS */
580             
581             /* Analytical PME correction */
582             zeta2            = _mm256_mul_ps(beta2,rsq00);
583             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
584             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
585             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
586             felec            = _mm256_mul_ps(qq00,felec);
587             
588             fscal            = felec;
589
590             /* Calculate temporary vectorial force */
591             tx               = _mm256_mul_ps(fscal,dx00);
592             ty               = _mm256_mul_ps(fscal,dy00);
593             tz               = _mm256_mul_ps(fscal,dz00);
594
595             /* Update vectorial force */
596             fix0             = _mm256_add_ps(fix0,tx);
597             fiy0             = _mm256_add_ps(fiy0,ty);
598             fiz0             = _mm256_add_ps(fiz0,tz);
599
600             fjptrA             = f+j_coord_offsetA;
601             fjptrB             = f+j_coord_offsetB;
602             fjptrC             = f+j_coord_offsetC;
603             fjptrD             = f+j_coord_offsetD;
604             fjptrE             = f+j_coord_offsetE;
605             fjptrF             = f+j_coord_offsetF;
606             fjptrG             = f+j_coord_offsetG;
607             fjptrH             = f+j_coord_offsetH;
608             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
609
610             /* Inner loop uses 56 flops */
611         }
612
613         if(jidx<j_index_end)
614         {
615
616             /* Get j neighbor index, and coordinate index */
617             jnrlistA         = jjnr[jidx];
618             jnrlistB         = jjnr[jidx+1];
619             jnrlistC         = jjnr[jidx+2];
620             jnrlistD         = jjnr[jidx+3];
621             jnrlistE         = jjnr[jidx+4];
622             jnrlistF         = jjnr[jidx+5];
623             jnrlistG         = jjnr[jidx+6];
624             jnrlistH         = jjnr[jidx+7];
625             /* Sign of each element will be negative for non-real atoms.
626              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
627              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
628              */
629             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
630                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
631                                             
632             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
633             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
634             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
635             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
636             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
637             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
638             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
639             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
640             j_coord_offsetA  = DIM*jnrA;
641             j_coord_offsetB  = DIM*jnrB;
642             j_coord_offsetC  = DIM*jnrC;
643             j_coord_offsetD  = DIM*jnrD;
644             j_coord_offsetE  = DIM*jnrE;
645             j_coord_offsetF  = DIM*jnrF;
646             j_coord_offsetG  = DIM*jnrG;
647             j_coord_offsetH  = DIM*jnrH;
648
649             /* load j atom coordinates */
650             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
651                                                  x+j_coord_offsetC,x+j_coord_offsetD,
652                                                  x+j_coord_offsetE,x+j_coord_offsetF,
653                                                  x+j_coord_offsetG,x+j_coord_offsetH,
654                                                  &jx0,&jy0,&jz0);
655
656             /* Calculate displacement vector */
657             dx00             = _mm256_sub_ps(ix0,jx0);
658             dy00             = _mm256_sub_ps(iy0,jy0);
659             dz00             = _mm256_sub_ps(iz0,jz0);
660
661             /* Calculate squared distance and things based on it */
662             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
663
664             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
665
666             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
667
668             /* Load parameters for j particles */
669             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
670                                                                  charge+jnrC+0,charge+jnrD+0,
671                                                                  charge+jnrE+0,charge+jnrF+0,
672                                                                  charge+jnrG+0,charge+jnrH+0);
673
674             /**************************
675              * CALCULATE INTERACTIONS *
676              **************************/
677
678             r00              = _mm256_mul_ps(rsq00,rinv00);
679             r00              = _mm256_andnot_ps(dummy_mask,r00);
680
681             /* Compute parameters for interactions between i and j atoms */
682             qq00             = _mm256_mul_ps(iq0,jq0);
683
684             /* EWALD ELECTROSTATICS */
685             
686             /* Analytical PME correction */
687             zeta2            = _mm256_mul_ps(beta2,rsq00);
688             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
689             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
690             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
691             felec            = _mm256_mul_ps(qq00,felec);
692             
693             fscal            = felec;
694
695             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
696
697             /* Calculate temporary vectorial force */
698             tx               = _mm256_mul_ps(fscal,dx00);
699             ty               = _mm256_mul_ps(fscal,dy00);
700             tz               = _mm256_mul_ps(fscal,dz00);
701
702             /* Update vectorial force */
703             fix0             = _mm256_add_ps(fix0,tx);
704             fiy0             = _mm256_add_ps(fiy0,ty);
705             fiz0             = _mm256_add_ps(fiz0,tz);
706
707             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
708             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
709             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
710             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
711             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
712             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
713             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
714             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
715             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
716
717             /* Inner loop uses 57 flops */
718         }
719
720         /* End of innermost loop */
721
722         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
723                                                  f+i_coord_offset,fshift+i_shift_offset);
724
725         /* Increment number of inner iterations */
726         inneriter                  += j_index_end - j_index_start;
727
728         /* Outer loop uses 7 flops */
729     }
730
731     /* Increment number of outer iterations */
732     outeriter        += nri;
733
734     /* Update outer/inner flops */
735
736     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*57);
737 }