Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     real *           vdwioffsetptr3;
95     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
96     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
97     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
98     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
100     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
102     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
109     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
110     __m256i          ewitab;
111     __m128i          ewitab_lo,ewitab_hi;
112     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
114     real             *ewtab;
115     __m256           dummy_mask,cutoff_mask;
116     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
117     __m256           one     = _mm256_set1_ps(1.0);
118     __m256           two     = _mm256_set1_ps(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm256_set1_ps(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135
136     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
137     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
138     beta2            = _mm256_mul_ps(beta,beta);
139     beta3            = _mm256_mul_ps(beta,beta2);
140
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
148     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
149     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
150     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158     j_coord_offsetE = 0;
159     j_coord_offsetF = 0;
160     j_coord_offsetG = 0;
161     j_coord_offsetH = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     for(iidx=0;iidx<4*DIM;iidx++)
167     {
168         scratch[iidx] = 0.0;
169     }
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176
177         /* Load limits for loop over neighbors */
178         j_index_start    = jindex[iidx];
179         j_index_end      = jindex[iidx+1];
180
181         /* Get outer coordinate index */
182         inr              = iinr[iidx];
183         i_coord_offset   = DIM*inr;
184
185         /* Load i particle coords and add shift vector */
186         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
187                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
188
189         fix0             = _mm256_setzero_ps();
190         fiy0             = _mm256_setzero_ps();
191         fiz0             = _mm256_setzero_ps();
192         fix1             = _mm256_setzero_ps();
193         fiy1             = _mm256_setzero_ps();
194         fiz1             = _mm256_setzero_ps();
195         fix2             = _mm256_setzero_ps();
196         fiy2             = _mm256_setzero_ps();
197         fiz2             = _mm256_setzero_ps();
198         fix3             = _mm256_setzero_ps();
199         fiy3             = _mm256_setzero_ps();
200         fiz3             = _mm256_setzero_ps();
201
202         /* Reset potential sums */
203         velecsum         = _mm256_setzero_ps();
204         vvdwsum          = _mm256_setzero_ps();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             jnrE             = jjnr[jidx+4];
216             jnrF             = jjnr[jidx+5];
217             jnrG             = jjnr[jidx+6];
218             jnrH             = jjnr[jidx+7];
219             j_coord_offsetA  = DIM*jnrA;
220             j_coord_offsetB  = DIM*jnrB;
221             j_coord_offsetC  = DIM*jnrC;
222             j_coord_offsetD  = DIM*jnrD;
223             j_coord_offsetE  = DIM*jnrE;
224             j_coord_offsetF  = DIM*jnrF;
225             j_coord_offsetG  = DIM*jnrG;
226             j_coord_offsetH  = DIM*jnrH;
227
228             /* load j atom coordinates */
229             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
230                                                  x+j_coord_offsetC,x+j_coord_offsetD,
231                                                  x+j_coord_offsetE,x+j_coord_offsetF,
232                                                  x+j_coord_offsetG,x+j_coord_offsetH,
233                                                  &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm256_sub_ps(ix0,jx0);
237             dy00             = _mm256_sub_ps(iy0,jy0);
238             dz00             = _mm256_sub_ps(iz0,jz0);
239             dx10             = _mm256_sub_ps(ix1,jx0);
240             dy10             = _mm256_sub_ps(iy1,jy0);
241             dz10             = _mm256_sub_ps(iz1,jz0);
242             dx20             = _mm256_sub_ps(ix2,jx0);
243             dy20             = _mm256_sub_ps(iy2,jy0);
244             dz20             = _mm256_sub_ps(iz2,jz0);
245             dx30             = _mm256_sub_ps(ix3,jx0);
246             dy30             = _mm256_sub_ps(iy3,jy0);
247             dz30             = _mm256_sub_ps(iz3,jz0);
248
249             /* Calculate squared distance and things based on it */
250             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
251             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
252             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
253             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
254
255             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
256             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
257             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
258
259             rinvsq00         = gmx_mm256_inv_ps(rsq00);
260             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
261             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
262             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
263
264             /* Load parameters for j particles */
265             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
266                                                                  charge+jnrC+0,charge+jnrD+0,
267                                                                  charge+jnrE+0,charge+jnrF+0,
268                                                                  charge+jnrG+0,charge+jnrH+0);
269             vdwjidx0A        = 2*vdwtype[jnrA+0];
270             vdwjidx0B        = 2*vdwtype[jnrB+0];
271             vdwjidx0C        = 2*vdwtype[jnrC+0];
272             vdwjidx0D        = 2*vdwtype[jnrD+0];
273             vdwjidx0E        = 2*vdwtype[jnrE+0];
274             vdwjidx0F        = 2*vdwtype[jnrF+0];
275             vdwjidx0G        = 2*vdwtype[jnrG+0];
276             vdwjidx0H        = 2*vdwtype[jnrH+0];
277
278             fjx0             = _mm256_setzero_ps();
279             fjy0             = _mm256_setzero_ps();
280             fjz0             = _mm256_setzero_ps();
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             /* Compute parameters for interactions between i and j atoms */
287             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
288                                             vdwioffsetptr0+vdwjidx0B,
289                                             vdwioffsetptr0+vdwjidx0C,
290                                             vdwioffsetptr0+vdwjidx0D,
291                                             vdwioffsetptr0+vdwjidx0E,
292                                             vdwioffsetptr0+vdwjidx0F,
293                                             vdwioffsetptr0+vdwjidx0G,
294                                             vdwioffsetptr0+vdwjidx0H,
295                                             &c6_00,&c12_00);
296
297             /* LENNARD-JONES DISPERSION/REPULSION */
298
299             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
300             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
301             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
302             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
303             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
307
308             fscal            = fvdw;
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm256_mul_ps(fscal,dx00);
312             ty               = _mm256_mul_ps(fscal,dy00);
313             tz               = _mm256_mul_ps(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm256_add_ps(fix0,tx);
317             fiy0             = _mm256_add_ps(fiy0,ty);
318             fiz0             = _mm256_add_ps(fiz0,tz);
319
320             fjx0             = _mm256_add_ps(fjx0,tx);
321             fjy0             = _mm256_add_ps(fjy0,ty);
322             fjz0             = _mm256_add_ps(fjz0,tz);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             r10              = _mm256_mul_ps(rsq10,rinv10);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq10             = _mm256_mul_ps(iq1,jq0);
332
333             /* EWALD ELECTROSTATICS */
334             
335             /* Analytical PME correction */
336             zeta2            = _mm256_mul_ps(beta2,rsq10);
337             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
338             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
339             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
340             felec            = _mm256_mul_ps(qq10,felec);
341             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
342             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
343             velec            = _mm256_sub_ps(rinv10,pmecorrV);
344             velec            = _mm256_mul_ps(qq10,velec);
345             
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm256_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_ps(fscal,dx10);
353             ty               = _mm256_mul_ps(fscal,dy10);
354             tz               = _mm256_mul_ps(fscal,dz10);
355
356             /* Update vectorial force */
357             fix1             = _mm256_add_ps(fix1,tx);
358             fiy1             = _mm256_add_ps(fiy1,ty);
359             fiz1             = _mm256_add_ps(fiz1,tz);
360
361             fjx0             = _mm256_add_ps(fjx0,tx);
362             fjy0             = _mm256_add_ps(fjy0,ty);
363             fjz0             = _mm256_add_ps(fjz0,tz);
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             r20              = _mm256_mul_ps(rsq20,rinv20);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq20             = _mm256_mul_ps(iq2,jq0);
373
374             /* EWALD ELECTROSTATICS */
375             
376             /* Analytical PME correction */
377             zeta2            = _mm256_mul_ps(beta2,rsq20);
378             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
379             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
380             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
381             felec            = _mm256_mul_ps(qq20,felec);
382             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
383             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
384             velec            = _mm256_sub_ps(rinv20,pmecorrV);
385             velec            = _mm256_mul_ps(qq20,velec);
386             
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velecsum         = _mm256_add_ps(velecsum,velec);
389
390             fscal            = felec;
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm256_mul_ps(fscal,dx20);
394             ty               = _mm256_mul_ps(fscal,dy20);
395             tz               = _mm256_mul_ps(fscal,dz20);
396
397             /* Update vectorial force */
398             fix2             = _mm256_add_ps(fix2,tx);
399             fiy2             = _mm256_add_ps(fiy2,ty);
400             fiz2             = _mm256_add_ps(fiz2,tz);
401
402             fjx0             = _mm256_add_ps(fjx0,tx);
403             fjy0             = _mm256_add_ps(fjy0,ty);
404             fjz0             = _mm256_add_ps(fjz0,tz);
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             r30              = _mm256_mul_ps(rsq30,rinv30);
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq30             = _mm256_mul_ps(iq3,jq0);
414
415             /* EWALD ELECTROSTATICS */
416             
417             /* Analytical PME correction */
418             zeta2            = _mm256_mul_ps(beta2,rsq30);
419             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
420             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
421             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
422             felec            = _mm256_mul_ps(qq30,felec);
423             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
424             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
425             velec            = _mm256_sub_ps(rinv30,pmecorrV);
426             velec            = _mm256_mul_ps(qq30,velec);
427             
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velecsum         = _mm256_add_ps(velecsum,velec);
430
431             fscal            = felec;
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm256_mul_ps(fscal,dx30);
435             ty               = _mm256_mul_ps(fscal,dy30);
436             tz               = _mm256_mul_ps(fscal,dz30);
437
438             /* Update vectorial force */
439             fix3             = _mm256_add_ps(fix3,tx);
440             fiy3             = _mm256_add_ps(fiy3,ty);
441             fiz3             = _mm256_add_ps(fiz3,tz);
442
443             fjx0             = _mm256_add_ps(fjx0,tx);
444             fjy0             = _mm256_add_ps(fjy0,ty);
445             fjz0             = _mm256_add_ps(fjz0,tz);
446
447             fjptrA             = f+j_coord_offsetA;
448             fjptrB             = f+j_coord_offsetB;
449             fjptrC             = f+j_coord_offsetC;
450             fjptrD             = f+j_coord_offsetD;
451             fjptrE             = f+j_coord_offsetE;
452             fjptrF             = f+j_coord_offsetF;
453             fjptrG             = f+j_coord_offsetG;
454             fjptrH             = f+j_coord_offsetH;
455
456             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
457
458             /* Inner loop uses 287 flops */
459         }
460
461         if(jidx<j_index_end)
462         {
463
464             /* Get j neighbor index, and coordinate index */
465             jnrlistA         = jjnr[jidx];
466             jnrlistB         = jjnr[jidx+1];
467             jnrlistC         = jjnr[jidx+2];
468             jnrlistD         = jjnr[jidx+3];
469             jnrlistE         = jjnr[jidx+4];
470             jnrlistF         = jjnr[jidx+5];
471             jnrlistG         = jjnr[jidx+6];
472             jnrlistH         = jjnr[jidx+7];
473             /* Sign of each element will be negative for non-real atoms.
474              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
475              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
476              */
477             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
478                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
479                                             
480             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
481             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
482             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
483             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
484             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
485             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
486             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
487             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
488             j_coord_offsetA  = DIM*jnrA;
489             j_coord_offsetB  = DIM*jnrB;
490             j_coord_offsetC  = DIM*jnrC;
491             j_coord_offsetD  = DIM*jnrD;
492             j_coord_offsetE  = DIM*jnrE;
493             j_coord_offsetF  = DIM*jnrF;
494             j_coord_offsetG  = DIM*jnrG;
495             j_coord_offsetH  = DIM*jnrH;
496
497             /* load j atom coordinates */
498             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
499                                                  x+j_coord_offsetC,x+j_coord_offsetD,
500                                                  x+j_coord_offsetE,x+j_coord_offsetF,
501                                                  x+j_coord_offsetG,x+j_coord_offsetH,
502                                                  &jx0,&jy0,&jz0);
503
504             /* Calculate displacement vector */
505             dx00             = _mm256_sub_ps(ix0,jx0);
506             dy00             = _mm256_sub_ps(iy0,jy0);
507             dz00             = _mm256_sub_ps(iz0,jz0);
508             dx10             = _mm256_sub_ps(ix1,jx0);
509             dy10             = _mm256_sub_ps(iy1,jy0);
510             dz10             = _mm256_sub_ps(iz1,jz0);
511             dx20             = _mm256_sub_ps(ix2,jx0);
512             dy20             = _mm256_sub_ps(iy2,jy0);
513             dz20             = _mm256_sub_ps(iz2,jz0);
514             dx30             = _mm256_sub_ps(ix3,jx0);
515             dy30             = _mm256_sub_ps(iy3,jy0);
516             dz30             = _mm256_sub_ps(iz3,jz0);
517
518             /* Calculate squared distance and things based on it */
519             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
520             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
521             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
522             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
523
524             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
525             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
526             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
527
528             rinvsq00         = gmx_mm256_inv_ps(rsq00);
529             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
530             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
531             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
532
533             /* Load parameters for j particles */
534             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
535                                                                  charge+jnrC+0,charge+jnrD+0,
536                                                                  charge+jnrE+0,charge+jnrF+0,
537                                                                  charge+jnrG+0,charge+jnrH+0);
538             vdwjidx0A        = 2*vdwtype[jnrA+0];
539             vdwjidx0B        = 2*vdwtype[jnrB+0];
540             vdwjidx0C        = 2*vdwtype[jnrC+0];
541             vdwjidx0D        = 2*vdwtype[jnrD+0];
542             vdwjidx0E        = 2*vdwtype[jnrE+0];
543             vdwjidx0F        = 2*vdwtype[jnrF+0];
544             vdwjidx0G        = 2*vdwtype[jnrG+0];
545             vdwjidx0H        = 2*vdwtype[jnrH+0];
546
547             fjx0             = _mm256_setzero_ps();
548             fjy0             = _mm256_setzero_ps();
549             fjz0             = _mm256_setzero_ps();
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             /* Compute parameters for interactions between i and j atoms */
556             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
557                                             vdwioffsetptr0+vdwjidx0B,
558                                             vdwioffsetptr0+vdwjidx0C,
559                                             vdwioffsetptr0+vdwjidx0D,
560                                             vdwioffsetptr0+vdwjidx0E,
561                                             vdwioffsetptr0+vdwjidx0F,
562                                             vdwioffsetptr0+vdwjidx0G,
563                                             vdwioffsetptr0+vdwjidx0H,
564                                             &c6_00,&c12_00);
565
566             /* LENNARD-JONES DISPERSION/REPULSION */
567
568             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
569             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
570             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
571             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
572             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
576             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
577
578             fscal            = fvdw;
579
580             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_ps(fscal,dx00);
584             ty               = _mm256_mul_ps(fscal,dy00);
585             tz               = _mm256_mul_ps(fscal,dz00);
586
587             /* Update vectorial force */
588             fix0             = _mm256_add_ps(fix0,tx);
589             fiy0             = _mm256_add_ps(fiy0,ty);
590             fiz0             = _mm256_add_ps(fiz0,tz);
591
592             fjx0             = _mm256_add_ps(fjx0,tx);
593             fjy0             = _mm256_add_ps(fjy0,ty);
594             fjz0             = _mm256_add_ps(fjz0,tz);
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             r10              = _mm256_mul_ps(rsq10,rinv10);
601             r10              = _mm256_andnot_ps(dummy_mask,r10);
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq10             = _mm256_mul_ps(iq1,jq0);
605
606             /* EWALD ELECTROSTATICS */
607             
608             /* Analytical PME correction */
609             zeta2            = _mm256_mul_ps(beta2,rsq10);
610             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
611             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
612             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
613             felec            = _mm256_mul_ps(qq10,felec);
614             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
615             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
616             velec            = _mm256_sub_ps(rinv10,pmecorrV);
617             velec            = _mm256_mul_ps(qq10,velec);
618             
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm256_andnot_ps(dummy_mask,velec);
621             velecsum         = _mm256_add_ps(velecsum,velec);
622
623             fscal            = felec;
624
625             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm256_mul_ps(fscal,dx10);
629             ty               = _mm256_mul_ps(fscal,dy10);
630             tz               = _mm256_mul_ps(fscal,dz10);
631
632             /* Update vectorial force */
633             fix1             = _mm256_add_ps(fix1,tx);
634             fiy1             = _mm256_add_ps(fiy1,ty);
635             fiz1             = _mm256_add_ps(fiz1,tz);
636
637             fjx0             = _mm256_add_ps(fjx0,tx);
638             fjy0             = _mm256_add_ps(fjy0,ty);
639             fjz0             = _mm256_add_ps(fjz0,tz);
640
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             r20              = _mm256_mul_ps(rsq20,rinv20);
646             r20              = _mm256_andnot_ps(dummy_mask,r20);
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq20             = _mm256_mul_ps(iq2,jq0);
650
651             /* EWALD ELECTROSTATICS */
652             
653             /* Analytical PME correction */
654             zeta2            = _mm256_mul_ps(beta2,rsq20);
655             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
656             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
657             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
658             felec            = _mm256_mul_ps(qq20,felec);
659             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
660             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
661             velec            = _mm256_sub_ps(rinv20,pmecorrV);
662             velec            = _mm256_mul_ps(qq20,velec);
663             
664             /* Update potential sum for this i atom from the interaction with this j atom. */
665             velec            = _mm256_andnot_ps(dummy_mask,velec);
666             velecsum         = _mm256_add_ps(velecsum,velec);
667
668             fscal            = felec;
669
670             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
671
672             /* Calculate temporary vectorial force */
673             tx               = _mm256_mul_ps(fscal,dx20);
674             ty               = _mm256_mul_ps(fscal,dy20);
675             tz               = _mm256_mul_ps(fscal,dz20);
676
677             /* Update vectorial force */
678             fix2             = _mm256_add_ps(fix2,tx);
679             fiy2             = _mm256_add_ps(fiy2,ty);
680             fiz2             = _mm256_add_ps(fiz2,tz);
681
682             fjx0             = _mm256_add_ps(fjx0,tx);
683             fjy0             = _mm256_add_ps(fjy0,ty);
684             fjz0             = _mm256_add_ps(fjz0,tz);
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             r30              = _mm256_mul_ps(rsq30,rinv30);
691             r30              = _mm256_andnot_ps(dummy_mask,r30);
692
693             /* Compute parameters for interactions between i and j atoms */
694             qq30             = _mm256_mul_ps(iq3,jq0);
695
696             /* EWALD ELECTROSTATICS */
697             
698             /* Analytical PME correction */
699             zeta2            = _mm256_mul_ps(beta2,rsq30);
700             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
701             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
702             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
703             felec            = _mm256_mul_ps(qq30,felec);
704             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
705             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
706             velec            = _mm256_sub_ps(rinv30,pmecorrV);
707             velec            = _mm256_mul_ps(qq30,velec);
708             
709             /* Update potential sum for this i atom from the interaction with this j atom. */
710             velec            = _mm256_andnot_ps(dummy_mask,velec);
711             velecsum         = _mm256_add_ps(velecsum,velec);
712
713             fscal            = felec;
714
715             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
716
717             /* Calculate temporary vectorial force */
718             tx               = _mm256_mul_ps(fscal,dx30);
719             ty               = _mm256_mul_ps(fscal,dy30);
720             tz               = _mm256_mul_ps(fscal,dz30);
721
722             /* Update vectorial force */
723             fix3             = _mm256_add_ps(fix3,tx);
724             fiy3             = _mm256_add_ps(fiy3,ty);
725             fiz3             = _mm256_add_ps(fiz3,tz);
726
727             fjx0             = _mm256_add_ps(fjx0,tx);
728             fjy0             = _mm256_add_ps(fjy0,ty);
729             fjz0             = _mm256_add_ps(fjz0,tz);
730
731             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
732             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
733             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
734             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
735             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
736             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
737             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
738             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
739
740             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
741
742             /* Inner loop uses 290 flops */
743         }
744
745         /* End of innermost loop */
746
747         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
748                                                  f+i_coord_offset,fshift+i_shift_offset);
749
750         ggid                        = gid[iidx];
751         /* Update potential energies */
752         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
753         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
754
755         /* Increment number of inner iterations */
756         inneriter                  += j_index_end - j_index_start;
757
758         /* Outer loop uses 26 flops */
759     }
760
761     /* Increment number of outer iterations */
762     outeriter        += nri;
763
764     /* Update outer/inner flops */
765
766     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*290);
767 }
768 /*
769  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_single
770  * Electrostatics interaction: Ewald
771  * VdW interaction:            LennardJones
772  * Geometry:                   Water4-Particle
773  * Calculate force/pot:        Force
774  */
775 void
776 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_single
777                     (t_nblist                    * gmx_restrict       nlist,
778                      rvec                        * gmx_restrict          xx,
779                      rvec                        * gmx_restrict          ff,
780                      t_forcerec                  * gmx_restrict          fr,
781                      t_mdatoms                   * gmx_restrict     mdatoms,
782                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
783                      t_nrnb                      * gmx_restrict        nrnb)
784 {
785     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
786      * just 0 for non-waters.
787      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
788      * jnr indices corresponding to data put in the four positions in the SIMD register.
789      */
790     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
791     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
792     int              jnrA,jnrB,jnrC,jnrD;
793     int              jnrE,jnrF,jnrG,jnrH;
794     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
795     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
796     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
797     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
798     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
799     real             rcutoff_scalar;
800     real             *shiftvec,*fshift,*x,*f;
801     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
802     real             scratch[4*DIM];
803     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
804     real *           vdwioffsetptr0;
805     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
806     real *           vdwioffsetptr1;
807     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
808     real *           vdwioffsetptr2;
809     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
810     real *           vdwioffsetptr3;
811     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
812     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
813     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
814     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
815     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
816     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
817     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
818     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
819     real             *charge;
820     int              nvdwtype;
821     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
822     int              *vdwtype;
823     real             *vdwparam;
824     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
825     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
826     __m256i          ewitab;
827     __m128i          ewitab_lo,ewitab_hi;
828     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
829     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
830     real             *ewtab;
831     __m256           dummy_mask,cutoff_mask;
832     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
833     __m256           one     = _mm256_set1_ps(1.0);
834     __m256           two     = _mm256_set1_ps(2.0);
835     x                = xx[0];
836     f                = ff[0];
837
838     nri              = nlist->nri;
839     iinr             = nlist->iinr;
840     jindex           = nlist->jindex;
841     jjnr             = nlist->jjnr;
842     shiftidx         = nlist->shift;
843     gid              = nlist->gid;
844     shiftvec         = fr->shift_vec[0];
845     fshift           = fr->fshift[0];
846     facel            = _mm256_set1_ps(fr->epsfac);
847     charge           = mdatoms->chargeA;
848     nvdwtype         = fr->ntype;
849     vdwparam         = fr->nbfp;
850     vdwtype          = mdatoms->typeA;
851
852     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
853     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
854     beta2            = _mm256_mul_ps(beta,beta);
855     beta3            = _mm256_mul_ps(beta,beta2);
856
857     ewtab            = fr->ic->tabq_coul_F;
858     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
859     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
860
861     /* Setup water-specific parameters */
862     inr              = nlist->iinr[0];
863     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
864     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
865     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
866     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
867
868     /* Avoid stupid compiler warnings */
869     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
870     j_coord_offsetA = 0;
871     j_coord_offsetB = 0;
872     j_coord_offsetC = 0;
873     j_coord_offsetD = 0;
874     j_coord_offsetE = 0;
875     j_coord_offsetF = 0;
876     j_coord_offsetG = 0;
877     j_coord_offsetH = 0;
878
879     outeriter        = 0;
880     inneriter        = 0;
881
882     for(iidx=0;iidx<4*DIM;iidx++)
883     {
884         scratch[iidx] = 0.0;
885     }
886
887     /* Start outer loop over neighborlists */
888     for(iidx=0; iidx<nri; iidx++)
889     {
890         /* Load shift vector for this list */
891         i_shift_offset   = DIM*shiftidx[iidx];
892
893         /* Load limits for loop over neighbors */
894         j_index_start    = jindex[iidx];
895         j_index_end      = jindex[iidx+1];
896
897         /* Get outer coordinate index */
898         inr              = iinr[iidx];
899         i_coord_offset   = DIM*inr;
900
901         /* Load i particle coords and add shift vector */
902         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
903                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
904
905         fix0             = _mm256_setzero_ps();
906         fiy0             = _mm256_setzero_ps();
907         fiz0             = _mm256_setzero_ps();
908         fix1             = _mm256_setzero_ps();
909         fiy1             = _mm256_setzero_ps();
910         fiz1             = _mm256_setzero_ps();
911         fix2             = _mm256_setzero_ps();
912         fiy2             = _mm256_setzero_ps();
913         fiz2             = _mm256_setzero_ps();
914         fix3             = _mm256_setzero_ps();
915         fiy3             = _mm256_setzero_ps();
916         fiz3             = _mm256_setzero_ps();
917
918         /* Start inner kernel loop */
919         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
920         {
921
922             /* Get j neighbor index, and coordinate index */
923             jnrA             = jjnr[jidx];
924             jnrB             = jjnr[jidx+1];
925             jnrC             = jjnr[jidx+2];
926             jnrD             = jjnr[jidx+3];
927             jnrE             = jjnr[jidx+4];
928             jnrF             = jjnr[jidx+5];
929             jnrG             = jjnr[jidx+6];
930             jnrH             = jjnr[jidx+7];
931             j_coord_offsetA  = DIM*jnrA;
932             j_coord_offsetB  = DIM*jnrB;
933             j_coord_offsetC  = DIM*jnrC;
934             j_coord_offsetD  = DIM*jnrD;
935             j_coord_offsetE  = DIM*jnrE;
936             j_coord_offsetF  = DIM*jnrF;
937             j_coord_offsetG  = DIM*jnrG;
938             j_coord_offsetH  = DIM*jnrH;
939
940             /* load j atom coordinates */
941             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
942                                                  x+j_coord_offsetC,x+j_coord_offsetD,
943                                                  x+j_coord_offsetE,x+j_coord_offsetF,
944                                                  x+j_coord_offsetG,x+j_coord_offsetH,
945                                                  &jx0,&jy0,&jz0);
946
947             /* Calculate displacement vector */
948             dx00             = _mm256_sub_ps(ix0,jx0);
949             dy00             = _mm256_sub_ps(iy0,jy0);
950             dz00             = _mm256_sub_ps(iz0,jz0);
951             dx10             = _mm256_sub_ps(ix1,jx0);
952             dy10             = _mm256_sub_ps(iy1,jy0);
953             dz10             = _mm256_sub_ps(iz1,jz0);
954             dx20             = _mm256_sub_ps(ix2,jx0);
955             dy20             = _mm256_sub_ps(iy2,jy0);
956             dz20             = _mm256_sub_ps(iz2,jz0);
957             dx30             = _mm256_sub_ps(ix3,jx0);
958             dy30             = _mm256_sub_ps(iy3,jy0);
959             dz30             = _mm256_sub_ps(iz3,jz0);
960
961             /* Calculate squared distance and things based on it */
962             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
963             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
964             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
965             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
966
967             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
968             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
969             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
970
971             rinvsq00         = gmx_mm256_inv_ps(rsq00);
972             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
973             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
974             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
975
976             /* Load parameters for j particles */
977             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
978                                                                  charge+jnrC+0,charge+jnrD+0,
979                                                                  charge+jnrE+0,charge+jnrF+0,
980                                                                  charge+jnrG+0,charge+jnrH+0);
981             vdwjidx0A        = 2*vdwtype[jnrA+0];
982             vdwjidx0B        = 2*vdwtype[jnrB+0];
983             vdwjidx0C        = 2*vdwtype[jnrC+0];
984             vdwjidx0D        = 2*vdwtype[jnrD+0];
985             vdwjidx0E        = 2*vdwtype[jnrE+0];
986             vdwjidx0F        = 2*vdwtype[jnrF+0];
987             vdwjidx0G        = 2*vdwtype[jnrG+0];
988             vdwjidx0H        = 2*vdwtype[jnrH+0];
989
990             fjx0             = _mm256_setzero_ps();
991             fjy0             = _mm256_setzero_ps();
992             fjz0             = _mm256_setzero_ps();
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             /* Compute parameters for interactions between i and j atoms */
999             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1000                                             vdwioffsetptr0+vdwjidx0B,
1001                                             vdwioffsetptr0+vdwjidx0C,
1002                                             vdwioffsetptr0+vdwjidx0D,
1003                                             vdwioffsetptr0+vdwjidx0E,
1004                                             vdwioffsetptr0+vdwjidx0F,
1005                                             vdwioffsetptr0+vdwjidx0G,
1006                                             vdwioffsetptr0+vdwjidx0H,
1007                                             &c6_00,&c12_00);
1008
1009             /* LENNARD-JONES DISPERSION/REPULSION */
1010
1011             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1012             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1013
1014             fscal            = fvdw;
1015
1016             /* Calculate temporary vectorial force */
1017             tx               = _mm256_mul_ps(fscal,dx00);
1018             ty               = _mm256_mul_ps(fscal,dy00);
1019             tz               = _mm256_mul_ps(fscal,dz00);
1020
1021             /* Update vectorial force */
1022             fix0             = _mm256_add_ps(fix0,tx);
1023             fiy0             = _mm256_add_ps(fiy0,ty);
1024             fiz0             = _mm256_add_ps(fiz0,tz);
1025
1026             fjx0             = _mm256_add_ps(fjx0,tx);
1027             fjy0             = _mm256_add_ps(fjy0,ty);
1028             fjz0             = _mm256_add_ps(fjz0,tz);
1029
1030             /**************************
1031              * CALCULATE INTERACTIONS *
1032              **************************/
1033
1034             r10              = _mm256_mul_ps(rsq10,rinv10);
1035
1036             /* Compute parameters for interactions between i and j atoms */
1037             qq10             = _mm256_mul_ps(iq1,jq0);
1038
1039             /* EWALD ELECTROSTATICS */
1040             
1041             /* Analytical PME correction */
1042             zeta2            = _mm256_mul_ps(beta2,rsq10);
1043             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1044             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1045             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1046             felec            = _mm256_mul_ps(qq10,felec);
1047             
1048             fscal            = felec;
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = _mm256_mul_ps(fscal,dx10);
1052             ty               = _mm256_mul_ps(fscal,dy10);
1053             tz               = _mm256_mul_ps(fscal,dz10);
1054
1055             /* Update vectorial force */
1056             fix1             = _mm256_add_ps(fix1,tx);
1057             fiy1             = _mm256_add_ps(fiy1,ty);
1058             fiz1             = _mm256_add_ps(fiz1,tz);
1059
1060             fjx0             = _mm256_add_ps(fjx0,tx);
1061             fjy0             = _mm256_add_ps(fjy0,ty);
1062             fjz0             = _mm256_add_ps(fjz0,tz);
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             r20              = _mm256_mul_ps(rsq20,rinv20);
1069
1070             /* Compute parameters for interactions between i and j atoms */
1071             qq20             = _mm256_mul_ps(iq2,jq0);
1072
1073             /* EWALD ELECTROSTATICS */
1074             
1075             /* Analytical PME correction */
1076             zeta2            = _mm256_mul_ps(beta2,rsq20);
1077             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1078             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1079             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1080             felec            = _mm256_mul_ps(qq20,felec);
1081             
1082             fscal            = felec;
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm256_mul_ps(fscal,dx20);
1086             ty               = _mm256_mul_ps(fscal,dy20);
1087             tz               = _mm256_mul_ps(fscal,dz20);
1088
1089             /* Update vectorial force */
1090             fix2             = _mm256_add_ps(fix2,tx);
1091             fiy2             = _mm256_add_ps(fiy2,ty);
1092             fiz2             = _mm256_add_ps(fiz2,tz);
1093
1094             fjx0             = _mm256_add_ps(fjx0,tx);
1095             fjy0             = _mm256_add_ps(fjy0,ty);
1096             fjz0             = _mm256_add_ps(fjz0,tz);
1097
1098             /**************************
1099              * CALCULATE INTERACTIONS *
1100              **************************/
1101
1102             r30              = _mm256_mul_ps(rsq30,rinv30);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq30             = _mm256_mul_ps(iq3,jq0);
1106
1107             /* EWALD ELECTROSTATICS */
1108             
1109             /* Analytical PME correction */
1110             zeta2            = _mm256_mul_ps(beta2,rsq30);
1111             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1112             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1113             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1114             felec            = _mm256_mul_ps(qq30,felec);
1115             
1116             fscal            = felec;
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm256_mul_ps(fscal,dx30);
1120             ty               = _mm256_mul_ps(fscal,dy30);
1121             tz               = _mm256_mul_ps(fscal,dz30);
1122
1123             /* Update vectorial force */
1124             fix3             = _mm256_add_ps(fix3,tx);
1125             fiy3             = _mm256_add_ps(fiy3,ty);
1126             fiz3             = _mm256_add_ps(fiz3,tz);
1127
1128             fjx0             = _mm256_add_ps(fjx0,tx);
1129             fjy0             = _mm256_add_ps(fjy0,ty);
1130             fjz0             = _mm256_add_ps(fjz0,tz);
1131
1132             fjptrA             = f+j_coord_offsetA;
1133             fjptrB             = f+j_coord_offsetB;
1134             fjptrC             = f+j_coord_offsetC;
1135             fjptrD             = f+j_coord_offsetD;
1136             fjptrE             = f+j_coord_offsetE;
1137             fjptrF             = f+j_coord_offsetF;
1138             fjptrG             = f+j_coord_offsetG;
1139             fjptrH             = f+j_coord_offsetH;
1140
1141             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1142
1143             /* Inner loop uses 198 flops */
1144         }
1145
1146         if(jidx<j_index_end)
1147         {
1148
1149             /* Get j neighbor index, and coordinate index */
1150             jnrlistA         = jjnr[jidx];
1151             jnrlistB         = jjnr[jidx+1];
1152             jnrlistC         = jjnr[jidx+2];
1153             jnrlistD         = jjnr[jidx+3];
1154             jnrlistE         = jjnr[jidx+4];
1155             jnrlistF         = jjnr[jidx+5];
1156             jnrlistG         = jjnr[jidx+6];
1157             jnrlistH         = jjnr[jidx+7];
1158             /* Sign of each element will be negative for non-real atoms.
1159              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1160              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1161              */
1162             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1163                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1164                                             
1165             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1166             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1167             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1168             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1169             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1170             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1171             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1172             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1173             j_coord_offsetA  = DIM*jnrA;
1174             j_coord_offsetB  = DIM*jnrB;
1175             j_coord_offsetC  = DIM*jnrC;
1176             j_coord_offsetD  = DIM*jnrD;
1177             j_coord_offsetE  = DIM*jnrE;
1178             j_coord_offsetF  = DIM*jnrF;
1179             j_coord_offsetG  = DIM*jnrG;
1180             j_coord_offsetH  = DIM*jnrH;
1181
1182             /* load j atom coordinates */
1183             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1184                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1185                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1186                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1187                                                  &jx0,&jy0,&jz0);
1188
1189             /* Calculate displacement vector */
1190             dx00             = _mm256_sub_ps(ix0,jx0);
1191             dy00             = _mm256_sub_ps(iy0,jy0);
1192             dz00             = _mm256_sub_ps(iz0,jz0);
1193             dx10             = _mm256_sub_ps(ix1,jx0);
1194             dy10             = _mm256_sub_ps(iy1,jy0);
1195             dz10             = _mm256_sub_ps(iz1,jz0);
1196             dx20             = _mm256_sub_ps(ix2,jx0);
1197             dy20             = _mm256_sub_ps(iy2,jy0);
1198             dz20             = _mm256_sub_ps(iz2,jz0);
1199             dx30             = _mm256_sub_ps(ix3,jx0);
1200             dy30             = _mm256_sub_ps(iy3,jy0);
1201             dz30             = _mm256_sub_ps(iz3,jz0);
1202
1203             /* Calculate squared distance and things based on it */
1204             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1205             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1206             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1207             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1208
1209             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1210             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1211             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1212
1213             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1214             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1215             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1216             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1217
1218             /* Load parameters for j particles */
1219             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1220                                                                  charge+jnrC+0,charge+jnrD+0,
1221                                                                  charge+jnrE+0,charge+jnrF+0,
1222                                                                  charge+jnrG+0,charge+jnrH+0);
1223             vdwjidx0A        = 2*vdwtype[jnrA+0];
1224             vdwjidx0B        = 2*vdwtype[jnrB+0];
1225             vdwjidx0C        = 2*vdwtype[jnrC+0];
1226             vdwjidx0D        = 2*vdwtype[jnrD+0];
1227             vdwjidx0E        = 2*vdwtype[jnrE+0];
1228             vdwjidx0F        = 2*vdwtype[jnrF+0];
1229             vdwjidx0G        = 2*vdwtype[jnrG+0];
1230             vdwjidx0H        = 2*vdwtype[jnrH+0];
1231
1232             fjx0             = _mm256_setzero_ps();
1233             fjy0             = _mm256_setzero_ps();
1234             fjz0             = _mm256_setzero_ps();
1235
1236             /**************************
1237              * CALCULATE INTERACTIONS *
1238              **************************/
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1242                                             vdwioffsetptr0+vdwjidx0B,
1243                                             vdwioffsetptr0+vdwjidx0C,
1244                                             vdwioffsetptr0+vdwjidx0D,
1245                                             vdwioffsetptr0+vdwjidx0E,
1246                                             vdwioffsetptr0+vdwjidx0F,
1247                                             vdwioffsetptr0+vdwjidx0G,
1248                                             vdwioffsetptr0+vdwjidx0H,
1249                                             &c6_00,&c12_00);
1250
1251             /* LENNARD-JONES DISPERSION/REPULSION */
1252
1253             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1254             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1255
1256             fscal            = fvdw;
1257
1258             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1259
1260             /* Calculate temporary vectorial force */
1261             tx               = _mm256_mul_ps(fscal,dx00);
1262             ty               = _mm256_mul_ps(fscal,dy00);
1263             tz               = _mm256_mul_ps(fscal,dz00);
1264
1265             /* Update vectorial force */
1266             fix0             = _mm256_add_ps(fix0,tx);
1267             fiy0             = _mm256_add_ps(fiy0,ty);
1268             fiz0             = _mm256_add_ps(fiz0,tz);
1269
1270             fjx0             = _mm256_add_ps(fjx0,tx);
1271             fjy0             = _mm256_add_ps(fjy0,ty);
1272             fjz0             = _mm256_add_ps(fjz0,tz);
1273
1274             /**************************
1275              * CALCULATE INTERACTIONS *
1276              **************************/
1277
1278             r10              = _mm256_mul_ps(rsq10,rinv10);
1279             r10              = _mm256_andnot_ps(dummy_mask,r10);
1280
1281             /* Compute parameters for interactions between i and j atoms */
1282             qq10             = _mm256_mul_ps(iq1,jq0);
1283
1284             /* EWALD ELECTROSTATICS */
1285             
1286             /* Analytical PME correction */
1287             zeta2            = _mm256_mul_ps(beta2,rsq10);
1288             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1289             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1290             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1291             felec            = _mm256_mul_ps(qq10,felec);
1292             
1293             fscal            = felec;
1294
1295             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1296
1297             /* Calculate temporary vectorial force */
1298             tx               = _mm256_mul_ps(fscal,dx10);
1299             ty               = _mm256_mul_ps(fscal,dy10);
1300             tz               = _mm256_mul_ps(fscal,dz10);
1301
1302             /* Update vectorial force */
1303             fix1             = _mm256_add_ps(fix1,tx);
1304             fiy1             = _mm256_add_ps(fiy1,ty);
1305             fiz1             = _mm256_add_ps(fiz1,tz);
1306
1307             fjx0             = _mm256_add_ps(fjx0,tx);
1308             fjy0             = _mm256_add_ps(fjy0,ty);
1309             fjz0             = _mm256_add_ps(fjz0,tz);
1310
1311             /**************************
1312              * CALCULATE INTERACTIONS *
1313              **************************/
1314
1315             r20              = _mm256_mul_ps(rsq20,rinv20);
1316             r20              = _mm256_andnot_ps(dummy_mask,r20);
1317
1318             /* Compute parameters for interactions between i and j atoms */
1319             qq20             = _mm256_mul_ps(iq2,jq0);
1320
1321             /* EWALD ELECTROSTATICS */
1322             
1323             /* Analytical PME correction */
1324             zeta2            = _mm256_mul_ps(beta2,rsq20);
1325             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1326             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1327             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1328             felec            = _mm256_mul_ps(qq20,felec);
1329             
1330             fscal            = felec;
1331
1332             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1333
1334             /* Calculate temporary vectorial force */
1335             tx               = _mm256_mul_ps(fscal,dx20);
1336             ty               = _mm256_mul_ps(fscal,dy20);
1337             tz               = _mm256_mul_ps(fscal,dz20);
1338
1339             /* Update vectorial force */
1340             fix2             = _mm256_add_ps(fix2,tx);
1341             fiy2             = _mm256_add_ps(fiy2,ty);
1342             fiz2             = _mm256_add_ps(fiz2,tz);
1343
1344             fjx0             = _mm256_add_ps(fjx0,tx);
1345             fjy0             = _mm256_add_ps(fjy0,ty);
1346             fjz0             = _mm256_add_ps(fjz0,tz);
1347
1348             /**************************
1349              * CALCULATE INTERACTIONS *
1350              **************************/
1351
1352             r30              = _mm256_mul_ps(rsq30,rinv30);
1353             r30              = _mm256_andnot_ps(dummy_mask,r30);
1354
1355             /* Compute parameters for interactions between i and j atoms */
1356             qq30             = _mm256_mul_ps(iq3,jq0);
1357
1358             /* EWALD ELECTROSTATICS */
1359             
1360             /* Analytical PME correction */
1361             zeta2            = _mm256_mul_ps(beta2,rsq30);
1362             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1363             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1364             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1365             felec            = _mm256_mul_ps(qq30,felec);
1366             
1367             fscal            = felec;
1368
1369             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1370
1371             /* Calculate temporary vectorial force */
1372             tx               = _mm256_mul_ps(fscal,dx30);
1373             ty               = _mm256_mul_ps(fscal,dy30);
1374             tz               = _mm256_mul_ps(fscal,dz30);
1375
1376             /* Update vectorial force */
1377             fix3             = _mm256_add_ps(fix3,tx);
1378             fiy3             = _mm256_add_ps(fiy3,ty);
1379             fiz3             = _mm256_add_ps(fiz3,tz);
1380
1381             fjx0             = _mm256_add_ps(fjx0,tx);
1382             fjy0             = _mm256_add_ps(fjy0,ty);
1383             fjz0             = _mm256_add_ps(fjz0,tz);
1384
1385             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1386             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1387             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1388             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1389             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1390             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1391             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1392             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1393
1394             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1395
1396             /* Inner loop uses 201 flops */
1397         }
1398
1399         /* End of innermost loop */
1400
1401         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1402                                                  f+i_coord_offset,fshift+i_shift_offset);
1403
1404         /* Increment number of inner iterations */
1405         inneriter                  += j_index_end - j_index_start;
1406
1407         /* Outer loop uses 24 flops */
1408     }
1409
1410     /* Increment number of outer iterations */
1411     outeriter        += nri;
1412
1413     /* Update outer/inner flops */
1414
1415     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*201);
1416 }