a7dd01ea835baf621bfcb2895f45b255a3db8a8e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
107     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
108     __m256i          ewitab;
109     __m128i          ewitab_lo,ewitab_hi;
110     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
112     real             *ewtab;
113     __m256           dummy_mask,cutoff_mask;
114     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
115     __m256           one     = _mm256_set1_ps(1.0);
116     __m256           two     = _mm256_set1_ps(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_ps(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
135     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
136     beta2            = _mm256_mul_ps(beta,beta);
137     beta3            = _mm256_mul_ps(beta,beta2);
138
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
146     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
147     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
148     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154     j_coord_offsetC = 0;
155     j_coord_offsetD = 0;
156     j_coord_offsetE = 0;
157     j_coord_offsetF = 0;
158     j_coord_offsetG = 0;
159     j_coord_offsetH = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     for(iidx=0;iidx<4*DIM;iidx++)
165     {
166         scratch[iidx] = 0.0;
167     }
168
169     /* Start outer loop over neighborlists */
170     for(iidx=0; iidx<nri; iidx++)
171     {
172         /* Load shift vector for this list */
173         i_shift_offset   = DIM*shiftidx[iidx];
174
175         /* Load limits for loop over neighbors */
176         j_index_start    = jindex[iidx];
177         j_index_end      = jindex[iidx+1];
178
179         /* Get outer coordinate index */
180         inr              = iinr[iidx];
181         i_coord_offset   = DIM*inr;
182
183         /* Load i particle coords and add shift vector */
184         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
185                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
186
187         fix0             = _mm256_setzero_ps();
188         fiy0             = _mm256_setzero_ps();
189         fiz0             = _mm256_setzero_ps();
190         fix1             = _mm256_setzero_ps();
191         fiy1             = _mm256_setzero_ps();
192         fiz1             = _mm256_setzero_ps();
193         fix2             = _mm256_setzero_ps();
194         fiy2             = _mm256_setzero_ps();
195         fiz2             = _mm256_setzero_ps();
196         fix3             = _mm256_setzero_ps();
197         fiy3             = _mm256_setzero_ps();
198         fiz3             = _mm256_setzero_ps();
199
200         /* Reset potential sums */
201         velecsum         = _mm256_setzero_ps();
202         vvdwsum          = _mm256_setzero_ps();
203
204         /* Start inner kernel loop */
205         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
206         {
207
208             /* Get j neighbor index, and coordinate index */
209             jnrA             = jjnr[jidx];
210             jnrB             = jjnr[jidx+1];
211             jnrC             = jjnr[jidx+2];
212             jnrD             = jjnr[jidx+3];
213             jnrE             = jjnr[jidx+4];
214             jnrF             = jjnr[jidx+5];
215             jnrG             = jjnr[jidx+6];
216             jnrH             = jjnr[jidx+7];
217             j_coord_offsetA  = DIM*jnrA;
218             j_coord_offsetB  = DIM*jnrB;
219             j_coord_offsetC  = DIM*jnrC;
220             j_coord_offsetD  = DIM*jnrD;
221             j_coord_offsetE  = DIM*jnrE;
222             j_coord_offsetF  = DIM*jnrF;
223             j_coord_offsetG  = DIM*jnrG;
224             j_coord_offsetH  = DIM*jnrH;
225
226             /* load j atom coordinates */
227             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
228                                                  x+j_coord_offsetC,x+j_coord_offsetD,
229                                                  x+j_coord_offsetE,x+j_coord_offsetF,
230                                                  x+j_coord_offsetG,x+j_coord_offsetH,
231                                                  &jx0,&jy0,&jz0);
232
233             /* Calculate displacement vector */
234             dx00             = _mm256_sub_ps(ix0,jx0);
235             dy00             = _mm256_sub_ps(iy0,jy0);
236             dz00             = _mm256_sub_ps(iz0,jz0);
237             dx10             = _mm256_sub_ps(ix1,jx0);
238             dy10             = _mm256_sub_ps(iy1,jy0);
239             dz10             = _mm256_sub_ps(iz1,jz0);
240             dx20             = _mm256_sub_ps(ix2,jx0);
241             dy20             = _mm256_sub_ps(iy2,jy0);
242             dz20             = _mm256_sub_ps(iz2,jz0);
243             dx30             = _mm256_sub_ps(ix3,jx0);
244             dy30             = _mm256_sub_ps(iy3,jy0);
245             dz30             = _mm256_sub_ps(iz3,jz0);
246
247             /* Calculate squared distance and things based on it */
248             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
249             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
250             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
251             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
252
253             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
254             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
255             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
256
257             rinvsq00         = gmx_mm256_inv_ps(rsq00);
258             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
259             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
260             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
261
262             /* Load parameters for j particles */
263             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
264                                                                  charge+jnrC+0,charge+jnrD+0,
265                                                                  charge+jnrE+0,charge+jnrF+0,
266                                                                  charge+jnrG+0,charge+jnrH+0);
267             vdwjidx0A        = 2*vdwtype[jnrA+0];
268             vdwjidx0B        = 2*vdwtype[jnrB+0];
269             vdwjidx0C        = 2*vdwtype[jnrC+0];
270             vdwjidx0D        = 2*vdwtype[jnrD+0];
271             vdwjidx0E        = 2*vdwtype[jnrE+0];
272             vdwjidx0F        = 2*vdwtype[jnrF+0];
273             vdwjidx0G        = 2*vdwtype[jnrG+0];
274             vdwjidx0H        = 2*vdwtype[jnrH+0];
275
276             fjx0             = _mm256_setzero_ps();
277             fjy0             = _mm256_setzero_ps();
278             fjz0             = _mm256_setzero_ps();
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             /* Compute parameters for interactions between i and j atoms */
285             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
286                                             vdwioffsetptr0+vdwjidx0B,
287                                             vdwioffsetptr0+vdwjidx0C,
288                                             vdwioffsetptr0+vdwjidx0D,
289                                             vdwioffsetptr0+vdwjidx0E,
290                                             vdwioffsetptr0+vdwjidx0F,
291                                             vdwioffsetptr0+vdwjidx0G,
292                                             vdwioffsetptr0+vdwjidx0H,
293                                             &c6_00,&c12_00);
294
295             /* LENNARD-JONES DISPERSION/REPULSION */
296
297             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
298             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
299             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
300             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
301             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
305
306             fscal            = fvdw;
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm256_mul_ps(fscal,dx00);
310             ty               = _mm256_mul_ps(fscal,dy00);
311             tz               = _mm256_mul_ps(fscal,dz00);
312
313             /* Update vectorial force */
314             fix0             = _mm256_add_ps(fix0,tx);
315             fiy0             = _mm256_add_ps(fiy0,ty);
316             fiz0             = _mm256_add_ps(fiz0,tz);
317
318             fjx0             = _mm256_add_ps(fjx0,tx);
319             fjy0             = _mm256_add_ps(fjy0,ty);
320             fjz0             = _mm256_add_ps(fjz0,tz);
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             r10              = _mm256_mul_ps(rsq10,rinv10);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq10             = _mm256_mul_ps(iq1,jq0);
330
331             /* EWALD ELECTROSTATICS */
332             
333             /* Analytical PME correction */
334             zeta2            = _mm256_mul_ps(beta2,rsq10);
335             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
336             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
337             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
338             felec            = _mm256_mul_ps(qq10,felec);
339             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
340             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
341             velec            = _mm256_sub_ps(rinv10,pmecorrV);
342             velec            = _mm256_mul_ps(qq10,velec);
343             
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm256_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_ps(fscal,dx10);
351             ty               = _mm256_mul_ps(fscal,dy10);
352             tz               = _mm256_mul_ps(fscal,dz10);
353
354             /* Update vectorial force */
355             fix1             = _mm256_add_ps(fix1,tx);
356             fiy1             = _mm256_add_ps(fiy1,ty);
357             fiz1             = _mm256_add_ps(fiz1,tz);
358
359             fjx0             = _mm256_add_ps(fjx0,tx);
360             fjy0             = _mm256_add_ps(fjy0,ty);
361             fjz0             = _mm256_add_ps(fjz0,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r20              = _mm256_mul_ps(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm256_mul_ps(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373             
374             /* Analytical PME correction */
375             zeta2            = _mm256_mul_ps(beta2,rsq20);
376             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
377             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
378             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
379             felec            = _mm256_mul_ps(qq20,felec);
380             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
381             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
382             velec            = _mm256_sub_ps(rinv20,pmecorrV);
383             velec            = _mm256_mul_ps(qq20,velec);
384             
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velecsum         = _mm256_add_ps(velecsum,velec);
387
388             fscal            = felec;
389
390             /* Calculate temporary vectorial force */
391             tx               = _mm256_mul_ps(fscal,dx20);
392             ty               = _mm256_mul_ps(fscal,dy20);
393             tz               = _mm256_mul_ps(fscal,dz20);
394
395             /* Update vectorial force */
396             fix2             = _mm256_add_ps(fix2,tx);
397             fiy2             = _mm256_add_ps(fiy2,ty);
398             fiz2             = _mm256_add_ps(fiz2,tz);
399
400             fjx0             = _mm256_add_ps(fjx0,tx);
401             fjy0             = _mm256_add_ps(fjy0,ty);
402             fjz0             = _mm256_add_ps(fjz0,tz);
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             r30              = _mm256_mul_ps(rsq30,rinv30);
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq30             = _mm256_mul_ps(iq3,jq0);
412
413             /* EWALD ELECTROSTATICS */
414             
415             /* Analytical PME correction */
416             zeta2            = _mm256_mul_ps(beta2,rsq30);
417             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
418             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
419             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
420             felec            = _mm256_mul_ps(qq30,felec);
421             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
422             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
423             velec            = _mm256_sub_ps(rinv30,pmecorrV);
424             velec            = _mm256_mul_ps(qq30,velec);
425             
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velecsum         = _mm256_add_ps(velecsum,velec);
428
429             fscal            = felec;
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm256_mul_ps(fscal,dx30);
433             ty               = _mm256_mul_ps(fscal,dy30);
434             tz               = _mm256_mul_ps(fscal,dz30);
435
436             /* Update vectorial force */
437             fix3             = _mm256_add_ps(fix3,tx);
438             fiy3             = _mm256_add_ps(fiy3,ty);
439             fiz3             = _mm256_add_ps(fiz3,tz);
440
441             fjx0             = _mm256_add_ps(fjx0,tx);
442             fjy0             = _mm256_add_ps(fjy0,ty);
443             fjz0             = _mm256_add_ps(fjz0,tz);
444
445             fjptrA             = f+j_coord_offsetA;
446             fjptrB             = f+j_coord_offsetB;
447             fjptrC             = f+j_coord_offsetC;
448             fjptrD             = f+j_coord_offsetD;
449             fjptrE             = f+j_coord_offsetE;
450             fjptrF             = f+j_coord_offsetF;
451             fjptrG             = f+j_coord_offsetG;
452             fjptrH             = f+j_coord_offsetH;
453
454             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
455
456             /* Inner loop uses 287 flops */
457         }
458
459         if(jidx<j_index_end)
460         {
461
462             /* Get j neighbor index, and coordinate index */
463             jnrlistA         = jjnr[jidx];
464             jnrlistB         = jjnr[jidx+1];
465             jnrlistC         = jjnr[jidx+2];
466             jnrlistD         = jjnr[jidx+3];
467             jnrlistE         = jjnr[jidx+4];
468             jnrlistF         = jjnr[jidx+5];
469             jnrlistG         = jjnr[jidx+6];
470             jnrlistH         = jjnr[jidx+7];
471             /* Sign of each element will be negative for non-real atoms.
472              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
473              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
474              */
475             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
476                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
477                                             
478             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
479             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
480             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
481             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
482             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
483             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
484             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
485             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
486             j_coord_offsetA  = DIM*jnrA;
487             j_coord_offsetB  = DIM*jnrB;
488             j_coord_offsetC  = DIM*jnrC;
489             j_coord_offsetD  = DIM*jnrD;
490             j_coord_offsetE  = DIM*jnrE;
491             j_coord_offsetF  = DIM*jnrF;
492             j_coord_offsetG  = DIM*jnrG;
493             j_coord_offsetH  = DIM*jnrH;
494
495             /* load j atom coordinates */
496             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
497                                                  x+j_coord_offsetC,x+j_coord_offsetD,
498                                                  x+j_coord_offsetE,x+j_coord_offsetF,
499                                                  x+j_coord_offsetG,x+j_coord_offsetH,
500                                                  &jx0,&jy0,&jz0);
501
502             /* Calculate displacement vector */
503             dx00             = _mm256_sub_ps(ix0,jx0);
504             dy00             = _mm256_sub_ps(iy0,jy0);
505             dz00             = _mm256_sub_ps(iz0,jz0);
506             dx10             = _mm256_sub_ps(ix1,jx0);
507             dy10             = _mm256_sub_ps(iy1,jy0);
508             dz10             = _mm256_sub_ps(iz1,jz0);
509             dx20             = _mm256_sub_ps(ix2,jx0);
510             dy20             = _mm256_sub_ps(iy2,jy0);
511             dz20             = _mm256_sub_ps(iz2,jz0);
512             dx30             = _mm256_sub_ps(ix3,jx0);
513             dy30             = _mm256_sub_ps(iy3,jy0);
514             dz30             = _mm256_sub_ps(iz3,jz0);
515
516             /* Calculate squared distance and things based on it */
517             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
518             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
519             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
520             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
521
522             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
523             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
524             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
525
526             rinvsq00         = gmx_mm256_inv_ps(rsq00);
527             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
528             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
529             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
530
531             /* Load parameters for j particles */
532             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
533                                                                  charge+jnrC+0,charge+jnrD+0,
534                                                                  charge+jnrE+0,charge+jnrF+0,
535                                                                  charge+jnrG+0,charge+jnrH+0);
536             vdwjidx0A        = 2*vdwtype[jnrA+0];
537             vdwjidx0B        = 2*vdwtype[jnrB+0];
538             vdwjidx0C        = 2*vdwtype[jnrC+0];
539             vdwjidx0D        = 2*vdwtype[jnrD+0];
540             vdwjidx0E        = 2*vdwtype[jnrE+0];
541             vdwjidx0F        = 2*vdwtype[jnrF+0];
542             vdwjidx0G        = 2*vdwtype[jnrG+0];
543             vdwjidx0H        = 2*vdwtype[jnrH+0];
544
545             fjx0             = _mm256_setzero_ps();
546             fjy0             = _mm256_setzero_ps();
547             fjz0             = _mm256_setzero_ps();
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             /* Compute parameters for interactions between i and j atoms */
554             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
555                                             vdwioffsetptr0+vdwjidx0B,
556                                             vdwioffsetptr0+vdwjidx0C,
557                                             vdwioffsetptr0+vdwjidx0D,
558                                             vdwioffsetptr0+vdwjidx0E,
559                                             vdwioffsetptr0+vdwjidx0F,
560                                             vdwioffsetptr0+vdwjidx0G,
561                                             vdwioffsetptr0+vdwjidx0H,
562                                             &c6_00,&c12_00);
563
564             /* LENNARD-JONES DISPERSION/REPULSION */
565
566             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
567             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
568             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
569             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
570             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
574             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
575
576             fscal            = fvdw;
577
578             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm256_mul_ps(fscal,dx00);
582             ty               = _mm256_mul_ps(fscal,dy00);
583             tz               = _mm256_mul_ps(fscal,dz00);
584
585             /* Update vectorial force */
586             fix0             = _mm256_add_ps(fix0,tx);
587             fiy0             = _mm256_add_ps(fiy0,ty);
588             fiz0             = _mm256_add_ps(fiz0,tz);
589
590             fjx0             = _mm256_add_ps(fjx0,tx);
591             fjy0             = _mm256_add_ps(fjy0,ty);
592             fjz0             = _mm256_add_ps(fjz0,tz);
593
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             r10              = _mm256_mul_ps(rsq10,rinv10);
599             r10              = _mm256_andnot_ps(dummy_mask,r10);
600
601             /* Compute parameters for interactions between i and j atoms */
602             qq10             = _mm256_mul_ps(iq1,jq0);
603
604             /* EWALD ELECTROSTATICS */
605             
606             /* Analytical PME correction */
607             zeta2            = _mm256_mul_ps(beta2,rsq10);
608             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
609             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
610             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
611             felec            = _mm256_mul_ps(qq10,felec);
612             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
613             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
614             velec            = _mm256_sub_ps(rinv10,pmecorrV);
615             velec            = _mm256_mul_ps(qq10,velec);
616             
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _mm256_andnot_ps(dummy_mask,velec);
619             velecsum         = _mm256_add_ps(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm256_mul_ps(fscal,dx10);
627             ty               = _mm256_mul_ps(fscal,dy10);
628             tz               = _mm256_mul_ps(fscal,dz10);
629
630             /* Update vectorial force */
631             fix1             = _mm256_add_ps(fix1,tx);
632             fiy1             = _mm256_add_ps(fiy1,ty);
633             fiz1             = _mm256_add_ps(fiz1,tz);
634
635             fjx0             = _mm256_add_ps(fjx0,tx);
636             fjy0             = _mm256_add_ps(fjy0,ty);
637             fjz0             = _mm256_add_ps(fjz0,tz);
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             r20              = _mm256_mul_ps(rsq20,rinv20);
644             r20              = _mm256_andnot_ps(dummy_mask,r20);
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq20             = _mm256_mul_ps(iq2,jq0);
648
649             /* EWALD ELECTROSTATICS */
650             
651             /* Analytical PME correction */
652             zeta2            = _mm256_mul_ps(beta2,rsq20);
653             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
654             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
655             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
656             felec            = _mm256_mul_ps(qq20,felec);
657             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
658             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
659             velec            = _mm256_sub_ps(rinv20,pmecorrV);
660             velec            = _mm256_mul_ps(qq20,velec);
661             
662             /* Update potential sum for this i atom from the interaction with this j atom. */
663             velec            = _mm256_andnot_ps(dummy_mask,velec);
664             velecsum         = _mm256_add_ps(velecsum,velec);
665
666             fscal            = felec;
667
668             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
669
670             /* Calculate temporary vectorial force */
671             tx               = _mm256_mul_ps(fscal,dx20);
672             ty               = _mm256_mul_ps(fscal,dy20);
673             tz               = _mm256_mul_ps(fscal,dz20);
674
675             /* Update vectorial force */
676             fix2             = _mm256_add_ps(fix2,tx);
677             fiy2             = _mm256_add_ps(fiy2,ty);
678             fiz2             = _mm256_add_ps(fiz2,tz);
679
680             fjx0             = _mm256_add_ps(fjx0,tx);
681             fjy0             = _mm256_add_ps(fjy0,ty);
682             fjz0             = _mm256_add_ps(fjz0,tz);
683
684             /**************************
685              * CALCULATE INTERACTIONS *
686              **************************/
687
688             r30              = _mm256_mul_ps(rsq30,rinv30);
689             r30              = _mm256_andnot_ps(dummy_mask,r30);
690
691             /* Compute parameters for interactions between i and j atoms */
692             qq30             = _mm256_mul_ps(iq3,jq0);
693
694             /* EWALD ELECTROSTATICS */
695             
696             /* Analytical PME correction */
697             zeta2            = _mm256_mul_ps(beta2,rsq30);
698             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
699             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
700             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
701             felec            = _mm256_mul_ps(qq30,felec);
702             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
703             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
704             velec            = _mm256_sub_ps(rinv30,pmecorrV);
705             velec            = _mm256_mul_ps(qq30,velec);
706             
707             /* Update potential sum for this i atom from the interaction with this j atom. */
708             velec            = _mm256_andnot_ps(dummy_mask,velec);
709             velecsum         = _mm256_add_ps(velecsum,velec);
710
711             fscal            = felec;
712
713             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
714
715             /* Calculate temporary vectorial force */
716             tx               = _mm256_mul_ps(fscal,dx30);
717             ty               = _mm256_mul_ps(fscal,dy30);
718             tz               = _mm256_mul_ps(fscal,dz30);
719
720             /* Update vectorial force */
721             fix3             = _mm256_add_ps(fix3,tx);
722             fiy3             = _mm256_add_ps(fiy3,ty);
723             fiz3             = _mm256_add_ps(fiz3,tz);
724
725             fjx0             = _mm256_add_ps(fjx0,tx);
726             fjy0             = _mm256_add_ps(fjy0,ty);
727             fjz0             = _mm256_add_ps(fjz0,tz);
728
729             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
730             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
731             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
732             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
733             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
734             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
735             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
736             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
737
738             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
739
740             /* Inner loop uses 290 flops */
741         }
742
743         /* End of innermost loop */
744
745         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
746                                                  f+i_coord_offset,fshift+i_shift_offset);
747
748         ggid                        = gid[iidx];
749         /* Update potential energies */
750         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
751         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
752
753         /* Increment number of inner iterations */
754         inneriter                  += j_index_end - j_index_start;
755
756         /* Outer loop uses 26 flops */
757     }
758
759     /* Increment number of outer iterations */
760     outeriter        += nri;
761
762     /* Update outer/inner flops */
763
764     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*290);
765 }
766 /*
767  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_single
768  * Electrostatics interaction: Ewald
769  * VdW interaction:            LennardJones
770  * Geometry:                   Water4-Particle
771  * Calculate force/pot:        Force
772  */
773 void
774 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_single
775                     (t_nblist                    * gmx_restrict       nlist,
776                      rvec                        * gmx_restrict          xx,
777                      rvec                        * gmx_restrict          ff,
778                      t_forcerec                  * gmx_restrict          fr,
779                      t_mdatoms                   * gmx_restrict     mdatoms,
780                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
781                      t_nrnb                      * gmx_restrict        nrnb)
782 {
783     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
784      * just 0 for non-waters.
785      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
786      * jnr indices corresponding to data put in the four positions in the SIMD register.
787      */
788     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
789     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
790     int              jnrA,jnrB,jnrC,jnrD;
791     int              jnrE,jnrF,jnrG,jnrH;
792     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
793     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
794     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
795     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
796     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
797     real             rcutoff_scalar;
798     real             *shiftvec,*fshift,*x,*f;
799     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
800     real             scratch[4*DIM];
801     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
802     real *           vdwioffsetptr0;
803     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
804     real *           vdwioffsetptr1;
805     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
806     real *           vdwioffsetptr2;
807     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
808     real *           vdwioffsetptr3;
809     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
810     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
811     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
812     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
813     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
814     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
815     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
816     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
817     real             *charge;
818     int              nvdwtype;
819     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
820     int              *vdwtype;
821     real             *vdwparam;
822     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
823     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
824     __m256i          ewitab;
825     __m128i          ewitab_lo,ewitab_hi;
826     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
827     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
828     real             *ewtab;
829     __m256           dummy_mask,cutoff_mask;
830     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
831     __m256           one     = _mm256_set1_ps(1.0);
832     __m256           two     = _mm256_set1_ps(2.0);
833     x                = xx[0];
834     f                = ff[0];
835
836     nri              = nlist->nri;
837     iinr             = nlist->iinr;
838     jindex           = nlist->jindex;
839     jjnr             = nlist->jjnr;
840     shiftidx         = nlist->shift;
841     gid              = nlist->gid;
842     shiftvec         = fr->shift_vec[0];
843     fshift           = fr->fshift[0];
844     facel            = _mm256_set1_ps(fr->epsfac);
845     charge           = mdatoms->chargeA;
846     nvdwtype         = fr->ntype;
847     vdwparam         = fr->nbfp;
848     vdwtype          = mdatoms->typeA;
849
850     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
851     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
852     beta2            = _mm256_mul_ps(beta,beta);
853     beta3            = _mm256_mul_ps(beta,beta2);
854
855     ewtab            = fr->ic->tabq_coul_F;
856     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
857     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
858
859     /* Setup water-specific parameters */
860     inr              = nlist->iinr[0];
861     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
862     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
863     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
864     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
865
866     /* Avoid stupid compiler warnings */
867     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
868     j_coord_offsetA = 0;
869     j_coord_offsetB = 0;
870     j_coord_offsetC = 0;
871     j_coord_offsetD = 0;
872     j_coord_offsetE = 0;
873     j_coord_offsetF = 0;
874     j_coord_offsetG = 0;
875     j_coord_offsetH = 0;
876
877     outeriter        = 0;
878     inneriter        = 0;
879
880     for(iidx=0;iidx<4*DIM;iidx++)
881     {
882         scratch[iidx] = 0.0;
883     }
884
885     /* Start outer loop over neighborlists */
886     for(iidx=0; iidx<nri; iidx++)
887     {
888         /* Load shift vector for this list */
889         i_shift_offset   = DIM*shiftidx[iidx];
890
891         /* Load limits for loop over neighbors */
892         j_index_start    = jindex[iidx];
893         j_index_end      = jindex[iidx+1];
894
895         /* Get outer coordinate index */
896         inr              = iinr[iidx];
897         i_coord_offset   = DIM*inr;
898
899         /* Load i particle coords and add shift vector */
900         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
901                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
902
903         fix0             = _mm256_setzero_ps();
904         fiy0             = _mm256_setzero_ps();
905         fiz0             = _mm256_setzero_ps();
906         fix1             = _mm256_setzero_ps();
907         fiy1             = _mm256_setzero_ps();
908         fiz1             = _mm256_setzero_ps();
909         fix2             = _mm256_setzero_ps();
910         fiy2             = _mm256_setzero_ps();
911         fiz2             = _mm256_setzero_ps();
912         fix3             = _mm256_setzero_ps();
913         fiy3             = _mm256_setzero_ps();
914         fiz3             = _mm256_setzero_ps();
915
916         /* Start inner kernel loop */
917         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
918         {
919
920             /* Get j neighbor index, and coordinate index */
921             jnrA             = jjnr[jidx];
922             jnrB             = jjnr[jidx+1];
923             jnrC             = jjnr[jidx+2];
924             jnrD             = jjnr[jidx+3];
925             jnrE             = jjnr[jidx+4];
926             jnrF             = jjnr[jidx+5];
927             jnrG             = jjnr[jidx+6];
928             jnrH             = jjnr[jidx+7];
929             j_coord_offsetA  = DIM*jnrA;
930             j_coord_offsetB  = DIM*jnrB;
931             j_coord_offsetC  = DIM*jnrC;
932             j_coord_offsetD  = DIM*jnrD;
933             j_coord_offsetE  = DIM*jnrE;
934             j_coord_offsetF  = DIM*jnrF;
935             j_coord_offsetG  = DIM*jnrG;
936             j_coord_offsetH  = DIM*jnrH;
937
938             /* load j atom coordinates */
939             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
940                                                  x+j_coord_offsetC,x+j_coord_offsetD,
941                                                  x+j_coord_offsetE,x+j_coord_offsetF,
942                                                  x+j_coord_offsetG,x+j_coord_offsetH,
943                                                  &jx0,&jy0,&jz0);
944
945             /* Calculate displacement vector */
946             dx00             = _mm256_sub_ps(ix0,jx0);
947             dy00             = _mm256_sub_ps(iy0,jy0);
948             dz00             = _mm256_sub_ps(iz0,jz0);
949             dx10             = _mm256_sub_ps(ix1,jx0);
950             dy10             = _mm256_sub_ps(iy1,jy0);
951             dz10             = _mm256_sub_ps(iz1,jz0);
952             dx20             = _mm256_sub_ps(ix2,jx0);
953             dy20             = _mm256_sub_ps(iy2,jy0);
954             dz20             = _mm256_sub_ps(iz2,jz0);
955             dx30             = _mm256_sub_ps(ix3,jx0);
956             dy30             = _mm256_sub_ps(iy3,jy0);
957             dz30             = _mm256_sub_ps(iz3,jz0);
958
959             /* Calculate squared distance and things based on it */
960             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
961             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
962             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
963             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
964
965             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
966             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
967             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
968
969             rinvsq00         = gmx_mm256_inv_ps(rsq00);
970             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
971             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
972             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
973
974             /* Load parameters for j particles */
975             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
976                                                                  charge+jnrC+0,charge+jnrD+0,
977                                                                  charge+jnrE+0,charge+jnrF+0,
978                                                                  charge+jnrG+0,charge+jnrH+0);
979             vdwjidx0A        = 2*vdwtype[jnrA+0];
980             vdwjidx0B        = 2*vdwtype[jnrB+0];
981             vdwjidx0C        = 2*vdwtype[jnrC+0];
982             vdwjidx0D        = 2*vdwtype[jnrD+0];
983             vdwjidx0E        = 2*vdwtype[jnrE+0];
984             vdwjidx0F        = 2*vdwtype[jnrF+0];
985             vdwjidx0G        = 2*vdwtype[jnrG+0];
986             vdwjidx0H        = 2*vdwtype[jnrH+0];
987
988             fjx0             = _mm256_setzero_ps();
989             fjy0             = _mm256_setzero_ps();
990             fjz0             = _mm256_setzero_ps();
991
992             /**************************
993              * CALCULATE INTERACTIONS *
994              **************************/
995
996             /* Compute parameters for interactions between i and j atoms */
997             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
998                                             vdwioffsetptr0+vdwjidx0B,
999                                             vdwioffsetptr0+vdwjidx0C,
1000                                             vdwioffsetptr0+vdwjidx0D,
1001                                             vdwioffsetptr0+vdwjidx0E,
1002                                             vdwioffsetptr0+vdwjidx0F,
1003                                             vdwioffsetptr0+vdwjidx0G,
1004                                             vdwioffsetptr0+vdwjidx0H,
1005                                             &c6_00,&c12_00);
1006
1007             /* LENNARD-JONES DISPERSION/REPULSION */
1008
1009             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1010             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1011
1012             fscal            = fvdw;
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm256_mul_ps(fscal,dx00);
1016             ty               = _mm256_mul_ps(fscal,dy00);
1017             tz               = _mm256_mul_ps(fscal,dz00);
1018
1019             /* Update vectorial force */
1020             fix0             = _mm256_add_ps(fix0,tx);
1021             fiy0             = _mm256_add_ps(fiy0,ty);
1022             fiz0             = _mm256_add_ps(fiz0,tz);
1023
1024             fjx0             = _mm256_add_ps(fjx0,tx);
1025             fjy0             = _mm256_add_ps(fjy0,ty);
1026             fjz0             = _mm256_add_ps(fjz0,tz);
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             r10              = _mm256_mul_ps(rsq10,rinv10);
1033
1034             /* Compute parameters for interactions between i and j atoms */
1035             qq10             = _mm256_mul_ps(iq1,jq0);
1036
1037             /* EWALD ELECTROSTATICS */
1038             
1039             /* Analytical PME correction */
1040             zeta2            = _mm256_mul_ps(beta2,rsq10);
1041             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1042             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1043             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1044             felec            = _mm256_mul_ps(qq10,felec);
1045             
1046             fscal            = felec;
1047
1048             /* Calculate temporary vectorial force */
1049             tx               = _mm256_mul_ps(fscal,dx10);
1050             ty               = _mm256_mul_ps(fscal,dy10);
1051             tz               = _mm256_mul_ps(fscal,dz10);
1052
1053             /* Update vectorial force */
1054             fix1             = _mm256_add_ps(fix1,tx);
1055             fiy1             = _mm256_add_ps(fiy1,ty);
1056             fiz1             = _mm256_add_ps(fiz1,tz);
1057
1058             fjx0             = _mm256_add_ps(fjx0,tx);
1059             fjy0             = _mm256_add_ps(fjy0,ty);
1060             fjz0             = _mm256_add_ps(fjz0,tz);
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             r20              = _mm256_mul_ps(rsq20,rinv20);
1067
1068             /* Compute parameters for interactions between i and j atoms */
1069             qq20             = _mm256_mul_ps(iq2,jq0);
1070
1071             /* EWALD ELECTROSTATICS */
1072             
1073             /* Analytical PME correction */
1074             zeta2            = _mm256_mul_ps(beta2,rsq20);
1075             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1076             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1077             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1078             felec            = _mm256_mul_ps(qq20,felec);
1079             
1080             fscal            = felec;
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = _mm256_mul_ps(fscal,dx20);
1084             ty               = _mm256_mul_ps(fscal,dy20);
1085             tz               = _mm256_mul_ps(fscal,dz20);
1086
1087             /* Update vectorial force */
1088             fix2             = _mm256_add_ps(fix2,tx);
1089             fiy2             = _mm256_add_ps(fiy2,ty);
1090             fiz2             = _mm256_add_ps(fiz2,tz);
1091
1092             fjx0             = _mm256_add_ps(fjx0,tx);
1093             fjy0             = _mm256_add_ps(fjy0,ty);
1094             fjz0             = _mm256_add_ps(fjz0,tz);
1095
1096             /**************************
1097              * CALCULATE INTERACTIONS *
1098              **************************/
1099
1100             r30              = _mm256_mul_ps(rsq30,rinv30);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq30             = _mm256_mul_ps(iq3,jq0);
1104
1105             /* EWALD ELECTROSTATICS */
1106             
1107             /* Analytical PME correction */
1108             zeta2            = _mm256_mul_ps(beta2,rsq30);
1109             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1110             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1111             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1112             felec            = _mm256_mul_ps(qq30,felec);
1113             
1114             fscal            = felec;
1115
1116             /* Calculate temporary vectorial force */
1117             tx               = _mm256_mul_ps(fscal,dx30);
1118             ty               = _mm256_mul_ps(fscal,dy30);
1119             tz               = _mm256_mul_ps(fscal,dz30);
1120
1121             /* Update vectorial force */
1122             fix3             = _mm256_add_ps(fix3,tx);
1123             fiy3             = _mm256_add_ps(fiy3,ty);
1124             fiz3             = _mm256_add_ps(fiz3,tz);
1125
1126             fjx0             = _mm256_add_ps(fjx0,tx);
1127             fjy0             = _mm256_add_ps(fjy0,ty);
1128             fjz0             = _mm256_add_ps(fjz0,tz);
1129
1130             fjptrA             = f+j_coord_offsetA;
1131             fjptrB             = f+j_coord_offsetB;
1132             fjptrC             = f+j_coord_offsetC;
1133             fjptrD             = f+j_coord_offsetD;
1134             fjptrE             = f+j_coord_offsetE;
1135             fjptrF             = f+j_coord_offsetF;
1136             fjptrG             = f+j_coord_offsetG;
1137             fjptrH             = f+j_coord_offsetH;
1138
1139             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1140
1141             /* Inner loop uses 198 flops */
1142         }
1143
1144         if(jidx<j_index_end)
1145         {
1146
1147             /* Get j neighbor index, and coordinate index */
1148             jnrlistA         = jjnr[jidx];
1149             jnrlistB         = jjnr[jidx+1];
1150             jnrlistC         = jjnr[jidx+2];
1151             jnrlistD         = jjnr[jidx+3];
1152             jnrlistE         = jjnr[jidx+4];
1153             jnrlistF         = jjnr[jidx+5];
1154             jnrlistG         = jjnr[jidx+6];
1155             jnrlistH         = jjnr[jidx+7];
1156             /* Sign of each element will be negative for non-real atoms.
1157              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1158              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1159              */
1160             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1161                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1162                                             
1163             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1164             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1165             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1166             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1167             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1168             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1169             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1170             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1171             j_coord_offsetA  = DIM*jnrA;
1172             j_coord_offsetB  = DIM*jnrB;
1173             j_coord_offsetC  = DIM*jnrC;
1174             j_coord_offsetD  = DIM*jnrD;
1175             j_coord_offsetE  = DIM*jnrE;
1176             j_coord_offsetF  = DIM*jnrF;
1177             j_coord_offsetG  = DIM*jnrG;
1178             j_coord_offsetH  = DIM*jnrH;
1179
1180             /* load j atom coordinates */
1181             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1182                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1183                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1184                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1185                                                  &jx0,&jy0,&jz0);
1186
1187             /* Calculate displacement vector */
1188             dx00             = _mm256_sub_ps(ix0,jx0);
1189             dy00             = _mm256_sub_ps(iy0,jy0);
1190             dz00             = _mm256_sub_ps(iz0,jz0);
1191             dx10             = _mm256_sub_ps(ix1,jx0);
1192             dy10             = _mm256_sub_ps(iy1,jy0);
1193             dz10             = _mm256_sub_ps(iz1,jz0);
1194             dx20             = _mm256_sub_ps(ix2,jx0);
1195             dy20             = _mm256_sub_ps(iy2,jy0);
1196             dz20             = _mm256_sub_ps(iz2,jz0);
1197             dx30             = _mm256_sub_ps(ix3,jx0);
1198             dy30             = _mm256_sub_ps(iy3,jy0);
1199             dz30             = _mm256_sub_ps(iz3,jz0);
1200
1201             /* Calculate squared distance and things based on it */
1202             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1203             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1204             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1205             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1206
1207             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1208             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1209             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1210
1211             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1212             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1213             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1214             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1215
1216             /* Load parameters for j particles */
1217             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1218                                                                  charge+jnrC+0,charge+jnrD+0,
1219                                                                  charge+jnrE+0,charge+jnrF+0,
1220                                                                  charge+jnrG+0,charge+jnrH+0);
1221             vdwjidx0A        = 2*vdwtype[jnrA+0];
1222             vdwjidx0B        = 2*vdwtype[jnrB+0];
1223             vdwjidx0C        = 2*vdwtype[jnrC+0];
1224             vdwjidx0D        = 2*vdwtype[jnrD+0];
1225             vdwjidx0E        = 2*vdwtype[jnrE+0];
1226             vdwjidx0F        = 2*vdwtype[jnrF+0];
1227             vdwjidx0G        = 2*vdwtype[jnrG+0];
1228             vdwjidx0H        = 2*vdwtype[jnrH+0];
1229
1230             fjx0             = _mm256_setzero_ps();
1231             fjy0             = _mm256_setzero_ps();
1232             fjz0             = _mm256_setzero_ps();
1233
1234             /**************************
1235              * CALCULATE INTERACTIONS *
1236              **************************/
1237
1238             /* Compute parameters for interactions between i and j atoms */
1239             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1240                                             vdwioffsetptr0+vdwjidx0B,
1241                                             vdwioffsetptr0+vdwjidx0C,
1242                                             vdwioffsetptr0+vdwjidx0D,
1243                                             vdwioffsetptr0+vdwjidx0E,
1244                                             vdwioffsetptr0+vdwjidx0F,
1245                                             vdwioffsetptr0+vdwjidx0G,
1246                                             vdwioffsetptr0+vdwjidx0H,
1247                                             &c6_00,&c12_00);
1248
1249             /* LENNARD-JONES DISPERSION/REPULSION */
1250
1251             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1252             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1253
1254             fscal            = fvdw;
1255
1256             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1257
1258             /* Calculate temporary vectorial force */
1259             tx               = _mm256_mul_ps(fscal,dx00);
1260             ty               = _mm256_mul_ps(fscal,dy00);
1261             tz               = _mm256_mul_ps(fscal,dz00);
1262
1263             /* Update vectorial force */
1264             fix0             = _mm256_add_ps(fix0,tx);
1265             fiy0             = _mm256_add_ps(fiy0,ty);
1266             fiz0             = _mm256_add_ps(fiz0,tz);
1267
1268             fjx0             = _mm256_add_ps(fjx0,tx);
1269             fjy0             = _mm256_add_ps(fjy0,ty);
1270             fjz0             = _mm256_add_ps(fjz0,tz);
1271
1272             /**************************
1273              * CALCULATE INTERACTIONS *
1274              **************************/
1275
1276             r10              = _mm256_mul_ps(rsq10,rinv10);
1277             r10              = _mm256_andnot_ps(dummy_mask,r10);
1278
1279             /* Compute parameters for interactions between i and j atoms */
1280             qq10             = _mm256_mul_ps(iq1,jq0);
1281
1282             /* EWALD ELECTROSTATICS */
1283             
1284             /* Analytical PME correction */
1285             zeta2            = _mm256_mul_ps(beta2,rsq10);
1286             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1287             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1288             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1289             felec            = _mm256_mul_ps(qq10,felec);
1290             
1291             fscal            = felec;
1292
1293             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1294
1295             /* Calculate temporary vectorial force */
1296             tx               = _mm256_mul_ps(fscal,dx10);
1297             ty               = _mm256_mul_ps(fscal,dy10);
1298             tz               = _mm256_mul_ps(fscal,dz10);
1299
1300             /* Update vectorial force */
1301             fix1             = _mm256_add_ps(fix1,tx);
1302             fiy1             = _mm256_add_ps(fiy1,ty);
1303             fiz1             = _mm256_add_ps(fiz1,tz);
1304
1305             fjx0             = _mm256_add_ps(fjx0,tx);
1306             fjy0             = _mm256_add_ps(fjy0,ty);
1307             fjz0             = _mm256_add_ps(fjz0,tz);
1308
1309             /**************************
1310              * CALCULATE INTERACTIONS *
1311              **************************/
1312
1313             r20              = _mm256_mul_ps(rsq20,rinv20);
1314             r20              = _mm256_andnot_ps(dummy_mask,r20);
1315
1316             /* Compute parameters for interactions between i and j atoms */
1317             qq20             = _mm256_mul_ps(iq2,jq0);
1318
1319             /* EWALD ELECTROSTATICS */
1320             
1321             /* Analytical PME correction */
1322             zeta2            = _mm256_mul_ps(beta2,rsq20);
1323             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1324             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1325             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1326             felec            = _mm256_mul_ps(qq20,felec);
1327             
1328             fscal            = felec;
1329
1330             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1331
1332             /* Calculate temporary vectorial force */
1333             tx               = _mm256_mul_ps(fscal,dx20);
1334             ty               = _mm256_mul_ps(fscal,dy20);
1335             tz               = _mm256_mul_ps(fscal,dz20);
1336
1337             /* Update vectorial force */
1338             fix2             = _mm256_add_ps(fix2,tx);
1339             fiy2             = _mm256_add_ps(fiy2,ty);
1340             fiz2             = _mm256_add_ps(fiz2,tz);
1341
1342             fjx0             = _mm256_add_ps(fjx0,tx);
1343             fjy0             = _mm256_add_ps(fjy0,ty);
1344             fjz0             = _mm256_add_ps(fjz0,tz);
1345
1346             /**************************
1347              * CALCULATE INTERACTIONS *
1348              **************************/
1349
1350             r30              = _mm256_mul_ps(rsq30,rinv30);
1351             r30              = _mm256_andnot_ps(dummy_mask,r30);
1352
1353             /* Compute parameters for interactions between i and j atoms */
1354             qq30             = _mm256_mul_ps(iq3,jq0);
1355
1356             /* EWALD ELECTROSTATICS */
1357             
1358             /* Analytical PME correction */
1359             zeta2            = _mm256_mul_ps(beta2,rsq30);
1360             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1361             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1362             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1363             felec            = _mm256_mul_ps(qq30,felec);
1364             
1365             fscal            = felec;
1366
1367             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1368
1369             /* Calculate temporary vectorial force */
1370             tx               = _mm256_mul_ps(fscal,dx30);
1371             ty               = _mm256_mul_ps(fscal,dy30);
1372             tz               = _mm256_mul_ps(fscal,dz30);
1373
1374             /* Update vectorial force */
1375             fix3             = _mm256_add_ps(fix3,tx);
1376             fiy3             = _mm256_add_ps(fiy3,ty);
1377             fiz3             = _mm256_add_ps(fiz3,tz);
1378
1379             fjx0             = _mm256_add_ps(fjx0,tx);
1380             fjy0             = _mm256_add_ps(fjy0,ty);
1381             fjz0             = _mm256_add_ps(fjz0,tz);
1382
1383             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1384             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1385             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1386             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1387             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1388             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1389             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1390             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1391
1392             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1393
1394             /* Inner loop uses 201 flops */
1395         }
1396
1397         /* End of innermost loop */
1398
1399         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1400                                                  f+i_coord_offset,fshift+i_shift_offset);
1401
1402         /* Increment number of inner iterations */
1403         inneriter                  += j_index_end - j_index_start;
1404
1405         /* Outer loop uses 24 flops */
1406     }
1407
1408     /* Increment number of outer iterations */
1409     outeriter        += nri;
1410
1411     /* Update outer/inner flops */
1412
1413     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*201);
1414 }