a39f5249447bbc8ca656a1dd6ccc29815f3423e8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
104     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
105     __m256i          ewitab;
106     __m128i          ewitab_lo,ewitab_hi;
107     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
109     real             *ewtab;
110     __m256           dummy_mask,cutoff_mask;
111     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
112     __m256           one     = _mm256_set1_ps(1.0);
113     __m256           two     = _mm256_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
132     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
133     beta2            = _mm256_mul_ps(beta,beta);
134     beta3            = _mm256_mul_ps(beta,beta2);
135
136     ewtab            = fr->ic->tabq_coul_FDV0;
137     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
138     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
143     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
144     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
145     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153     j_coord_offsetE = 0;
154     j_coord_offsetF = 0;
155     j_coord_offsetG = 0;
156     j_coord_offsetH = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
183
184         fix0             = _mm256_setzero_ps();
185         fiy0             = _mm256_setzero_ps();
186         fiz0             = _mm256_setzero_ps();
187         fix1             = _mm256_setzero_ps();
188         fiy1             = _mm256_setzero_ps();
189         fiz1             = _mm256_setzero_ps();
190         fix2             = _mm256_setzero_ps();
191         fiy2             = _mm256_setzero_ps();
192         fiz2             = _mm256_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm256_setzero_ps();
196         vvdwsum          = _mm256_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             jnrE             = jjnr[jidx+4];
208             jnrF             = jjnr[jidx+5];
209             jnrG             = jjnr[jidx+6];
210             jnrH             = jjnr[jidx+7];
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215             j_coord_offsetE  = DIM*jnrE;
216             j_coord_offsetF  = DIM*jnrF;
217             j_coord_offsetG  = DIM*jnrG;
218             j_coord_offsetH  = DIM*jnrH;
219
220             /* load j atom coordinates */
221             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
222                                                  x+j_coord_offsetC,x+j_coord_offsetD,
223                                                  x+j_coord_offsetE,x+j_coord_offsetF,
224                                                  x+j_coord_offsetG,x+j_coord_offsetH,
225                                                  &jx0,&jy0,&jz0);
226
227             /* Calculate displacement vector */
228             dx00             = _mm256_sub_ps(ix0,jx0);
229             dy00             = _mm256_sub_ps(iy0,jy0);
230             dz00             = _mm256_sub_ps(iz0,jz0);
231             dx10             = _mm256_sub_ps(ix1,jx0);
232             dy10             = _mm256_sub_ps(iy1,jy0);
233             dz10             = _mm256_sub_ps(iz1,jz0);
234             dx20             = _mm256_sub_ps(ix2,jx0);
235             dy20             = _mm256_sub_ps(iy2,jy0);
236             dz20             = _mm256_sub_ps(iz2,jz0);
237
238             /* Calculate squared distance and things based on it */
239             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
240             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
241             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
242
243             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
244             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
245             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
246
247             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
248             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
249             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
250
251             /* Load parameters for j particles */
252             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
253                                                                  charge+jnrC+0,charge+jnrD+0,
254                                                                  charge+jnrE+0,charge+jnrF+0,
255                                                                  charge+jnrG+0,charge+jnrH+0);
256             vdwjidx0A        = 2*vdwtype[jnrA+0];
257             vdwjidx0B        = 2*vdwtype[jnrB+0];
258             vdwjidx0C        = 2*vdwtype[jnrC+0];
259             vdwjidx0D        = 2*vdwtype[jnrD+0];
260             vdwjidx0E        = 2*vdwtype[jnrE+0];
261             vdwjidx0F        = 2*vdwtype[jnrF+0];
262             vdwjidx0G        = 2*vdwtype[jnrG+0];
263             vdwjidx0H        = 2*vdwtype[jnrH+0];
264
265             fjx0             = _mm256_setzero_ps();
266             fjy0             = _mm256_setzero_ps();
267             fjz0             = _mm256_setzero_ps();
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             r00              = _mm256_mul_ps(rsq00,rinv00);
274
275             /* Compute parameters for interactions between i and j atoms */
276             qq00             = _mm256_mul_ps(iq0,jq0);
277             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
278                                             vdwioffsetptr0+vdwjidx0B,
279                                             vdwioffsetptr0+vdwjidx0C,
280                                             vdwioffsetptr0+vdwjidx0D,
281                                             vdwioffsetptr0+vdwjidx0E,
282                                             vdwioffsetptr0+vdwjidx0F,
283                                             vdwioffsetptr0+vdwjidx0G,
284                                             vdwioffsetptr0+vdwjidx0H,
285                                             &c6_00,&c12_00);
286
287             /* EWALD ELECTROSTATICS */
288             
289             /* Analytical PME correction */
290             zeta2            = _mm256_mul_ps(beta2,rsq00);
291             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
292             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
293             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
294             felec            = _mm256_mul_ps(qq00,felec);
295             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
296             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
297             velec            = _mm256_sub_ps(rinv00,pmecorrV);
298             velec            = _mm256_mul_ps(qq00,velec);
299             
300             /* LENNARD-JONES DISPERSION/REPULSION */
301
302             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
303             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
304             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
305             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
306             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velecsum         = _mm256_add_ps(velecsum,velec);
310             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
311
312             fscal            = _mm256_add_ps(felec,fvdw);
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm256_mul_ps(fscal,dx00);
316             ty               = _mm256_mul_ps(fscal,dy00);
317             tz               = _mm256_mul_ps(fscal,dz00);
318
319             /* Update vectorial force */
320             fix0             = _mm256_add_ps(fix0,tx);
321             fiy0             = _mm256_add_ps(fiy0,ty);
322             fiz0             = _mm256_add_ps(fiz0,tz);
323
324             fjx0             = _mm256_add_ps(fjx0,tx);
325             fjy0             = _mm256_add_ps(fjy0,ty);
326             fjz0             = _mm256_add_ps(fjz0,tz);
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             r10              = _mm256_mul_ps(rsq10,rinv10);
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq10             = _mm256_mul_ps(iq1,jq0);
336
337             /* EWALD ELECTROSTATICS */
338             
339             /* Analytical PME correction */
340             zeta2            = _mm256_mul_ps(beta2,rsq10);
341             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
342             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
343             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
344             felec            = _mm256_mul_ps(qq10,felec);
345             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
346             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
347             velec            = _mm256_sub_ps(rinv10,pmecorrV);
348             velec            = _mm256_mul_ps(qq10,velec);
349             
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velecsum         = _mm256_add_ps(velecsum,velec);
352
353             fscal            = felec;
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm256_mul_ps(fscal,dx10);
357             ty               = _mm256_mul_ps(fscal,dy10);
358             tz               = _mm256_mul_ps(fscal,dz10);
359
360             /* Update vectorial force */
361             fix1             = _mm256_add_ps(fix1,tx);
362             fiy1             = _mm256_add_ps(fiy1,ty);
363             fiz1             = _mm256_add_ps(fiz1,tz);
364
365             fjx0             = _mm256_add_ps(fjx0,tx);
366             fjy0             = _mm256_add_ps(fjy0,ty);
367             fjz0             = _mm256_add_ps(fjz0,tz);
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             r20              = _mm256_mul_ps(rsq20,rinv20);
374
375             /* Compute parameters for interactions between i and j atoms */
376             qq20             = _mm256_mul_ps(iq2,jq0);
377
378             /* EWALD ELECTROSTATICS */
379             
380             /* Analytical PME correction */
381             zeta2            = _mm256_mul_ps(beta2,rsq20);
382             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
383             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
384             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
385             felec            = _mm256_mul_ps(qq20,felec);
386             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
387             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
388             velec            = _mm256_sub_ps(rinv20,pmecorrV);
389             velec            = _mm256_mul_ps(qq20,velec);
390             
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velecsum         = _mm256_add_ps(velecsum,velec);
393
394             fscal            = felec;
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm256_mul_ps(fscal,dx20);
398             ty               = _mm256_mul_ps(fscal,dy20);
399             tz               = _mm256_mul_ps(fscal,dz20);
400
401             /* Update vectorial force */
402             fix2             = _mm256_add_ps(fix2,tx);
403             fiy2             = _mm256_add_ps(fiy2,ty);
404             fiz2             = _mm256_add_ps(fiz2,tz);
405
406             fjx0             = _mm256_add_ps(fjx0,tx);
407             fjy0             = _mm256_add_ps(fjy0,ty);
408             fjz0             = _mm256_add_ps(fjz0,tz);
409
410             fjptrA             = f+j_coord_offsetA;
411             fjptrB             = f+j_coord_offsetB;
412             fjptrC             = f+j_coord_offsetC;
413             fjptrD             = f+j_coord_offsetD;
414             fjptrE             = f+j_coord_offsetE;
415             fjptrF             = f+j_coord_offsetF;
416             fjptrG             = f+j_coord_offsetG;
417             fjptrH             = f+j_coord_offsetH;
418
419             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
420
421             /* Inner loop uses 267 flops */
422         }
423
424         if(jidx<j_index_end)
425         {
426
427             /* Get j neighbor index, and coordinate index */
428             jnrlistA         = jjnr[jidx];
429             jnrlistB         = jjnr[jidx+1];
430             jnrlistC         = jjnr[jidx+2];
431             jnrlistD         = jjnr[jidx+3];
432             jnrlistE         = jjnr[jidx+4];
433             jnrlistF         = jjnr[jidx+5];
434             jnrlistG         = jjnr[jidx+6];
435             jnrlistH         = jjnr[jidx+7];
436             /* Sign of each element will be negative for non-real atoms.
437              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
438              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
439              */
440             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
441                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
442                                             
443             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
444             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
445             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
446             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
447             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
448             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
449             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
450             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
451             j_coord_offsetA  = DIM*jnrA;
452             j_coord_offsetB  = DIM*jnrB;
453             j_coord_offsetC  = DIM*jnrC;
454             j_coord_offsetD  = DIM*jnrD;
455             j_coord_offsetE  = DIM*jnrE;
456             j_coord_offsetF  = DIM*jnrF;
457             j_coord_offsetG  = DIM*jnrG;
458             j_coord_offsetH  = DIM*jnrH;
459
460             /* load j atom coordinates */
461             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
462                                                  x+j_coord_offsetC,x+j_coord_offsetD,
463                                                  x+j_coord_offsetE,x+j_coord_offsetF,
464                                                  x+j_coord_offsetG,x+j_coord_offsetH,
465                                                  &jx0,&jy0,&jz0);
466
467             /* Calculate displacement vector */
468             dx00             = _mm256_sub_ps(ix0,jx0);
469             dy00             = _mm256_sub_ps(iy0,jy0);
470             dz00             = _mm256_sub_ps(iz0,jz0);
471             dx10             = _mm256_sub_ps(ix1,jx0);
472             dy10             = _mm256_sub_ps(iy1,jy0);
473             dz10             = _mm256_sub_ps(iz1,jz0);
474             dx20             = _mm256_sub_ps(ix2,jx0);
475             dy20             = _mm256_sub_ps(iy2,jy0);
476             dz20             = _mm256_sub_ps(iz2,jz0);
477
478             /* Calculate squared distance and things based on it */
479             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
480             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
481             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
482
483             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
484             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
485             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
486
487             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
488             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
489             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
490
491             /* Load parameters for j particles */
492             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
493                                                                  charge+jnrC+0,charge+jnrD+0,
494                                                                  charge+jnrE+0,charge+jnrF+0,
495                                                                  charge+jnrG+0,charge+jnrH+0);
496             vdwjidx0A        = 2*vdwtype[jnrA+0];
497             vdwjidx0B        = 2*vdwtype[jnrB+0];
498             vdwjidx0C        = 2*vdwtype[jnrC+0];
499             vdwjidx0D        = 2*vdwtype[jnrD+0];
500             vdwjidx0E        = 2*vdwtype[jnrE+0];
501             vdwjidx0F        = 2*vdwtype[jnrF+0];
502             vdwjidx0G        = 2*vdwtype[jnrG+0];
503             vdwjidx0H        = 2*vdwtype[jnrH+0];
504
505             fjx0             = _mm256_setzero_ps();
506             fjy0             = _mm256_setzero_ps();
507             fjz0             = _mm256_setzero_ps();
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             r00              = _mm256_mul_ps(rsq00,rinv00);
514             r00              = _mm256_andnot_ps(dummy_mask,r00);
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq00             = _mm256_mul_ps(iq0,jq0);
518             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
519                                             vdwioffsetptr0+vdwjidx0B,
520                                             vdwioffsetptr0+vdwjidx0C,
521                                             vdwioffsetptr0+vdwjidx0D,
522                                             vdwioffsetptr0+vdwjidx0E,
523                                             vdwioffsetptr0+vdwjidx0F,
524                                             vdwioffsetptr0+vdwjidx0G,
525                                             vdwioffsetptr0+vdwjidx0H,
526                                             &c6_00,&c12_00);
527
528             /* EWALD ELECTROSTATICS */
529             
530             /* Analytical PME correction */
531             zeta2            = _mm256_mul_ps(beta2,rsq00);
532             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
533             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
534             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
535             felec            = _mm256_mul_ps(qq00,felec);
536             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
537             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
538             velec            = _mm256_sub_ps(rinv00,pmecorrV);
539             velec            = _mm256_mul_ps(qq00,velec);
540             
541             /* LENNARD-JONES DISPERSION/REPULSION */
542
543             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
544             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
545             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
546             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
547             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _mm256_andnot_ps(dummy_mask,velec);
551             velecsum         = _mm256_add_ps(velecsum,velec);
552             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
553             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
554
555             fscal            = _mm256_add_ps(felec,fvdw);
556
557             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm256_mul_ps(fscal,dx00);
561             ty               = _mm256_mul_ps(fscal,dy00);
562             tz               = _mm256_mul_ps(fscal,dz00);
563
564             /* Update vectorial force */
565             fix0             = _mm256_add_ps(fix0,tx);
566             fiy0             = _mm256_add_ps(fiy0,ty);
567             fiz0             = _mm256_add_ps(fiz0,tz);
568
569             fjx0             = _mm256_add_ps(fjx0,tx);
570             fjy0             = _mm256_add_ps(fjy0,ty);
571             fjz0             = _mm256_add_ps(fjz0,tz);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r10              = _mm256_mul_ps(rsq10,rinv10);
578             r10              = _mm256_andnot_ps(dummy_mask,r10);
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq10             = _mm256_mul_ps(iq1,jq0);
582
583             /* EWALD ELECTROSTATICS */
584             
585             /* Analytical PME correction */
586             zeta2            = _mm256_mul_ps(beta2,rsq10);
587             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
588             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
589             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
590             felec            = _mm256_mul_ps(qq10,felec);
591             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
592             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
593             velec            = _mm256_sub_ps(rinv10,pmecorrV);
594             velec            = _mm256_mul_ps(qq10,velec);
595             
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velec            = _mm256_andnot_ps(dummy_mask,velec);
598             velecsum         = _mm256_add_ps(velecsum,velec);
599
600             fscal            = felec;
601
602             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
603
604             /* Calculate temporary vectorial force */
605             tx               = _mm256_mul_ps(fscal,dx10);
606             ty               = _mm256_mul_ps(fscal,dy10);
607             tz               = _mm256_mul_ps(fscal,dz10);
608
609             /* Update vectorial force */
610             fix1             = _mm256_add_ps(fix1,tx);
611             fiy1             = _mm256_add_ps(fiy1,ty);
612             fiz1             = _mm256_add_ps(fiz1,tz);
613
614             fjx0             = _mm256_add_ps(fjx0,tx);
615             fjy0             = _mm256_add_ps(fjy0,ty);
616             fjz0             = _mm256_add_ps(fjz0,tz);
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             r20              = _mm256_mul_ps(rsq20,rinv20);
623             r20              = _mm256_andnot_ps(dummy_mask,r20);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq20             = _mm256_mul_ps(iq2,jq0);
627
628             /* EWALD ELECTROSTATICS */
629             
630             /* Analytical PME correction */
631             zeta2            = _mm256_mul_ps(beta2,rsq20);
632             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
633             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
634             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
635             felec            = _mm256_mul_ps(qq20,felec);
636             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
637             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
638             velec            = _mm256_sub_ps(rinv20,pmecorrV);
639             velec            = _mm256_mul_ps(qq20,velec);
640             
641             /* Update potential sum for this i atom from the interaction with this j atom. */
642             velec            = _mm256_andnot_ps(dummy_mask,velec);
643             velecsum         = _mm256_add_ps(velecsum,velec);
644
645             fscal            = felec;
646
647             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
648
649             /* Calculate temporary vectorial force */
650             tx               = _mm256_mul_ps(fscal,dx20);
651             ty               = _mm256_mul_ps(fscal,dy20);
652             tz               = _mm256_mul_ps(fscal,dz20);
653
654             /* Update vectorial force */
655             fix2             = _mm256_add_ps(fix2,tx);
656             fiy2             = _mm256_add_ps(fiy2,ty);
657             fiz2             = _mm256_add_ps(fiz2,tz);
658
659             fjx0             = _mm256_add_ps(fjx0,tx);
660             fjy0             = _mm256_add_ps(fjy0,ty);
661             fjz0             = _mm256_add_ps(fjz0,tz);
662
663             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
664             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
665             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
666             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
667             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
668             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
669             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
670             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
671
672             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
673
674             /* Inner loop uses 270 flops */
675         }
676
677         /* End of innermost loop */
678
679         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
680                                                  f+i_coord_offset,fshift+i_shift_offset);
681
682         ggid                        = gid[iidx];
683         /* Update potential energies */
684         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
685         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
686
687         /* Increment number of inner iterations */
688         inneriter                  += j_index_end - j_index_start;
689
690         /* Outer loop uses 20 flops */
691     }
692
693     /* Increment number of outer iterations */
694     outeriter        += nri;
695
696     /* Update outer/inner flops */
697
698     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*270);
699 }
700 /*
701  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_single
702  * Electrostatics interaction: Ewald
703  * VdW interaction:            LennardJones
704  * Geometry:                   Water3-Particle
705  * Calculate force/pot:        Force
706  */
707 void
708 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_single
709                     (t_nblist                    * gmx_restrict       nlist,
710                      rvec                        * gmx_restrict          xx,
711                      rvec                        * gmx_restrict          ff,
712                      t_forcerec                  * gmx_restrict          fr,
713                      t_mdatoms                   * gmx_restrict     mdatoms,
714                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
715                      t_nrnb                      * gmx_restrict        nrnb)
716 {
717     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
718      * just 0 for non-waters.
719      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
720      * jnr indices corresponding to data put in the four positions in the SIMD register.
721      */
722     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
723     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
724     int              jnrA,jnrB,jnrC,jnrD;
725     int              jnrE,jnrF,jnrG,jnrH;
726     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
727     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
728     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
729     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
730     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
731     real             rcutoff_scalar;
732     real             *shiftvec,*fshift,*x,*f;
733     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
734     real             scratch[4*DIM];
735     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
736     real *           vdwioffsetptr0;
737     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
738     real *           vdwioffsetptr1;
739     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
740     real *           vdwioffsetptr2;
741     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
742     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
743     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
744     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
745     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
746     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
747     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
748     real             *charge;
749     int              nvdwtype;
750     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
751     int              *vdwtype;
752     real             *vdwparam;
753     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
754     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
755     __m256i          ewitab;
756     __m128i          ewitab_lo,ewitab_hi;
757     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
758     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
759     real             *ewtab;
760     __m256           dummy_mask,cutoff_mask;
761     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
762     __m256           one     = _mm256_set1_ps(1.0);
763     __m256           two     = _mm256_set1_ps(2.0);
764     x                = xx[0];
765     f                = ff[0];
766
767     nri              = nlist->nri;
768     iinr             = nlist->iinr;
769     jindex           = nlist->jindex;
770     jjnr             = nlist->jjnr;
771     shiftidx         = nlist->shift;
772     gid              = nlist->gid;
773     shiftvec         = fr->shift_vec[0];
774     fshift           = fr->fshift[0];
775     facel            = _mm256_set1_ps(fr->epsfac);
776     charge           = mdatoms->chargeA;
777     nvdwtype         = fr->ntype;
778     vdwparam         = fr->nbfp;
779     vdwtype          = mdatoms->typeA;
780
781     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
782     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
783     beta2            = _mm256_mul_ps(beta,beta);
784     beta3            = _mm256_mul_ps(beta,beta2);
785
786     ewtab            = fr->ic->tabq_coul_F;
787     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
788     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
789
790     /* Setup water-specific parameters */
791     inr              = nlist->iinr[0];
792     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
793     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
794     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
795     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
796
797     /* Avoid stupid compiler warnings */
798     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
799     j_coord_offsetA = 0;
800     j_coord_offsetB = 0;
801     j_coord_offsetC = 0;
802     j_coord_offsetD = 0;
803     j_coord_offsetE = 0;
804     j_coord_offsetF = 0;
805     j_coord_offsetG = 0;
806     j_coord_offsetH = 0;
807
808     outeriter        = 0;
809     inneriter        = 0;
810
811     for(iidx=0;iidx<4*DIM;iidx++)
812     {
813         scratch[iidx] = 0.0;
814     }
815
816     /* Start outer loop over neighborlists */
817     for(iidx=0; iidx<nri; iidx++)
818     {
819         /* Load shift vector for this list */
820         i_shift_offset   = DIM*shiftidx[iidx];
821
822         /* Load limits for loop over neighbors */
823         j_index_start    = jindex[iidx];
824         j_index_end      = jindex[iidx+1];
825
826         /* Get outer coordinate index */
827         inr              = iinr[iidx];
828         i_coord_offset   = DIM*inr;
829
830         /* Load i particle coords and add shift vector */
831         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
832                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
833
834         fix0             = _mm256_setzero_ps();
835         fiy0             = _mm256_setzero_ps();
836         fiz0             = _mm256_setzero_ps();
837         fix1             = _mm256_setzero_ps();
838         fiy1             = _mm256_setzero_ps();
839         fiz1             = _mm256_setzero_ps();
840         fix2             = _mm256_setzero_ps();
841         fiy2             = _mm256_setzero_ps();
842         fiz2             = _mm256_setzero_ps();
843
844         /* Start inner kernel loop */
845         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
846         {
847
848             /* Get j neighbor index, and coordinate index */
849             jnrA             = jjnr[jidx];
850             jnrB             = jjnr[jidx+1];
851             jnrC             = jjnr[jidx+2];
852             jnrD             = jjnr[jidx+3];
853             jnrE             = jjnr[jidx+4];
854             jnrF             = jjnr[jidx+5];
855             jnrG             = jjnr[jidx+6];
856             jnrH             = jjnr[jidx+7];
857             j_coord_offsetA  = DIM*jnrA;
858             j_coord_offsetB  = DIM*jnrB;
859             j_coord_offsetC  = DIM*jnrC;
860             j_coord_offsetD  = DIM*jnrD;
861             j_coord_offsetE  = DIM*jnrE;
862             j_coord_offsetF  = DIM*jnrF;
863             j_coord_offsetG  = DIM*jnrG;
864             j_coord_offsetH  = DIM*jnrH;
865
866             /* load j atom coordinates */
867             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
868                                                  x+j_coord_offsetC,x+j_coord_offsetD,
869                                                  x+j_coord_offsetE,x+j_coord_offsetF,
870                                                  x+j_coord_offsetG,x+j_coord_offsetH,
871                                                  &jx0,&jy0,&jz0);
872
873             /* Calculate displacement vector */
874             dx00             = _mm256_sub_ps(ix0,jx0);
875             dy00             = _mm256_sub_ps(iy0,jy0);
876             dz00             = _mm256_sub_ps(iz0,jz0);
877             dx10             = _mm256_sub_ps(ix1,jx0);
878             dy10             = _mm256_sub_ps(iy1,jy0);
879             dz10             = _mm256_sub_ps(iz1,jz0);
880             dx20             = _mm256_sub_ps(ix2,jx0);
881             dy20             = _mm256_sub_ps(iy2,jy0);
882             dz20             = _mm256_sub_ps(iz2,jz0);
883
884             /* Calculate squared distance and things based on it */
885             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
886             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
887             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
888
889             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
890             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
891             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
892
893             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
894             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
895             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
896
897             /* Load parameters for j particles */
898             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
899                                                                  charge+jnrC+0,charge+jnrD+0,
900                                                                  charge+jnrE+0,charge+jnrF+0,
901                                                                  charge+jnrG+0,charge+jnrH+0);
902             vdwjidx0A        = 2*vdwtype[jnrA+0];
903             vdwjidx0B        = 2*vdwtype[jnrB+0];
904             vdwjidx0C        = 2*vdwtype[jnrC+0];
905             vdwjidx0D        = 2*vdwtype[jnrD+0];
906             vdwjidx0E        = 2*vdwtype[jnrE+0];
907             vdwjidx0F        = 2*vdwtype[jnrF+0];
908             vdwjidx0G        = 2*vdwtype[jnrG+0];
909             vdwjidx0H        = 2*vdwtype[jnrH+0];
910
911             fjx0             = _mm256_setzero_ps();
912             fjy0             = _mm256_setzero_ps();
913             fjz0             = _mm256_setzero_ps();
914
915             /**************************
916              * CALCULATE INTERACTIONS *
917              **************************/
918
919             r00              = _mm256_mul_ps(rsq00,rinv00);
920
921             /* Compute parameters for interactions between i and j atoms */
922             qq00             = _mm256_mul_ps(iq0,jq0);
923             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
924                                             vdwioffsetptr0+vdwjidx0B,
925                                             vdwioffsetptr0+vdwjidx0C,
926                                             vdwioffsetptr0+vdwjidx0D,
927                                             vdwioffsetptr0+vdwjidx0E,
928                                             vdwioffsetptr0+vdwjidx0F,
929                                             vdwioffsetptr0+vdwjidx0G,
930                                             vdwioffsetptr0+vdwjidx0H,
931                                             &c6_00,&c12_00);
932
933             /* EWALD ELECTROSTATICS */
934             
935             /* Analytical PME correction */
936             zeta2            = _mm256_mul_ps(beta2,rsq00);
937             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
938             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
939             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
940             felec            = _mm256_mul_ps(qq00,felec);
941             
942             /* LENNARD-JONES DISPERSION/REPULSION */
943
944             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
945             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
946
947             fscal            = _mm256_add_ps(felec,fvdw);
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm256_mul_ps(fscal,dx00);
951             ty               = _mm256_mul_ps(fscal,dy00);
952             tz               = _mm256_mul_ps(fscal,dz00);
953
954             /* Update vectorial force */
955             fix0             = _mm256_add_ps(fix0,tx);
956             fiy0             = _mm256_add_ps(fiy0,ty);
957             fiz0             = _mm256_add_ps(fiz0,tz);
958
959             fjx0             = _mm256_add_ps(fjx0,tx);
960             fjy0             = _mm256_add_ps(fjy0,ty);
961             fjz0             = _mm256_add_ps(fjz0,tz);
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             r10              = _mm256_mul_ps(rsq10,rinv10);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq10             = _mm256_mul_ps(iq1,jq0);
971
972             /* EWALD ELECTROSTATICS */
973             
974             /* Analytical PME correction */
975             zeta2            = _mm256_mul_ps(beta2,rsq10);
976             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
977             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
978             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
979             felec            = _mm256_mul_ps(qq10,felec);
980             
981             fscal            = felec;
982
983             /* Calculate temporary vectorial force */
984             tx               = _mm256_mul_ps(fscal,dx10);
985             ty               = _mm256_mul_ps(fscal,dy10);
986             tz               = _mm256_mul_ps(fscal,dz10);
987
988             /* Update vectorial force */
989             fix1             = _mm256_add_ps(fix1,tx);
990             fiy1             = _mm256_add_ps(fiy1,ty);
991             fiz1             = _mm256_add_ps(fiz1,tz);
992
993             fjx0             = _mm256_add_ps(fjx0,tx);
994             fjy0             = _mm256_add_ps(fjy0,ty);
995             fjz0             = _mm256_add_ps(fjz0,tz);
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             r20              = _mm256_mul_ps(rsq20,rinv20);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq20             = _mm256_mul_ps(iq2,jq0);
1005
1006             /* EWALD ELECTROSTATICS */
1007             
1008             /* Analytical PME correction */
1009             zeta2            = _mm256_mul_ps(beta2,rsq20);
1010             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1011             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1012             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1013             felec            = _mm256_mul_ps(qq20,felec);
1014             
1015             fscal            = felec;
1016
1017             /* Calculate temporary vectorial force */
1018             tx               = _mm256_mul_ps(fscal,dx20);
1019             ty               = _mm256_mul_ps(fscal,dy20);
1020             tz               = _mm256_mul_ps(fscal,dz20);
1021
1022             /* Update vectorial force */
1023             fix2             = _mm256_add_ps(fix2,tx);
1024             fiy2             = _mm256_add_ps(fiy2,ty);
1025             fiz2             = _mm256_add_ps(fiz2,tz);
1026
1027             fjx0             = _mm256_add_ps(fjx0,tx);
1028             fjy0             = _mm256_add_ps(fjy0,ty);
1029             fjz0             = _mm256_add_ps(fjz0,tz);
1030
1031             fjptrA             = f+j_coord_offsetA;
1032             fjptrB             = f+j_coord_offsetB;
1033             fjptrC             = f+j_coord_offsetC;
1034             fjptrD             = f+j_coord_offsetD;
1035             fjptrE             = f+j_coord_offsetE;
1036             fjptrF             = f+j_coord_offsetF;
1037             fjptrG             = f+j_coord_offsetG;
1038             fjptrH             = f+j_coord_offsetH;
1039
1040             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1041
1042             /* Inner loop uses 178 flops */
1043         }
1044
1045         if(jidx<j_index_end)
1046         {
1047
1048             /* Get j neighbor index, and coordinate index */
1049             jnrlistA         = jjnr[jidx];
1050             jnrlistB         = jjnr[jidx+1];
1051             jnrlistC         = jjnr[jidx+2];
1052             jnrlistD         = jjnr[jidx+3];
1053             jnrlistE         = jjnr[jidx+4];
1054             jnrlistF         = jjnr[jidx+5];
1055             jnrlistG         = jjnr[jidx+6];
1056             jnrlistH         = jjnr[jidx+7];
1057             /* Sign of each element will be negative for non-real atoms.
1058              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1059              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1060              */
1061             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1062                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1063                                             
1064             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1065             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1066             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1067             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1068             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1069             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1070             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1071             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1072             j_coord_offsetA  = DIM*jnrA;
1073             j_coord_offsetB  = DIM*jnrB;
1074             j_coord_offsetC  = DIM*jnrC;
1075             j_coord_offsetD  = DIM*jnrD;
1076             j_coord_offsetE  = DIM*jnrE;
1077             j_coord_offsetF  = DIM*jnrF;
1078             j_coord_offsetG  = DIM*jnrG;
1079             j_coord_offsetH  = DIM*jnrH;
1080
1081             /* load j atom coordinates */
1082             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1083                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1084                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1085                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1086                                                  &jx0,&jy0,&jz0);
1087
1088             /* Calculate displacement vector */
1089             dx00             = _mm256_sub_ps(ix0,jx0);
1090             dy00             = _mm256_sub_ps(iy0,jy0);
1091             dz00             = _mm256_sub_ps(iz0,jz0);
1092             dx10             = _mm256_sub_ps(ix1,jx0);
1093             dy10             = _mm256_sub_ps(iy1,jy0);
1094             dz10             = _mm256_sub_ps(iz1,jz0);
1095             dx20             = _mm256_sub_ps(ix2,jx0);
1096             dy20             = _mm256_sub_ps(iy2,jy0);
1097             dz20             = _mm256_sub_ps(iz2,jz0);
1098
1099             /* Calculate squared distance and things based on it */
1100             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1101             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1102             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1103
1104             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1105             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1106             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1107
1108             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1109             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1110             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1111
1112             /* Load parameters for j particles */
1113             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1114                                                                  charge+jnrC+0,charge+jnrD+0,
1115                                                                  charge+jnrE+0,charge+jnrF+0,
1116                                                                  charge+jnrG+0,charge+jnrH+0);
1117             vdwjidx0A        = 2*vdwtype[jnrA+0];
1118             vdwjidx0B        = 2*vdwtype[jnrB+0];
1119             vdwjidx0C        = 2*vdwtype[jnrC+0];
1120             vdwjidx0D        = 2*vdwtype[jnrD+0];
1121             vdwjidx0E        = 2*vdwtype[jnrE+0];
1122             vdwjidx0F        = 2*vdwtype[jnrF+0];
1123             vdwjidx0G        = 2*vdwtype[jnrG+0];
1124             vdwjidx0H        = 2*vdwtype[jnrH+0];
1125
1126             fjx0             = _mm256_setzero_ps();
1127             fjy0             = _mm256_setzero_ps();
1128             fjz0             = _mm256_setzero_ps();
1129
1130             /**************************
1131              * CALCULATE INTERACTIONS *
1132              **************************/
1133
1134             r00              = _mm256_mul_ps(rsq00,rinv00);
1135             r00              = _mm256_andnot_ps(dummy_mask,r00);
1136
1137             /* Compute parameters for interactions between i and j atoms */
1138             qq00             = _mm256_mul_ps(iq0,jq0);
1139             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1140                                             vdwioffsetptr0+vdwjidx0B,
1141                                             vdwioffsetptr0+vdwjidx0C,
1142                                             vdwioffsetptr0+vdwjidx0D,
1143                                             vdwioffsetptr0+vdwjidx0E,
1144                                             vdwioffsetptr0+vdwjidx0F,
1145                                             vdwioffsetptr0+vdwjidx0G,
1146                                             vdwioffsetptr0+vdwjidx0H,
1147                                             &c6_00,&c12_00);
1148
1149             /* EWALD ELECTROSTATICS */
1150             
1151             /* Analytical PME correction */
1152             zeta2            = _mm256_mul_ps(beta2,rsq00);
1153             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1154             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1155             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1156             felec            = _mm256_mul_ps(qq00,felec);
1157             
1158             /* LENNARD-JONES DISPERSION/REPULSION */
1159
1160             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1161             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1162
1163             fscal            = _mm256_add_ps(felec,fvdw);
1164
1165             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1166
1167             /* Calculate temporary vectorial force */
1168             tx               = _mm256_mul_ps(fscal,dx00);
1169             ty               = _mm256_mul_ps(fscal,dy00);
1170             tz               = _mm256_mul_ps(fscal,dz00);
1171
1172             /* Update vectorial force */
1173             fix0             = _mm256_add_ps(fix0,tx);
1174             fiy0             = _mm256_add_ps(fiy0,ty);
1175             fiz0             = _mm256_add_ps(fiz0,tz);
1176
1177             fjx0             = _mm256_add_ps(fjx0,tx);
1178             fjy0             = _mm256_add_ps(fjy0,ty);
1179             fjz0             = _mm256_add_ps(fjz0,tz);
1180
1181             /**************************
1182              * CALCULATE INTERACTIONS *
1183              **************************/
1184
1185             r10              = _mm256_mul_ps(rsq10,rinv10);
1186             r10              = _mm256_andnot_ps(dummy_mask,r10);
1187
1188             /* Compute parameters for interactions between i and j atoms */
1189             qq10             = _mm256_mul_ps(iq1,jq0);
1190
1191             /* EWALD ELECTROSTATICS */
1192             
1193             /* Analytical PME correction */
1194             zeta2            = _mm256_mul_ps(beta2,rsq10);
1195             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1196             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1197             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1198             felec            = _mm256_mul_ps(qq10,felec);
1199             
1200             fscal            = felec;
1201
1202             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1203
1204             /* Calculate temporary vectorial force */
1205             tx               = _mm256_mul_ps(fscal,dx10);
1206             ty               = _mm256_mul_ps(fscal,dy10);
1207             tz               = _mm256_mul_ps(fscal,dz10);
1208
1209             /* Update vectorial force */
1210             fix1             = _mm256_add_ps(fix1,tx);
1211             fiy1             = _mm256_add_ps(fiy1,ty);
1212             fiz1             = _mm256_add_ps(fiz1,tz);
1213
1214             fjx0             = _mm256_add_ps(fjx0,tx);
1215             fjy0             = _mm256_add_ps(fjy0,ty);
1216             fjz0             = _mm256_add_ps(fjz0,tz);
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             r20              = _mm256_mul_ps(rsq20,rinv20);
1223             r20              = _mm256_andnot_ps(dummy_mask,r20);
1224
1225             /* Compute parameters for interactions between i and j atoms */
1226             qq20             = _mm256_mul_ps(iq2,jq0);
1227
1228             /* EWALD ELECTROSTATICS */
1229             
1230             /* Analytical PME correction */
1231             zeta2            = _mm256_mul_ps(beta2,rsq20);
1232             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1233             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1234             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1235             felec            = _mm256_mul_ps(qq20,felec);
1236             
1237             fscal            = felec;
1238
1239             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1240
1241             /* Calculate temporary vectorial force */
1242             tx               = _mm256_mul_ps(fscal,dx20);
1243             ty               = _mm256_mul_ps(fscal,dy20);
1244             tz               = _mm256_mul_ps(fscal,dz20);
1245
1246             /* Update vectorial force */
1247             fix2             = _mm256_add_ps(fix2,tx);
1248             fiy2             = _mm256_add_ps(fiy2,ty);
1249             fiz2             = _mm256_add_ps(fiz2,tz);
1250
1251             fjx0             = _mm256_add_ps(fjx0,tx);
1252             fjy0             = _mm256_add_ps(fjy0,ty);
1253             fjz0             = _mm256_add_ps(fjz0,tz);
1254
1255             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1256             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1257             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1258             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1259             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1260             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1261             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1262             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1263
1264             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1265
1266             /* Inner loop uses 181 flops */
1267         }
1268
1269         /* End of innermost loop */
1270
1271         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1272                                                  f+i_coord_offset,fshift+i_shift_offset);
1273
1274         /* Increment number of inner iterations */
1275         inneriter                  += j_index_end - j_index_start;
1276
1277         /* Outer loop uses 18 flops */
1278     }
1279
1280     /* Increment number of outer iterations */
1281     outeriter        += nri;
1282
1283     /* Update outer/inner flops */
1284
1285     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*181);
1286 }