Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
100     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
101     __m256i          ewitab;
102     __m128i          ewitab_lo,ewitab_hi;
103     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
128     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
129     beta2            = _mm256_mul_ps(beta,beta);
130     beta3            = _mm256_mul_ps(beta,beta2);
131
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142     j_coord_offsetE = 0;
143     j_coord_offsetF = 0;
144     j_coord_offsetG = 0;
145     j_coord_offsetH = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
171
172         fix0             = _mm256_setzero_ps();
173         fiy0             = _mm256_setzero_ps();
174         fiz0             = _mm256_setzero_ps();
175
176         /* Load parameters for i particles */
177         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
178         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_ps();
182         vvdwsum          = _mm256_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             jnrE             = jjnr[jidx+4];
194             jnrF             = jjnr[jidx+5];
195             jnrG             = jjnr[jidx+6];
196             jnrH             = jjnr[jidx+7];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201             j_coord_offsetE  = DIM*jnrE;
202             j_coord_offsetF  = DIM*jnrF;
203             j_coord_offsetG  = DIM*jnrG;
204             j_coord_offsetH  = DIM*jnrH;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  x+j_coord_offsetE,x+j_coord_offsetF,
210                                                  x+j_coord_offsetG,x+j_coord_offsetH,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_ps(ix0,jx0);
215             dy00             = _mm256_sub_ps(iy0,jy0);
216             dz00             = _mm256_sub_ps(iz0,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
220
221             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
222
223             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                                  charge+jnrC+0,charge+jnrD+0,
228                                                                  charge+jnrE+0,charge+jnrF+0,
229                                                                  charge+jnrG+0,charge+jnrH+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234             vdwjidx0E        = 2*vdwtype[jnrE+0];
235             vdwjidx0F        = 2*vdwtype[jnrF+0];
236             vdwjidx0G        = 2*vdwtype[jnrG+0];
237             vdwjidx0H        = 2*vdwtype[jnrH+0];
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm256_mul_ps(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm256_mul_ps(iq0,jq0);
247             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
248                                             vdwioffsetptr0+vdwjidx0B,
249                                             vdwioffsetptr0+vdwjidx0C,
250                                             vdwioffsetptr0+vdwjidx0D,
251                                             vdwioffsetptr0+vdwjidx0E,
252                                             vdwioffsetptr0+vdwjidx0F,
253                                             vdwioffsetptr0+vdwjidx0G,
254                                             vdwioffsetptr0+vdwjidx0H,
255                                             &c6_00,&c12_00);
256
257             /* EWALD ELECTROSTATICS */
258             
259             /* Analytical PME correction */
260             zeta2            = _mm256_mul_ps(beta2,rsq00);
261             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
262             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
263             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
264             felec            = _mm256_mul_ps(qq00,felec);
265             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
266             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
267             velec            = _mm256_sub_ps(rinv00,pmecorrV);
268             velec            = _mm256_mul_ps(qq00,velec);
269             
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
274             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
275             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
276             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm256_add_ps(velecsum,velec);
280             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
281
282             fscal            = _mm256_add_ps(felec,fvdw);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm256_mul_ps(fscal,dx00);
286             ty               = _mm256_mul_ps(fscal,dy00);
287             tz               = _mm256_mul_ps(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm256_add_ps(fix0,tx);
291             fiy0             = _mm256_add_ps(fiy0,ty);
292             fiz0             = _mm256_add_ps(fiz0,tz);
293
294             fjptrA             = f+j_coord_offsetA;
295             fjptrB             = f+j_coord_offsetB;
296             fjptrC             = f+j_coord_offsetC;
297             fjptrD             = f+j_coord_offsetD;
298             fjptrE             = f+j_coord_offsetE;
299             fjptrF             = f+j_coord_offsetF;
300             fjptrG             = f+j_coord_offsetG;
301             fjptrH             = f+j_coord_offsetH;
302             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
303
304             /* Inner loop uses 96 flops */
305         }
306
307         if(jidx<j_index_end)
308         {
309
310             /* Get j neighbor index, and coordinate index */
311             jnrlistA         = jjnr[jidx];
312             jnrlistB         = jjnr[jidx+1];
313             jnrlistC         = jjnr[jidx+2];
314             jnrlistD         = jjnr[jidx+3];
315             jnrlistE         = jjnr[jidx+4];
316             jnrlistF         = jjnr[jidx+5];
317             jnrlistG         = jjnr[jidx+6];
318             jnrlistH         = jjnr[jidx+7];
319             /* Sign of each element will be negative for non-real atoms.
320              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
321              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
322              */
323             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
324                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
325                                             
326             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
327             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
328             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
329             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
330             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
331             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
332             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
333             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
334             j_coord_offsetA  = DIM*jnrA;
335             j_coord_offsetB  = DIM*jnrB;
336             j_coord_offsetC  = DIM*jnrC;
337             j_coord_offsetD  = DIM*jnrD;
338             j_coord_offsetE  = DIM*jnrE;
339             j_coord_offsetF  = DIM*jnrF;
340             j_coord_offsetG  = DIM*jnrG;
341             j_coord_offsetH  = DIM*jnrH;
342
343             /* load j atom coordinates */
344             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
345                                                  x+j_coord_offsetC,x+j_coord_offsetD,
346                                                  x+j_coord_offsetE,x+j_coord_offsetF,
347                                                  x+j_coord_offsetG,x+j_coord_offsetH,
348                                                  &jx0,&jy0,&jz0);
349
350             /* Calculate displacement vector */
351             dx00             = _mm256_sub_ps(ix0,jx0);
352             dy00             = _mm256_sub_ps(iy0,jy0);
353             dz00             = _mm256_sub_ps(iz0,jz0);
354
355             /* Calculate squared distance and things based on it */
356             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
357
358             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
359
360             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
361
362             /* Load parameters for j particles */
363             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
364                                                                  charge+jnrC+0,charge+jnrD+0,
365                                                                  charge+jnrE+0,charge+jnrF+0,
366                                                                  charge+jnrG+0,charge+jnrH+0);
367             vdwjidx0A        = 2*vdwtype[jnrA+0];
368             vdwjidx0B        = 2*vdwtype[jnrB+0];
369             vdwjidx0C        = 2*vdwtype[jnrC+0];
370             vdwjidx0D        = 2*vdwtype[jnrD+0];
371             vdwjidx0E        = 2*vdwtype[jnrE+0];
372             vdwjidx0F        = 2*vdwtype[jnrF+0];
373             vdwjidx0G        = 2*vdwtype[jnrG+0];
374             vdwjidx0H        = 2*vdwtype[jnrH+0];
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             r00              = _mm256_mul_ps(rsq00,rinv00);
381             r00              = _mm256_andnot_ps(dummy_mask,r00);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq00             = _mm256_mul_ps(iq0,jq0);
385             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
386                                             vdwioffsetptr0+vdwjidx0B,
387                                             vdwioffsetptr0+vdwjidx0C,
388                                             vdwioffsetptr0+vdwjidx0D,
389                                             vdwioffsetptr0+vdwjidx0E,
390                                             vdwioffsetptr0+vdwjidx0F,
391                                             vdwioffsetptr0+vdwjidx0G,
392                                             vdwioffsetptr0+vdwjidx0H,
393                                             &c6_00,&c12_00);
394
395             /* EWALD ELECTROSTATICS */
396             
397             /* Analytical PME correction */
398             zeta2            = _mm256_mul_ps(beta2,rsq00);
399             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
400             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
401             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
402             felec            = _mm256_mul_ps(qq00,felec);
403             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
404             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
405             velec            = _mm256_sub_ps(rinv00,pmecorrV);
406             velec            = _mm256_mul_ps(qq00,velec);
407             
408             /* LENNARD-JONES DISPERSION/REPULSION */
409
410             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
411             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
412             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
413             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
414             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
415
416             /* Update potential sum for this i atom from the interaction with this j atom. */
417             velec            = _mm256_andnot_ps(dummy_mask,velec);
418             velecsum         = _mm256_add_ps(velecsum,velec);
419             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
420             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
421
422             fscal            = _mm256_add_ps(felec,fvdw);
423
424             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
425
426             /* Calculate temporary vectorial force */
427             tx               = _mm256_mul_ps(fscal,dx00);
428             ty               = _mm256_mul_ps(fscal,dy00);
429             tz               = _mm256_mul_ps(fscal,dz00);
430
431             /* Update vectorial force */
432             fix0             = _mm256_add_ps(fix0,tx);
433             fiy0             = _mm256_add_ps(fiy0,ty);
434             fiz0             = _mm256_add_ps(fiz0,tz);
435
436             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
437             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
438             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
439             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
440             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
441             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
442             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
443             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
444             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
445
446             /* Inner loop uses 97 flops */
447         }
448
449         /* End of innermost loop */
450
451         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
452                                                  f+i_coord_offset,fshift+i_shift_offset);
453
454         ggid                        = gid[iidx];
455         /* Update potential energies */
456         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
457         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
458
459         /* Increment number of inner iterations */
460         inneriter                  += j_index_end - j_index_start;
461
462         /* Outer loop uses 9 flops */
463     }
464
465     /* Increment number of outer iterations */
466     outeriter        += nri;
467
468     /* Update outer/inner flops */
469
470     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*97);
471 }
472 /*
473  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_single
474  * Electrostatics interaction: Ewald
475  * VdW interaction:            LennardJones
476  * Geometry:                   Particle-Particle
477  * Calculate force/pot:        Force
478  */
479 void
480 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_single
481                     (t_nblist                    * gmx_restrict       nlist,
482                      rvec                        * gmx_restrict          xx,
483                      rvec                        * gmx_restrict          ff,
484                      t_forcerec                  * gmx_restrict          fr,
485                      t_mdatoms                   * gmx_restrict     mdatoms,
486                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
487                      t_nrnb                      * gmx_restrict        nrnb)
488 {
489     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
490      * just 0 for non-waters.
491      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
492      * jnr indices corresponding to data put in the four positions in the SIMD register.
493      */
494     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
495     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
496     int              jnrA,jnrB,jnrC,jnrD;
497     int              jnrE,jnrF,jnrG,jnrH;
498     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
499     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
500     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
501     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
502     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
503     real             rcutoff_scalar;
504     real             *shiftvec,*fshift,*x,*f;
505     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
506     real             scratch[4*DIM];
507     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
508     real *           vdwioffsetptr0;
509     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
510     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
511     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
512     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
513     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
514     real             *charge;
515     int              nvdwtype;
516     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
517     int              *vdwtype;
518     real             *vdwparam;
519     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
520     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
521     __m256i          ewitab;
522     __m128i          ewitab_lo,ewitab_hi;
523     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
524     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
525     real             *ewtab;
526     __m256           dummy_mask,cutoff_mask;
527     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
528     __m256           one     = _mm256_set1_ps(1.0);
529     __m256           two     = _mm256_set1_ps(2.0);
530     x                = xx[0];
531     f                = ff[0];
532
533     nri              = nlist->nri;
534     iinr             = nlist->iinr;
535     jindex           = nlist->jindex;
536     jjnr             = nlist->jjnr;
537     shiftidx         = nlist->shift;
538     gid              = nlist->gid;
539     shiftvec         = fr->shift_vec[0];
540     fshift           = fr->fshift[0];
541     facel            = _mm256_set1_ps(fr->epsfac);
542     charge           = mdatoms->chargeA;
543     nvdwtype         = fr->ntype;
544     vdwparam         = fr->nbfp;
545     vdwtype          = mdatoms->typeA;
546
547     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
548     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
549     beta2            = _mm256_mul_ps(beta,beta);
550     beta3            = _mm256_mul_ps(beta,beta2);
551
552     ewtab            = fr->ic->tabq_coul_F;
553     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
554     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
555
556     /* Avoid stupid compiler warnings */
557     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
558     j_coord_offsetA = 0;
559     j_coord_offsetB = 0;
560     j_coord_offsetC = 0;
561     j_coord_offsetD = 0;
562     j_coord_offsetE = 0;
563     j_coord_offsetF = 0;
564     j_coord_offsetG = 0;
565     j_coord_offsetH = 0;
566
567     outeriter        = 0;
568     inneriter        = 0;
569
570     for(iidx=0;iidx<4*DIM;iidx++)
571     {
572         scratch[iidx] = 0.0;
573     }
574
575     /* Start outer loop over neighborlists */
576     for(iidx=0; iidx<nri; iidx++)
577     {
578         /* Load shift vector for this list */
579         i_shift_offset   = DIM*shiftidx[iidx];
580
581         /* Load limits for loop over neighbors */
582         j_index_start    = jindex[iidx];
583         j_index_end      = jindex[iidx+1];
584
585         /* Get outer coordinate index */
586         inr              = iinr[iidx];
587         i_coord_offset   = DIM*inr;
588
589         /* Load i particle coords and add shift vector */
590         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
591
592         fix0             = _mm256_setzero_ps();
593         fiy0             = _mm256_setzero_ps();
594         fiz0             = _mm256_setzero_ps();
595
596         /* Load parameters for i particles */
597         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
598         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
599
600         /* Start inner kernel loop */
601         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
602         {
603
604             /* Get j neighbor index, and coordinate index */
605             jnrA             = jjnr[jidx];
606             jnrB             = jjnr[jidx+1];
607             jnrC             = jjnr[jidx+2];
608             jnrD             = jjnr[jidx+3];
609             jnrE             = jjnr[jidx+4];
610             jnrF             = jjnr[jidx+5];
611             jnrG             = jjnr[jidx+6];
612             jnrH             = jjnr[jidx+7];
613             j_coord_offsetA  = DIM*jnrA;
614             j_coord_offsetB  = DIM*jnrB;
615             j_coord_offsetC  = DIM*jnrC;
616             j_coord_offsetD  = DIM*jnrD;
617             j_coord_offsetE  = DIM*jnrE;
618             j_coord_offsetF  = DIM*jnrF;
619             j_coord_offsetG  = DIM*jnrG;
620             j_coord_offsetH  = DIM*jnrH;
621
622             /* load j atom coordinates */
623             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
624                                                  x+j_coord_offsetC,x+j_coord_offsetD,
625                                                  x+j_coord_offsetE,x+j_coord_offsetF,
626                                                  x+j_coord_offsetG,x+j_coord_offsetH,
627                                                  &jx0,&jy0,&jz0);
628
629             /* Calculate displacement vector */
630             dx00             = _mm256_sub_ps(ix0,jx0);
631             dy00             = _mm256_sub_ps(iy0,jy0);
632             dz00             = _mm256_sub_ps(iz0,jz0);
633
634             /* Calculate squared distance and things based on it */
635             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
636
637             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
638
639             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
640
641             /* Load parameters for j particles */
642             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
643                                                                  charge+jnrC+0,charge+jnrD+0,
644                                                                  charge+jnrE+0,charge+jnrF+0,
645                                                                  charge+jnrG+0,charge+jnrH+0);
646             vdwjidx0A        = 2*vdwtype[jnrA+0];
647             vdwjidx0B        = 2*vdwtype[jnrB+0];
648             vdwjidx0C        = 2*vdwtype[jnrC+0];
649             vdwjidx0D        = 2*vdwtype[jnrD+0];
650             vdwjidx0E        = 2*vdwtype[jnrE+0];
651             vdwjidx0F        = 2*vdwtype[jnrF+0];
652             vdwjidx0G        = 2*vdwtype[jnrG+0];
653             vdwjidx0H        = 2*vdwtype[jnrH+0];
654
655             /**************************
656              * CALCULATE INTERACTIONS *
657              **************************/
658
659             r00              = _mm256_mul_ps(rsq00,rinv00);
660
661             /* Compute parameters for interactions between i and j atoms */
662             qq00             = _mm256_mul_ps(iq0,jq0);
663             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
664                                             vdwioffsetptr0+vdwjidx0B,
665                                             vdwioffsetptr0+vdwjidx0C,
666                                             vdwioffsetptr0+vdwjidx0D,
667                                             vdwioffsetptr0+vdwjidx0E,
668                                             vdwioffsetptr0+vdwjidx0F,
669                                             vdwioffsetptr0+vdwjidx0G,
670                                             vdwioffsetptr0+vdwjidx0H,
671                                             &c6_00,&c12_00);
672
673             /* EWALD ELECTROSTATICS */
674             
675             /* Analytical PME correction */
676             zeta2            = _mm256_mul_ps(beta2,rsq00);
677             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
678             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
679             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
680             felec            = _mm256_mul_ps(qq00,felec);
681             
682             /* LENNARD-JONES DISPERSION/REPULSION */
683
684             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
685             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
686
687             fscal            = _mm256_add_ps(felec,fvdw);
688
689             /* Calculate temporary vectorial force */
690             tx               = _mm256_mul_ps(fscal,dx00);
691             ty               = _mm256_mul_ps(fscal,dy00);
692             tz               = _mm256_mul_ps(fscal,dz00);
693
694             /* Update vectorial force */
695             fix0             = _mm256_add_ps(fix0,tx);
696             fiy0             = _mm256_add_ps(fiy0,ty);
697             fiz0             = _mm256_add_ps(fiz0,tz);
698
699             fjptrA             = f+j_coord_offsetA;
700             fjptrB             = f+j_coord_offsetB;
701             fjptrC             = f+j_coord_offsetC;
702             fjptrD             = f+j_coord_offsetD;
703             fjptrE             = f+j_coord_offsetE;
704             fjptrF             = f+j_coord_offsetF;
705             fjptrG             = f+j_coord_offsetG;
706             fjptrH             = f+j_coord_offsetH;
707             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
708
709             /* Inner loop uses 63 flops */
710         }
711
712         if(jidx<j_index_end)
713         {
714
715             /* Get j neighbor index, and coordinate index */
716             jnrlistA         = jjnr[jidx];
717             jnrlistB         = jjnr[jidx+1];
718             jnrlistC         = jjnr[jidx+2];
719             jnrlistD         = jjnr[jidx+3];
720             jnrlistE         = jjnr[jidx+4];
721             jnrlistF         = jjnr[jidx+5];
722             jnrlistG         = jjnr[jidx+6];
723             jnrlistH         = jjnr[jidx+7];
724             /* Sign of each element will be negative for non-real atoms.
725              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
726              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
727              */
728             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
729                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
730                                             
731             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
732             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
733             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
734             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
735             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
736             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
737             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
738             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
739             j_coord_offsetA  = DIM*jnrA;
740             j_coord_offsetB  = DIM*jnrB;
741             j_coord_offsetC  = DIM*jnrC;
742             j_coord_offsetD  = DIM*jnrD;
743             j_coord_offsetE  = DIM*jnrE;
744             j_coord_offsetF  = DIM*jnrF;
745             j_coord_offsetG  = DIM*jnrG;
746             j_coord_offsetH  = DIM*jnrH;
747
748             /* load j atom coordinates */
749             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
750                                                  x+j_coord_offsetC,x+j_coord_offsetD,
751                                                  x+j_coord_offsetE,x+j_coord_offsetF,
752                                                  x+j_coord_offsetG,x+j_coord_offsetH,
753                                                  &jx0,&jy0,&jz0);
754
755             /* Calculate displacement vector */
756             dx00             = _mm256_sub_ps(ix0,jx0);
757             dy00             = _mm256_sub_ps(iy0,jy0);
758             dz00             = _mm256_sub_ps(iz0,jz0);
759
760             /* Calculate squared distance and things based on it */
761             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
762
763             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
764
765             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
766
767             /* Load parameters for j particles */
768             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
769                                                                  charge+jnrC+0,charge+jnrD+0,
770                                                                  charge+jnrE+0,charge+jnrF+0,
771                                                                  charge+jnrG+0,charge+jnrH+0);
772             vdwjidx0A        = 2*vdwtype[jnrA+0];
773             vdwjidx0B        = 2*vdwtype[jnrB+0];
774             vdwjidx0C        = 2*vdwtype[jnrC+0];
775             vdwjidx0D        = 2*vdwtype[jnrD+0];
776             vdwjidx0E        = 2*vdwtype[jnrE+0];
777             vdwjidx0F        = 2*vdwtype[jnrF+0];
778             vdwjidx0G        = 2*vdwtype[jnrG+0];
779             vdwjidx0H        = 2*vdwtype[jnrH+0];
780
781             /**************************
782              * CALCULATE INTERACTIONS *
783              **************************/
784
785             r00              = _mm256_mul_ps(rsq00,rinv00);
786             r00              = _mm256_andnot_ps(dummy_mask,r00);
787
788             /* Compute parameters for interactions between i and j atoms */
789             qq00             = _mm256_mul_ps(iq0,jq0);
790             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
791                                             vdwioffsetptr0+vdwjidx0B,
792                                             vdwioffsetptr0+vdwjidx0C,
793                                             vdwioffsetptr0+vdwjidx0D,
794                                             vdwioffsetptr0+vdwjidx0E,
795                                             vdwioffsetptr0+vdwjidx0F,
796                                             vdwioffsetptr0+vdwjidx0G,
797                                             vdwioffsetptr0+vdwjidx0H,
798                                             &c6_00,&c12_00);
799
800             /* EWALD ELECTROSTATICS */
801             
802             /* Analytical PME correction */
803             zeta2            = _mm256_mul_ps(beta2,rsq00);
804             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
805             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
806             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
807             felec            = _mm256_mul_ps(qq00,felec);
808             
809             /* LENNARD-JONES DISPERSION/REPULSION */
810
811             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
812             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
813
814             fscal            = _mm256_add_ps(felec,fvdw);
815
816             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
817
818             /* Calculate temporary vectorial force */
819             tx               = _mm256_mul_ps(fscal,dx00);
820             ty               = _mm256_mul_ps(fscal,dy00);
821             tz               = _mm256_mul_ps(fscal,dz00);
822
823             /* Update vectorial force */
824             fix0             = _mm256_add_ps(fix0,tx);
825             fiy0             = _mm256_add_ps(fiy0,ty);
826             fiz0             = _mm256_add_ps(fiz0,tz);
827
828             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
829             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
830             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
831             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
832             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
833             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
834             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
835             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
836             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
837
838             /* Inner loop uses 64 flops */
839         }
840
841         /* End of innermost loop */
842
843         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
844                                                  f+i_coord_offset,fshift+i_shift_offset);
845
846         /* Increment number of inner iterations */
847         inneriter                  += j_index_end - j_index_start;
848
849         /* Outer loop uses 7 flops */
850     }
851
852     /* Increment number of outer iterations */
853     outeriter        += nri;
854
855     /* Update outer/inner flops */
856
857     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
858 }