68253293b1dcd24fa7c3e5c75fcead60c6bb6f9e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256i          ewitab;
100     __m128i          ewitab_lo,ewitab_hi;
101     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
126     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
127     beta2            = _mm256_mul_ps(beta,beta);
128     beta3            = _mm256_mul_ps(beta,beta2);
129
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140     j_coord_offsetE = 0;
141     j_coord_offsetF = 0;
142     j_coord_offsetG = 0;
143     j_coord_offsetH = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
169
170         fix0             = _mm256_setzero_ps();
171         fiy0             = _mm256_setzero_ps();
172         fiz0             = _mm256_setzero_ps();
173
174         /* Load parameters for i particles */
175         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
176         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
177
178         /* Reset potential sums */
179         velecsum         = _mm256_setzero_ps();
180         vvdwsum          = _mm256_setzero_ps();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             jnrE             = jjnr[jidx+4];
192             jnrF             = jjnr[jidx+5];
193             jnrG             = jjnr[jidx+6];
194             jnrH             = jjnr[jidx+7];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199             j_coord_offsetE  = DIM*jnrE;
200             j_coord_offsetF  = DIM*jnrF;
201             j_coord_offsetG  = DIM*jnrG;
202             j_coord_offsetH  = DIM*jnrH;
203
204             /* load j atom coordinates */
205             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                                  x+j_coord_offsetC,x+j_coord_offsetD,
207                                                  x+j_coord_offsetE,x+j_coord_offsetF,
208                                                  x+j_coord_offsetG,x+j_coord_offsetH,
209                                                  &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm256_sub_ps(ix0,jx0);
213             dy00             = _mm256_sub_ps(iy0,jy0);
214             dz00             = _mm256_sub_ps(iz0,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
218
219             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
220
221             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
225                                                                  charge+jnrC+0,charge+jnrD+0,
226                                                                  charge+jnrE+0,charge+jnrF+0,
227                                                                  charge+jnrG+0,charge+jnrH+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232             vdwjidx0E        = 2*vdwtype[jnrE+0];
233             vdwjidx0F        = 2*vdwtype[jnrF+0];
234             vdwjidx0G        = 2*vdwtype[jnrG+0];
235             vdwjidx0H        = 2*vdwtype[jnrH+0];
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r00              = _mm256_mul_ps(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm256_mul_ps(iq0,jq0);
245             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
246                                             vdwioffsetptr0+vdwjidx0B,
247                                             vdwioffsetptr0+vdwjidx0C,
248                                             vdwioffsetptr0+vdwjidx0D,
249                                             vdwioffsetptr0+vdwjidx0E,
250                                             vdwioffsetptr0+vdwjidx0F,
251                                             vdwioffsetptr0+vdwjidx0G,
252                                             vdwioffsetptr0+vdwjidx0H,
253                                             &c6_00,&c12_00);
254
255             /* EWALD ELECTROSTATICS */
256             
257             /* Analytical PME correction */
258             zeta2            = _mm256_mul_ps(beta2,rsq00);
259             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
260             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
261             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
262             felec            = _mm256_mul_ps(qq00,felec);
263             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
264             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
265             velec            = _mm256_sub_ps(rinv00,pmecorrV);
266             velec            = _mm256_mul_ps(qq00,velec);
267             
268             /* LENNARD-JONES DISPERSION/REPULSION */
269
270             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
271             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
272             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
273             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
274             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velecsum         = _mm256_add_ps(velecsum,velec);
278             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
279
280             fscal            = _mm256_add_ps(felec,fvdw);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm256_mul_ps(fscal,dx00);
284             ty               = _mm256_mul_ps(fscal,dy00);
285             tz               = _mm256_mul_ps(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm256_add_ps(fix0,tx);
289             fiy0             = _mm256_add_ps(fiy0,ty);
290             fiz0             = _mm256_add_ps(fiz0,tz);
291
292             fjptrA             = f+j_coord_offsetA;
293             fjptrB             = f+j_coord_offsetB;
294             fjptrC             = f+j_coord_offsetC;
295             fjptrD             = f+j_coord_offsetD;
296             fjptrE             = f+j_coord_offsetE;
297             fjptrF             = f+j_coord_offsetF;
298             fjptrG             = f+j_coord_offsetG;
299             fjptrH             = f+j_coord_offsetH;
300             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
301
302             /* Inner loop uses 96 flops */
303         }
304
305         if(jidx<j_index_end)
306         {
307
308             /* Get j neighbor index, and coordinate index */
309             jnrlistA         = jjnr[jidx];
310             jnrlistB         = jjnr[jidx+1];
311             jnrlistC         = jjnr[jidx+2];
312             jnrlistD         = jjnr[jidx+3];
313             jnrlistE         = jjnr[jidx+4];
314             jnrlistF         = jjnr[jidx+5];
315             jnrlistG         = jjnr[jidx+6];
316             jnrlistH         = jjnr[jidx+7];
317             /* Sign of each element will be negative for non-real atoms.
318              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
319              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
320              */
321             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
322                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
323                                             
324             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
325             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
326             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
327             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
328             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
329             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
330             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
331             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
332             j_coord_offsetA  = DIM*jnrA;
333             j_coord_offsetB  = DIM*jnrB;
334             j_coord_offsetC  = DIM*jnrC;
335             j_coord_offsetD  = DIM*jnrD;
336             j_coord_offsetE  = DIM*jnrE;
337             j_coord_offsetF  = DIM*jnrF;
338             j_coord_offsetG  = DIM*jnrG;
339             j_coord_offsetH  = DIM*jnrH;
340
341             /* load j atom coordinates */
342             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
343                                                  x+j_coord_offsetC,x+j_coord_offsetD,
344                                                  x+j_coord_offsetE,x+j_coord_offsetF,
345                                                  x+j_coord_offsetG,x+j_coord_offsetH,
346                                                  &jx0,&jy0,&jz0);
347
348             /* Calculate displacement vector */
349             dx00             = _mm256_sub_ps(ix0,jx0);
350             dy00             = _mm256_sub_ps(iy0,jy0);
351             dz00             = _mm256_sub_ps(iz0,jz0);
352
353             /* Calculate squared distance and things based on it */
354             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
355
356             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
357
358             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
359
360             /* Load parameters for j particles */
361             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
362                                                                  charge+jnrC+0,charge+jnrD+0,
363                                                                  charge+jnrE+0,charge+jnrF+0,
364                                                                  charge+jnrG+0,charge+jnrH+0);
365             vdwjidx0A        = 2*vdwtype[jnrA+0];
366             vdwjidx0B        = 2*vdwtype[jnrB+0];
367             vdwjidx0C        = 2*vdwtype[jnrC+0];
368             vdwjidx0D        = 2*vdwtype[jnrD+0];
369             vdwjidx0E        = 2*vdwtype[jnrE+0];
370             vdwjidx0F        = 2*vdwtype[jnrF+0];
371             vdwjidx0G        = 2*vdwtype[jnrG+0];
372             vdwjidx0H        = 2*vdwtype[jnrH+0];
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             r00              = _mm256_mul_ps(rsq00,rinv00);
379             r00              = _mm256_andnot_ps(dummy_mask,r00);
380
381             /* Compute parameters for interactions between i and j atoms */
382             qq00             = _mm256_mul_ps(iq0,jq0);
383             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
384                                             vdwioffsetptr0+vdwjidx0B,
385                                             vdwioffsetptr0+vdwjidx0C,
386                                             vdwioffsetptr0+vdwjidx0D,
387                                             vdwioffsetptr0+vdwjidx0E,
388                                             vdwioffsetptr0+vdwjidx0F,
389                                             vdwioffsetptr0+vdwjidx0G,
390                                             vdwioffsetptr0+vdwjidx0H,
391                                             &c6_00,&c12_00);
392
393             /* EWALD ELECTROSTATICS */
394             
395             /* Analytical PME correction */
396             zeta2            = _mm256_mul_ps(beta2,rsq00);
397             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
398             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
399             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
400             felec            = _mm256_mul_ps(qq00,felec);
401             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
402             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
403             velec            = _mm256_sub_ps(rinv00,pmecorrV);
404             velec            = _mm256_mul_ps(qq00,velec);
405             
406             /* LENNARD-JONES DISPERSION/REPULSION */
407
408             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
409             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
410             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
411             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
412             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velec            = _mm256_andnot_ps(dummy_mask,velec);
416             velecsum         = _mm256_add_ps(velecsum,velec);
417             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
418             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
419
420             fscal            = _mm256_add_ps(felec,fvdw);
421
422             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
423
424             /* Calculate temporary vectorial force */
425             tx               = _mm256_mul_ps(fscal,dx00);
426             ty               = _mm256_mul_ps(fscal,dy00);
427             tz               = _mm256_mul_ps(fscal,dz00);
428
429             /* Update vectorial force */
430             fix0             = _mm256_add_ps(fix0,tx);
431             fiy0             = _mm256_add_ps(fiy0,ty);
432             fiz0             = _mm256_add_ps(fiz0,tz);
433
434             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
435             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
436             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
437             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
438             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
439             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
440             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
441             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
442             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
443
444             /* Inner loop uses 97 flops */
445         }
446
447         /* End of innermost loop */
448
449         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
450                                                  f+i_coord_offset,fshift+i_shift_offset);
451
452         ggid                        = gid[iidx];
453         /* Update potential energies */
454         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
455         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
456
457         /* Increment number of inner iterations */
458         inneriter                  += j_index_end - j_index_start;
459
460         /* Outer loop uses 9 flops */
461     }
462
463     /* Increment number of outer iterations */
464     outeriter        += nri;
465
466     /* Update outer/inner flops */
467
468     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*97);
469 }
470 /*
471  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_single
472  * Electrostatics interaction: Ewald
473  * VdW interaction:            LennardJones
474  * Geometry:                   Particle-Particle
475  * Calculate force/pot:        Force
476  */
477 void
478 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_single
479                     (t_nblist                    * gmx_restrict       nlist,
480                      rvec                        * gmx_restrict          xx,
481                      rvec                        * gmx_restrict          ff,
482                      t_forcerec                  * gmx_restrict          fr,
483                      t_mdatoms                   * gmx_restrict     mdatoms,
484                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
485                      t_nrnb                      * gmx_restrict        nrnb)
486 {
487     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
488      * just 0 for non-waters.
489      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
490      * jnr indices corresponding to data put in the four positions in the SIMD register.
491      */
492     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
493     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
494     int              jnrA,jnrB,jnrC,jnrD;
495     int              jnrE,jnrF,jnrG,jnrH;
496     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
497     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
498     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
499     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
500     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
501     real             rcutoff_scalar;
502     real             *shiftvec,*fshift,*x,*f;
503     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
504     real             scratch[4*DIM];
505     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
506     real *           vdwioffsetptr0;
507     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
508     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
509     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
510     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
511     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
512     real             *charge;
513     int              nvdwtype;
514     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
515     int              *vdwtype;
516     real             *vdwparam;
517     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
518     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
519     __m256i          ewitab;
520     __m128i          ewitab_lo,ewitab_hi;
521     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
522     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
523     real             *ewtab;
524     __m256           dummy_mask,cutoff_mask;
525     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
526     __m256           one     = _mm256_set1_ps(1.0);
527     __m256           two     = _mm256_set1_ps(2.0);
528     x                = xx[0];
529     f                = ff[0];
530
531     nri              = nlist->nri;
532     iinr             = nlist->iinr;
533     jindex           = nlist->jindex;
534     jjnr             = nlist->jjnr;
535     shiftidx         = nlist->shift;
536     gid              = nlist->gid;
537     shiftvec         = fr->shift_vec[0];
538     fshift           = fr->fshift[0];
539     facel            = _mm256_set1_ps(fr->epsfac);
540     charge           = mdatoms->chargeA;
541     nvdwtype         = fr->ntype;
542     vdwparam         = fr->nbfp;
543     vdwtype          = mdatoms->typeA;
544
545     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
546     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
547     beta2            = _mm256_mul_ps(beta,beta);
548     beta3            = _mm256_mul_ps(beta,beta2);
549
550     ewtab            = fr->ic->tabq_coul_F;
551     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
552     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
553
554     /* Avoid stupid compiler warnings */
555     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
556     j_coord_offsetA = 0;
557     j_coord_offsetB = 0;
558     j_coord_offsetC = 0;
559     j_coord_offsetD = 0;
560     j_coord_offsetE = 0;
561     j_coord_offsetF = 0;
562     j_coord_offsetG = 0;
563     j_coord_offsetH = 0;
564
565     outeriter        = 0;
566     inneriter        = 0;
567
568     for(iidx=0;iidx<4*DIM;iidx++)
569     {
570         scratch[iidx] = 0.0;
571     }
572
573     /* Start outer loop over neighborlists */
574     for(iidx=0; iidx<nri; iidx++)
575     {
576         /* Load shift vector for this list */
577         i_shift_offset   = DIM*shiftidx[iidx];
578
579         /* Load limits for loop over neighbors */
580         j_index_start    = jindex[iidx];
581         j_index_end      = jindex[iidx+1];
582
583         /* Get outer coordinate index */
584         inr              = iinr[iidx];
585         i_coord_offset   = DIM*inr;
586
587         /* Load i particle coords and add shift vector */
588         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
589
590         fix0             = _mm256_setzero_ps();
591         fiy0             = _mm256_setzero_ps();
592         fiz0             = _mm256_setzero_ps();
593
594         /* Load parameters for i particles */
595         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
596         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
597
598         /* Start inner kernel loop */
599         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
600         {
601
602             /* Get j neighbor index, and coordinate index */
603             jnrA             = jjnr[jidx];
604             jnrB             = jjnr[jidx+1];
605             jnrC             = jjnr[jidx+2];
606             jnrD             = jjnr[jidx+3];
607             jnrE             = jjnr[jidx+4];
608             jnrF             = jjnr[jidx+5];
609             jnrG             = jjnr[jidx+6];
610             jnrH             = jjnr[jidx+7];
611             j_coord_offsetA  = DIM*jnrA;
612             j_coord_offsetB  = DIM*jnrB;
613             j_coord_offsetC  = DIM*jnrC;
614             j_coord_offsetD  = DIM*jnrD;
615             j_coord_offsetE  = DIM*jnrE;
616             j_coord_offsetF  = DIM*jnrF;
617             j_coord_offsetG  = DIM*jnrG;
618             j_coord_offsetH  = DIM*jnrH;
619
620             /* load j atom coordinates */
621             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
622                                                  x+j_coord_offsetC,x+j_coord_offsetD,
623                                                  x+j_coord_offsetE,x+j_coord_offsetF,
624                                                  x+j_coord_offsetG,x+j_coord_offsetH,
625                                                  &jx0,&jy0,&jz0);
626
627             /* Calculate displacement vector */
628             dx00             = _mm256_sub_ps(ix0,jx0);
629             dy00             = _mm256_sub_ps(iy0,jy0);
630             dz00             = _mm256_sub_ps(iz0,jz0);
631
632             /* Calculate squared distance and things based on it */
633             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
634
635             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
636
637             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
638
639             /* Load parameters for j particles */
640             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
641                                                                  charge+jnrC+0,charge+jnrD+0,
642                                                                  charge+jnrE+0,charge+jnrF+0,
643                                                                  charge+jnrG+0,charge+jnrH+0);
644             vdwjidx0A        = 2*vdwtype[jnrA+0];
645             vdwjidx0B        = 2*vdwtype[jnrB+0];
646             vdwjidx0C        = 2*vdwtype[jnrC+0];
647             vdwjidx0D        = 2*vdwtype[jnrD+0];
648             vdwjidx0E        = 2*vdwtype[jnrE+0];
649             vdwjidx0F        = 2*vdwtype[jnrF+0];
650             vdwjidx0G        = 2*vdwtype[jnrG+0];
651             vdwjidx0H        = 2*vdwtype[jnrH+0];
652
653             /**************************
654              * CALCULATE INTERACTIONS *
655              **************************/
656
657             r00              = _mm256_mul_ps(rsq00,rinv00);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq00             = _mm256_mul_ps(iq0,jq0);
661             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
662                                             vdwioffsetptr0+vdwjidx0B,
663                                             vdwioffsetptr0+vdwjidx0C,
664                                             vdwioffsetptr0+vdwjidx0D,
665                                             vdwioffsetptr0+vdwjidx0E,
666                                             vdwioffsetptr0+vdwjidx0F,
667                                             vdwioffsetptr0+vdwjidx0G,
668                                             vdwioffsetptr0+vdwjidx0H,
669                                             &c6_00,&c12_00);
670
671             /* EWALD ELECTROSTATICS */
672             
673             /* Analytical PME correction */
674             zeta2            = _mm256_mul_ps(beta2,rsq00);
675             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
676             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
677             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
678             felec            = _mm256_mul_ps(qq00,felec);
679             
680             /* LENNARD-JONES DISPERSION/REPULSION */
681
682             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
683             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
684
685             fscal            = _mm256_add_ps(felec,fvdw);
686
687             /* Calculate temporary vectorial force */
688             tx               = _mm256_mul_ps(fscal,dx00);
689             ty               = _mm256_mul_ps(fscal,dy00);
690             tz               = _mm256_mul_ps(fscal,dz00);
691
692             /* Update vectorial force */
693             fix0             = _mm256_add_ps(fix0,tx);
694             fiy0             = _mm256_add_ps(fiy0,ty);
695             fiz0             = _mm256_add_ps(fiz0,tz);
696
697             fjptrA             = f+j_coord_offsetA;
698             fjptrB             = f+j_coord_offsetB;
699             fjptrC             = f+j_coord_offsetC;
700             fjptrD             = f+j_coord_offsetD;
701             fjptrE             = f+j_coord_offsetE;
702             fjptrF             = f+j_coord_offsetF;
703             fjptrG             = f+j_coord_offsetG;
704             fjptrH             = f+j_coord_offsetH;
705             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
706
707             /* Inner loop uses 63 flops */
708         }
709
710         if(jidx<j_index_end)
711         {
712
713             /* Get j neighbor index, and coordinate index */
714             jnrlistA         = jjnr[jidx];
715             jnrlistB         = jjnr[jidx+1];
716             jnrlistC         = jjnr[jidx+2];
717             jnrlistD         = jjnr[jidx+3];
718             jnrlistE         = jjnr[jidx+4];
719             jnrlistF         = jjnr[jidx+5];
720             jnrlistG         = jjnr[jidx+6];
721             jnrlistH         = jjnr[jidx+7];
722             /* Sign of each element will be negative for non-real atoms.
723              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
724              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
725              */
726             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
727                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
728                                             
729             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
730             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
731             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
732             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
733             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
734             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
735             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
736             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
737             j_coord_offsetA  = DIM*jnrA;
738             j_coord_offsetB  = DIM*jnrB;
739             j_coord_offsetC  = DIM*jnrC;
740             j_coord_offsetD  = DIM*jnrD;
741             j_coord_offsetE  = DIM*jnrE;
742             j_coord_offsetF  = DIM*jnrF;
743             j_coord_offsetG  = DIM*jnrG;
744             j_coord_offsetH  = DIM*jnrH;
745
746             /* load j atom coordinates */
747             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
748                                                  x+j_coord_offsetC,x+j_coord_offsetD,
749                                                  x+j_coord_offsetE,x+j_coord_offsetF,
750                                                  x+j_coord_offsetG,x+j_coord_offsetH,
751                                                  &jx0,&jy0,&jz0);
752
753             /* Calculate displacement vector */
754             dx00             = _mm256_sub_ps(ix0,jx0);
755             dy00             = _mm256_sub_ps(iy0,jy0);
756             dz00             = _mm256_sub_ps(iz0,jz0);
757
758             /* Calculate squared distance and things based on it */
759             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
760
761             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
762
763             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
764
765             /* Load parameters for j particles */
766             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
767                                                                  charge+jnrC+0,charge+jnrD+0,
768                                                                  charge+jnrE+0,charge+jnrF+0,
769                                                                  charge+jnrG+0,charge+jnrH+0);
770             vdwjidx0A        = 2*vdwtype[jnrA+0];
771             vdwjidx0B        = 2*vdwtype[jnrB+0];
772             vdwjidx0C        = 2*vdwtype[jnrC+0];
773             vdwjidx0D        = 2*vdwtype[jnrD+0];
774             vdwjidx0E        = 2*vdwtype[jnrE+0];
775             vdwjidx0F        = 2*vdwtype[jnrF+0];
776             vdwjidx0G        = 2*vdwtype[jnrG+0];
777             vdwjidx0H        = 2*vdwtype[jnrH+0];
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             r00              = _mm256_mul_ps(rsq00,rinv00);
784             r00              = _mm256_andnot_ps(dummy_mask,r00);
785
786             /* Compute parameters for interactions between i and j atoms */
787             qq00             = _mm256_mul_ps(iq0,jq0);
788             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
789                                             vdwioffsetptr0+vdwjidx0B,
790                                             vdwioffsetptr0+vdwjidx0C,
791                                             vdwioffsetptr0+vdwjidx0D,
792                                             vdwioffsetptr0+vdwjidx0E,
793                                             vdwioffsetptr0+vdwjidx0F,
794                                             vdwioffsetptr0+vdwjidx0G,
795                                             vdwioffsetptr0+vdwjidx0H,
796                                             &c6_00,&c12_00);
797
798             /* EWALD ELECTROSTATICS */
799             
800             /* Analytical PME correction */
801             zeta2            = _mm256_mul_ps(beta2,rsq00);
802             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
803             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
804             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
805             felec            = _mm256_mul_ps(qq00,felec);
806             
807             /* LENNARD-JONES DISPERSION/REPULSION */
808
809             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
810             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
811
812             fscal            = _mm256_add_ps(felec,fvdw);
813
814             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
815
816             /* Calculate temporary vectorial force */
817             tx               = _mm256_mul_ps(fscal,dx00);
818             ty               = _mm256_mul_ps(fscal,dy00);
819             tz               = _mm256_mul_ps(fscal,dz00);
820
821             /* Update vectorial force */
822             fix0             = _mm256_add_ps(fix0,tx);
823             fiy0             = _mm256_add_ps(fiy0,ty);
824             fiz0             = _mm256_add_ps(fiz0,tz);
825
826             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
827             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
828             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
829             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
830             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
831             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
832             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
833             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
834             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
835
836             /* Inner loop uses 64 flops */
837         }
838
839         /* End of innermost loop */
840
841         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
842                                                  f+i_coord_offset,fshift+i_shift_offset);
843
844         /* Increment number of inner iterations */
845         inneriter                  += j_index_end - j_index_start;
846
847         /* Outer loop uses 7 flops */
848     }
849
850     /* Increment number of outer iterations */
851     outeriter        += nri;
852
853     /* Update outer/inner flops */
854
855     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
856 }