eabec7cedd2fbede0395134858eac20c776b6c3b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     real *           vdwgridioffsetptr0;
88     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89     real *           vdwioffsetptr1;
90     real *           vdwgridioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     real *           vdwgridioffsetptr2;
94     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
95     real *           vdwioffsetptr3;
96     real *           vdwgridioffsetptr3;
97     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
98     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
99     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
100     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
101     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
102     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
103     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
104     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
105     real             *charge;
106     int              nvdwtype;
107     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
108     int              *vdwtype;
109     real             *vdwparam;
110     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
111     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
112     __m256           c6grid_00;
113     __m256           c6grid_10;
114     __m256           c6grid_20;
115     __m256           c6grid_30;
116     real             *vdwgridparam;
117     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
118     __m256           one_half  = _mm256_set1_ps(0.5);
119     __m256           minus_one = _mm256_set1_ps(-1.0);
120     __m256i          ewitab;
121     __m128i          ewitab_lo,ewitab_hi;
122     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
123     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
124     real             *ewtab;
125     __m256           dummy_mask,cutoff_mask;
126     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
127     __m256           one     = _mm256_set1_ps(1.0);
128     __m256           two     = _mm256_set1_ps(2.0);
129     x                = xx[0];
130     f                = ff[0];
131
132     nri              = nlist->nri;
133     iinr             = nlist->iinr;
134     jindex           = nlist->jindex;
135     jjnr             = nlist->jjnr;
136     shiftidx         = nlist->shift;
137     gid              = nlist->gid;
138     shiftvec         = fr->shift_vec[0];
139     fshift           = fr->fshift[0];
140     facel            = _mm256_set1_ps(fr->epsfac);
141     charge           = mdatoms->chargeA;
142     nvdwtype         = fr->ntype;
143     vdwparam         = fr->nbfp;
144     vdwtype          = mdatoms->typeA;
145     vdwgridparam     = fr->ljpme_c6grid;
146     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
147     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
148     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
149
150     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
151     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
152     beta2            = _mm256_mul_ps(beta,beta);
153     beta3            = _mm256_mul_ps(beta,beta2);
154
155     ewtab            = fr->ic->tabq_coul_FDV0;
156     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
157     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
158
159     /* Setup water-specific parameters */
160     inr              = nlist->iinr[0];
161     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
162     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
163     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
164     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
165     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
166
167     /* Avoid stupid compiler warnings */
168     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
169     j_coord_offsetA = 0;
170     j_coord_offsetB = 0;
171     j_coord_offsetC = 0;
172     j_coord_offsetD = 0;
173     j_coord_offsetE = 0;
174     j_coord_offsetF = 0;
175     j_coord_offsetG = 0;
176     j_coord_offsetH = 0;
177
178     outeriter        = 0;
179     inneriter        = 0;
180
181     for(iidx=0;iidx<4*DIM;iidx++)
182     {
183         scratch[iidx] = 0.0;
184     }
185
186     /* Start outer loop over neighborlists */
187     for(iidx=0; iidx<nri; iidx++)
188     {
189         /* Load shift vector for this list */
190         i_shift_offset   = DIM*shiftidx[iidx];
191
192         /* Load limits for loop over neighbors */
193         j_index_start    = jindex[iidx];
194         j_index_end      = jindex[iidx+1];
195
196         /* Get outer coordinate index */
197         inr              = iinr[iidx];
198         i_coord_offset   = DIM*inr;
199
200         /* Load i particle coords and add shift vector */
201         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
202                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
203
204         fix0             = _mm256_setzero_ps();
205         fiy0             = _mm256_setzero_ps();
206         fiz0             = _mm256_setzero_ps();
207         fix1             = _mm256_setzero_ps();
208         fiy1             = _mm256_setzero_ps();
209         fiz1             = _mm256_setzero_ps();
210         fix2             = _mm256_setzero_ps();
211         fiy2             = _mm256_setzero_ps();
212         fiz2             = _mm256_setzero_ps();
213         fix3             = _mm256_setzero_ps();
214         fiy3             = _mm256_setzero_ps();
215         fiz3             = _mm256_setzero_ps();
216
217         /* Reset potential sums */
218         velecsum         = _mm256_setzero_ps();
219         vvdwsum          = _mm256_setzero_ps();
220
221         /* Start inner kernel loop */
222         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
223         {
224
225             /* Get j neighbor index, and coordinate index */
226             jnrA             = jjnr[jidx];
227             jnrB             = jjnr[jidx+1];
228             jnrC             = jjnr[jidx+2];
229             jnrD             = jjnr[jidx+3];
230             jnrE             = jjnr[jidx+4];
231             jnrF             = jjnr[jidx+5];
232             jnrG             = jjnr[jidx+6];
233             jnrH             = jjnr[jidx+7];
234             j_coord_offsetA  = DIM*jnrA;
235             j_coord_offsetB  = DIM*jnrB;
236             j_coord_offsetC  = DIM*jnrC;
237             j_coord_offsetD  = DIM*jnrD;
238             j_coord_offsetE  = DIM*jnrE;
239             j_coord_offsetF  = DIM*jnrF;
240             j_coord_offsetG  = DIM*jnrG;
241             j_coord_offsetH  = DIM*jnrH;
242
243             /* load j atom coordinates */
244             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
245                                                  x+j_coord_offsetC,x+j_coord_offsetD,
246                                                  x+j_coord_offsetE,x+j_coord_offsetF,
247                                                  x+j_coord_offsetG,x+j_coord_offsetH,
248                                                  &jx0,&jy0,&jz0);
249
250             /* Calculate displacement vector */
251             dx00             = _mm256_sub_ps(ix0,jx0);
252             dy00             = _mm256_sub_ps(iy0,jy0);
253             dz00             = _mm256_sub_ps(iz0,jz0);
254             dx10             = _mm256_sub_ps(ix1,jx0);
255             dy10             = _mm256_sub_ps(iy1,jy0);
256             dz10             = _mm256_sub_ps(iz1,jz0);
257             dx20             = _mm256_sub_ps(ix2,jx0);
258             dy20             = _mm256_sub_ps(iy2,jy0);
259             dz20             = _mm256_sub_ps(iz2,jz0);
260             dx30             = _mm256_sub_ps(ix3,jx0);
261             dy30             = _mm256_sub_ps(iy3,jy0);
262             dz30             = _mm256_sub_ps(iz3,jz0);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
266             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
267             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
268             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
269
270             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
271             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
272             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
273             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
274
275             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
276             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
277             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
278             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
279
280             /* Load parameters for j particles */
281             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
282                                                                  charge+jnrC+0,charge+jnrD+0,
283                                                                  charge+jnrE+0,charge+jnrF+0,
284                                                                  charge+jnrG+0,charge+jnrH+0);
285             vdwjidx0A        = 2*vdwtype[jnrA+0];
286             vdwjidx0B        = 2*vdwtype[jnrB+0];
287             vdwjidx0C        = 2*vdwtype[jnrC+0];
288             vdwjidx0D        = 2*vdwtype[jnrD+0];
289             vdwjidx0E        = 2*vdwtype[jnrE+0];
290             vdwjidx0F        = 2*vdwtype[jnrF+0];
291             vdwjidx0G        = 2*vdwtype[jnrG+0];
292             vdwjidx0H        = 2*vdwtype[jnrH+0];
293
294             fjx0             = _mm256_setzero_ps();
295             fjy0             = _mm256_setzero_ps();
296             fjz0             = _mm256_setzero_ps();
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r00              = _mm256_mul_ps(rsq00,rinv00);
303
304             /* Compute parameters for interactions between i and j atoms */
305             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
306                                             vdwioffsetptr0+vdwjidx0B,
307                                             vdwioffsetptr0+vdwjidx0C,
308                                             vdwioffsetptr0+vdwjidx0D,
309                                             vdwioffsetptr0+vdwjidx0E,
310                                             vdwioffsetptr0+vdwjidx0F,
311                                             vdwioffsetptr0+vdwjidx0G,
312                                             vdwioffsetptr0+vdwjidx0H,
313                                             &c6_00,&c12_00);
314
315             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
316                                                                   vdwgridioffsetptr0+vdwjidx0B,
317                                                                   vdwgridioffsetptr0+vdwjidx0C,
318                                                                   vdwgridioffsetptr0+vdwjidx0D,
319                                                                   vdwgridioffsetptr0+vdwjidx0E,
320                                                                   vdwgridioffsetptr0+vdwjidx0F,
321                                                                   vdwgridioffsetptr0+vdwjidx0G,
322                                                                   vdwgridioffsetptr0+vdwjidx0H);
323
324             /* Analytical LJ-PME */
325             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
326             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
327             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
328             exponent         = gmx_simd_exp_r(ewcljrsq);
329             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
330             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
331             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
332             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
333             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
334             vvdw             = _mm256_sub_ps(_mm256_mul_ps(vvdw12,one_twelfth),_mm256_mul_ps(vvdw6,one_sixth));
335             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
336             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
340
341             fscal            = fvdw;
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm256_mul_ps(fscal,dx00);
345             ty               = _mm256_mul_ps(fscal,dy00);
346             tz               = _mm256_mul_ps(fscal,dz00);
347
348             /* Update vectorial force */
349             fix0             = _mm256_add_ps(fix0,tx);
350             fiy0             = _mm256_add_ps(fiy0,ty);
351             fiz0             = _mm256_add_ps(fiz0,tz);
352
353             fjx0             = _mm256_add_ps(fjx0,tx);
354             fjy0             = _mm256_add_ps(fjy0,ty);
355             fjz0             = _mm256_add_ps(fjz0,tz);
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             r10              = _mm256_mul_ps(rsq10,rinv10);
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq10             = _mm256_mul_ps(iq1,jq0);
365
366             /* EWALD ELECTROSTATICS */
367             
368             /* Analytical PME correction */
369             zeta2            = _mm256_mul_ps(beta2,rsq10);
370             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
371             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
372             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
373             felec            = _mm256_mul_ps(qq10,felec);
374             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
375             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
376             velec            = _mm256_sub_ps(rinv10,pmecorrV);
377             velec            = _mm256_mul_ps(qq10,velec);
378             
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm256_add_ps(velecsum,velec);
381
382             fscal            = felec;
383
384             /* Calculate temporary vectorial force */
385             tx               = _mm256_mul_ps(fscal,dx10);
386             ty               = _mm256_mul_ps(fscal,dy10);
387             tz               = _mm256_mul_ps(fscal,dz10);
388
389             /* Update vectorial force */
390             fix1             = _mm256_add_ps(fix1,tx);
391             fiy1             = _mm256_add_ps(fiy1,ty);
392             fiz1             = _mm256_add_ps(fiz1,tz);
393
394             fjx0             = _mm256_add_ps(fjx0,tx);
395             fjy0             = _mm256_add_ps(fjy0,ty);
396             fjz0             = _mm256_add_ps(fjz0,tz);
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             r20              = _mm256_mul_ps(rsq20,rinv20);
403
404             /* Compute parameters for interactions between i and j atoms */
405             qq20             = _mm256_mul_ps(iq2,jq0);
406
407             /* EWALD ELECTROSTATICS */
408             
409             /* Analytical PME correction */
410             zeta2            = _mm256_mul_ps(beta2,rsq20);
411             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
412             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
413             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
414             felec            = _mm256_mul_ps(qq20,felec);
415             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
416             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
417             velec            = _mm256_sub_ps(rinv20,pmecorrV);
418             velec            = _mm256_mul_ps(qq20,velec);
419             
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velecsum         = _mm256_add_ps(velecsum,velec);
422
423             fscal            = felec;
424
425             /* Calculate temporary vectorial force */
426             tx               = _mm256_mul_ps(fscal,dx20);
427             ty               = _mm256_mul_ps(fscal,dy20);
428             tz               = _mm256_mul_ps(fscal,dz20);
429
430             /* Update vectorial force */
431             fix2             = _mm256_add_ps(fix2,tx);
432             fiy2             = _mm256_add_ps(fiy2,ty);
433             fiz2             = _mm256_add_ps(fiz2,tz);
434
435             fjx0             = _mm256_add_ps(fjx0,tx);
436             fjy0             = _mm256_add_ps(fjy0,ty);
437             fjz0             = _mm256_add_ps(fjz0,tz);
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             r30              = _mm256_mul_ps(rsq30,rinv30);
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq30             = _mm256_mul_ps(iq3,jq0);
447
448             /* EWALD ELECTROSTATICS */
449             
450             /* Analytical PME correction */
451             zeta2            = _mm256_mul_ps(beta2,rsq30);
452             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
453             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
454             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
455             felec            = _mm256_mul_ps(qq30,felec);
456             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
457             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
458             velec            = _mm256_sub_ps(rinv30,pmecorrV);
459             velec            = _mm256_mul_ps(qq30,velec);
460             
461             /* Update potential sum for this i atom from the interaction with this j atom. */
462             velecsum         = _mm256_add_ps(velecsum,velec);
463
464             fscal            = felec;
465
466             /* Calculate temporary vectorial force */
467             tx               = _mm256_mul_ps(fscal,dx30);
468             ty               = _mm256_mul_ps(fscal,dy30);
469             tz               = _mm256_mul_ps(fscal,dz30);
470
471             /* Update vectorial force */
472             fix3             = _mm256_add_ps(fix3,tx);
473             fiy3             = _mm256_add_ps(fiy3,ty);
474             fiz3             = _mm256_add_ps(fiz3,tz);
475
476             fjx0             = _mm256_add_ps(fjx0,tx);
477             fjy0             = _mm256_add_ps(fjy0,ty);
478             fjz0             = _mm256_add_ps(fjz0,tz);
479
480             fjptrA             = f+j_coord_offsetA;
481             fjptrB             = f+j_coord_offsetB;
482             fjptrC             = f+j_coord_offsetC;
483             fjptrD             = f+j_coord_offsetD;
484             fjptrE             = f+j_coord_offsetE;
485             fjptrF             = f+j_coord_offsetF;
486             fjptrG             = f+j_coord_offsetG;
487             fjptrH             = f+j_coord_offsetH;
488
489             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
490
491             /* Inner loop uses 306 flops */
492         }
493
494         if(jidx<j_index_end)
495         {
496
497             /* Get j neighbor index, and coordinate index */
498             jnrlistA         = jjnr[jidx];
499             jnrlistB         = jjnr[jidx+1];
500             jnrlistC         = jjnr[jidx+2];
501             jnrlistD         = jjnr[jidx+3];
502             jnrlistE         = jjnr[jidx+4];
503             jnrlistF         = jjnr[jidx+5];
504             jnrlistG         = jjnr[jidx+6];
505             jnrlistH         = jjnr[jidx+7];
506             /* Sign of each element will be negative for non-real atoms.
507              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
508              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
509              */
510             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
511                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
512                                             
513             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
514             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
515             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
516             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
517             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
518             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
519             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
520             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
521             j_coord_offsetA  = DIM*jnrA;
522             j_coord_offsetB  = DIM*jnrB;
523             j_coord_offsetC  = DIM*jnrC;
524             j_coord_offsetD  = DIM*jnrD;
525             j_coord_offsetE  = DIM*jnrE;
526             j_coord_offsetF  = DIM*jnrF;
527             j_coord_offsetG  = DIM*jnrG;
528             j_coord_offsetH  = DIM*jnrH;
529
530             /* load j atom coordinates */
531             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
532                                                  x+j_coord_offsetC,x+j_coord_offsetD,
533                                                  x+j_coord_offsetE,x+j_coord_offsetF,
534                                                  x+j_coord_offsetG,x+j_coord_offsetH,
535                                                  &jx0,&jy0,&jz0);
536
537             /* Calculate displacement vector */
538             dx00             = _mm256_sub_ps(ix0,jx0);
539             dy00             = _mm256_sub_ps(iy0,jy0);
540             dz00             = _mm256_sub_ps(iz0,jz0);
541             dx10             = _mm256_sub_ps(ix1,jx0);
542             dy10             = _mm256_sub_ps(iy1,jy0);
543             dz10             = _mm256_sub_ps(iz1,jz0);
544             dx20             = _mm256_sub_ps(ix2,jx0);
545             dy20             = _mm256_sub_ps(iy2,jy0);
546             dz20             = _mm256_sub_ps(iz2,jz0);
547             dx30             = _mm256_sub_ps(ix3,jx0);
548             dy30             = _mm256_sub_ps(iy3,jy0);
549             dz30             = _mm256_sub_ps(iz3,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
553             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
554             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
555             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
556
557             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
558             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
559             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
560             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
561
562             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
563             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
564             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
565             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
566
567             /* Load parameters for j particles */
568             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
569                                                                  charge+jnrC+0,charge+jnrD+0,
570                                                                  charge+jnrE+0,charge+jnrF+0,
571                                                                  charge+jnrG+0,charge+jnrH+0);
572             vdwjidx0A        = 2*vdwtype[jnrA+0];
573             vdwjidx0B        = 2*vdwtype[jnrB+0];
574             vdwjidx0C        = 2*vdwtype[jnrC+0];
575             vdwjidx0D        = 2*vdwtype[jnrD+0];
576             vdwjidx0E        = 2*vdwtype[jnrE+0];
577             vdwjidx0F        = 2*vdwtype[jnrF+0];
578             vdwjidx0G        = 2*vdwtype[jnrG+0];
579             vdwjidx0H        = 2*vdwtype[jnrH+0];
580
581             fjx0             = _mm256_setzero_ps();
582             fjy0             = _mm256_setzero_ps();
583             fjz0             = _mm256_setzero_ps();
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             r00              = _mm256_mul_ps(rsq00,rinv00);
590             r00              = _mm256_andnot_ps(dummy_mask,r00);
591
592             /* Compute parameters for interactions between i and j atoms */
593             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
594                                             vdwioffsetptr0+vdwjidx0B,
595                                             vdwioffsetptr0+vdwjidx0C,
596                                             vdwioffsetptr0+vdwjidx0D,
597                                             vdwioffsetptr0+vdwjidx0E,
598                                             vdwioffsetptr0+vdwjidx0F,
599                                             vdwioffsetptr0+vdwjidx0G,
600                                             vdwioffsetptr0+vdwjidx0H,
601                                             &c6_00,&c12_00);
602
603             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
604                                                                   vdwgridioffsetptr0+vdwjidx0B,
605                                                                   vdwgridioffsetptr0+vdwjidx0C,
606                                                                   vdwgridioffsetptr0+vdwjidx0D,
607                                                                   vdwgridioffsetptr0+vdwjidx0E,
608                                                                   vdwgridioffsetptr0+vdwjidx0F,
609                                                                   vdwgridioffsetptr0+vdwjidx0G,
610                                                                   vdwgridioffsetptr0+vdwjidx0H);
611
612             /* Analytical LJ-PME */
613             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
614             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
615             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
616             exponent         = gmx_simd_exp_r(ewcljrsq);
617             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
618             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
619             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
620             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
621             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
622             vvdw             = _mm256_sub_ps(_mm256_mul_ps(vvdw12,one_twelfth),_mm256_mul_ps(vvdw6,one_sixth));
623             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
624             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
628             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
629
630             fscal            = fvdw;
631
632             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
633
634             /* Calculate temporary vectorial force */
635             tx               = _mm256_mul_ps(fscal,dx00);
636             ty               = _mm256_mul_ps(fscal,dy00);
637             tz               = _mm256_mul_ps(fscal,dz00);
638
639             /* Update vectorial force */
640             fix0             = _mm256_add_ps(fix0,tx);
641             fiy0             = _mm256_add_ps(fiy0,ty);
642             fiz0             = _mm256_add_ps(fiz0,tz);
643
644             fjx0             = _mm256_add_ps(fjx0,tx);
645             fjy0             = _mm256_add_ps(fjy0,ty);
646             fjz0             = _mm256_add_ps(fjz0,tz);
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             r10              = _mm256_mul_ps(rsq10,rinv10);
653             r10              = _mm256_andnot_ps(dummy_mask,r10);
654
655             /* Compute parameters for interactions between i and j atoms */
656             qq10             = _mm256_mul_ps(iq1,jq0);
657
658             /* EWALD ELECTROSTATICS */
659             
660             /* Analytical PME correction */
661             zeta2            = _mm256_mul_ps(beta2,rsq10);
662             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
663             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
664             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
665             felec            = _mm256_mul_ps(qq10,felec);
666             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
667             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
668             velec            = _mm256_sub_ps(rinv10,pmecorrV);
669             velec            = _mm256_mul_ps(qq10,velec);
670             
671             /* Update potential sum for this i atom from the interaction with this j atom. */
672             velec            = _mm256_andnot_ps(dummy_mask,velec);
673             velecsum         = _mm256_add_ps(velecsum,velec);
674
675             fscal            = felec;
676
677             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
678
679             /* Calculate temporary vectorial force */
680             tx               = _mm256_mul_ps(fscal,dx10);
681             ty               = _mm256_mul_ps(fscal,dy10);
682             tz               = _mm256_mul_ps(fscal,dz10);
683
684             /* Update vectorial force */
685             fix1             = _mm256_add_ps(fix1,tx);
686             fiy1             = _mm256_add_ps(fiy1,ty);
687             fiz1             = _mm256_add_ps(fiz1,tz);
688
689             fjx0             = _mm256_add_ps(fjx0,tx);
690             fjy0             = _mm256_add_ps(fjy0,ty);
691             fjz0             = _mm256_add_ps(fjz0,tz);
692
693             /**************************
694              * CALCULATE INTERACTIONS *
695              **************************/
696
697             r20              = _mm256_mul_ps(rsq20,rinv20);
698             r20              = _mm256_andnot_ps(dummy_mask,r20);
699
700             /* Compute parameters for interactions between i and j atoms */
701             qq20             = _mm256_mul_ps(iq2,jq0);
702
703             /* EWALD ELECTROSTATICS */
704             
705             /* Analytical PME correction */
706             zeta2            = _mm256_mul_ps(beta2,rsq20);
707             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
708             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
709             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
710             felec            = _mm256_mul_ps(qq20,felec);
711             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
712             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
713             velec            = _mm256_sub_ps(rinv20,pmecorrV);
714             velec            = _mm256_mul_ps(qq20,velec);
715             
716             /* Update potential sum for this i atom from the interaction with this j atom. */
717             velec            = _mm256_andnot_ps(dummy_mask,velec);
718             velecsum         = _mm256_add_ps(velecsum,velec);
719
720             fscal            = felec;
721
722             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
723
724             /* Calculate temporary vectorial force */
725             tx               = _mm256_mul_ps(fscal,dx20);
726             ty               = _mm256_mul_ps(fscal,dy20);
727             tz               = _mm256_mul_ps(fscal,dz20);
728
729             /* Update vectorial force */
730             fix2             = _mm256_add_ps(fix2,tx);
731             fiy2             = _mm256_add_ps(fiy2,ty);
732             fiz2             = _mm256_add_ps(fiz2,tz);
733
734             fjx0             = _mm256_add_ps(fjx0,tx);
735             fjy0             = _mm256_add_ps(fjy0,ty);
736             fjz0             = _mm256_add_ps(fjz0,tz);
737
738             /**************************
739              * CALCULATE INTERACTIONS *
740              **************************/
741
742             r30              = _mm256_mul_ps(rsq30,rinv30);
743             r30              = _mm256_andnot_ps(dummy_mask,r30);
744
745             /* Compute parameters for interactions between i and j atoms */
746             qq30             = _mm256_mul_ps(iq3,jq0);
747
748             /* EWALD ELECTROSTATICS */
749             
750             /* Analytical PME correction */
751             zeta2            = _mm256_mul_ps(beta2,rsq30);
752             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
753             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
754             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
755             felec            = _mm256_mul_ps(qq30,felec);
756             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
757             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
758             velec            = _mm256_sub_ps(rinv30,pmecorrV);
759             velec            = _mm256_mul_ps(qq30,velec);
760             
761             /* Update potential sum for this i atom from the interaction with this j atom. */
762             velec            = _mm256_andnot_ps(dummy_mask,velec);
763             velecsum         = _mm256_add_ps(velecsum,velec);
764
765             fscal            = felec;
766
767             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
768
769             /* Calculate temporary vectorial force */
770             tx               = _mm256_mul_ps(fscal,dx30);
771             ty               = _mm256_mul_ps(fscal,dy30);
772             tz               = _mm256_mul_ps(fscal,dz30);
773
774             /* Update vectorial force */
775             fix3             = _mm256_add_ps(fix3,tx);
776             fiy3             = _mm256_add_ps(fiy3,ty);
777             fiz3             = _mm256_add_ps(fiz3,tz);
778
779             fjx0             = _mm256_add_ps(fjx0,tx);
780             fjy0             = _mm256_add_ps(fjy0,ty);
781             fjz0             = _mm256_add_ps(fjz0,tz);
782
783             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
784             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
785             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
786             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
787             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
788             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
789             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
790             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
791
792             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
793
794             /* Inner loop uses 310 flops */
795         }
796
797         /* End of innermost loop */
798
799         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
800                                                  f+i_coord_offset,fshift+i_shift_offset);
801
802         ggid                        = gid[iidx];
803         /* Update potential energies */
804         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
805         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
806
807         /* Increment number of inner iterations */
808         inneriter                  += j_index_end - j_index_start;
809
810         /* Outer loop uses 26 flops */
811     }
812
813     /* Increment number of outer iterations */
814     outeriter        += nri;
815
816     /* Update outer/inner flops */
817
818     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*310);
819 }
820 /*
821  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_256_single
822  * Electrostatics interaction: Ewald
823  * VdW interaction:            LJEwald
824  * Geometry:                   Water4-Particle
825  * Calculate force/pot:        Force
826  */
827 void
828 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_256_single
829                     (t_nblist                    * gmx_restrict       nlist,
830                      rvec                        * gmx_restrict          xx,
831                      rvec                        * gmx_restrict          ff,
832                      t_forcerec                  * gmx_restrict          fr,
833                      t_mdatoms                   * gmx_restrict     mdatoms,
834                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
835                      t_nrnb                      * gmx_restrict        nrnb)
836 {
837     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
838      * just 0 for non-waters.
839      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
840      * jnr indices corresponding to data put in the four positions in the SIMD register.
841      */
842     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
843     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
844     int              jnrA,jnrB,jnrC,jnrD;
845     int              jnrE,jnrF,jnrG,jnrH;
846     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
847     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
848     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
849     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
850     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
851     real             rcutoff_scalar;
852     real             *shiftvec,*fshift,*x,*f;
853     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
854     real             scratch[4*DIM];
855     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
856     real *           vdwioffsetptr0;
857     real *           vdwgridioffsetptr0;
858     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
859     real *           vdwioffsetptr1;
860     real *           vdwgridioffsetptr1;
861     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
862     real *           vdwioffsetptr2;
863     real *           vdwgridioffsetptr2;
864     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
865     real *           vdwioffsetptr3;
866     real *           vdwgridioffsetptr3;
867     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
868     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
869     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
870     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
871     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
872     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
873     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
874     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
875     real             *charge;
876     int              nvdwtype;
877     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
878     int              *vdwtype;
879     real             *vdwparam;
880     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
881     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
882     __m256           c6grid_00;
883     __m256           c6grid_10;
884     __m256           c6grid_20;
885     __m256           c6grid_30;
886     real             *vdwgridparam;
887     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
888     __m256           one_half  = _mm256_set1_ps(0.5);
889     __m256           minus_one = _mm256_set1_ps(-1.0);
890     __m256i          ewitab;
891     __m128i          ewitab_lo,ewitab_hi;
892     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
893     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
894     real             *ewtab;
895     __m256           dummy_mask,cutoff_mask;
896     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
897     __m256           one     = _mm256_set1_ps(1.0);
898     __m256           two     = _mm256_set1_ps(2.0);
899     x                = xx[0];
900     f                = ff[0];
901
902     nri              = nlist->nri;
903     iinr             = nlist->iinr;
904     jindex           = nlist->jindex;
905     jjnr             = nlist->jjnr;
906     shiftidx         = nlist->shift;
907     gid              = nlist->gid;
908     shiftvec         = fr->shift_vec[0];
909     fshift           = fr->fshift[0];
910     facel            = _mm256_set1_ps(fr->epsfac);
911     charge           = mdatoms->chargeA;
912     nvdwtype         = fr->ntype;
913     vdwparam         = fr->nbfp;
914     vdwtype          = mdatoms->typeA;
915     vdwgridparam     = fr->ljpme_c6grid;
916     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
917     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
918     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
919
920     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
921     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
922     beta2            = _mm256_mul_ps(beta,beta);
923     beta3            = _mm256_mul_ps(beta,beta2);
924
925     ewtab            = fr->ic->tabq_coul_F;
926     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
927     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
928
929     /* Setup water-specific parameters */
930     inr              = nlist->iinr[0];
931     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
932     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
933     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
934     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
935     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
936
937     /* Avoid stupid compiler warnings */
938     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
939     j_coord_offsetA = 0;
940     j_coord_offsetB = 0;
941     j_coord_offsetC = 0;
942     j_coord_offsetD = 0;
943     j_coord_offsetE = 0;
944     j_coord_offsetF = 0;
945     j_coord_offsetG = 0;
946     j_coord_offsetH = 0;
947
948     outeriter        = 0;
949     inneriter        = 0;
950
951     for(iidx=0;iidx<4*DIM;iidx++)
952     {
953         scratch[iidx] = 0.0;
954     }
955
956     /* Start outer loop over neighborlists */
957     for(iidx=0; iidx<nri; iidx++)
958     {
959         /* Load shift vector for this list */
960         i_shift_offset   = DIM*shiftidx[iidx];
961
962         /* Load limits for loop over neighbors */
963         j_index_start    = jindex[iidx];
964         j_index_end      = jindex[iidx+1];
965
966         /* Get outer coordinate index */
967         inr              = iinr[iidx];
968         i_coord_offset   = DIM*inr;
969
970         /* Load i particle coords and add shift vector */
971         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
972                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
973
974         fix0             = _mm256_setzero_ps();
975         fiy0             = _mm256_setzero_ps();
976         fiz0             = _mm256_setzero_ps();
977         fix1             = _mm256_setzero_ps();
978         fiy1             = _mm256_setzero_ps();
979         fiz1             = _mm256_setzero_ps();
980         fix2             = _mm256_setzero_ps();
981         fiy2             = _mm256_setzero_ps();
982         fiz2             = _mm256_setzero_ps();
983         fix3             = _mm256_setzero_ps();
984         fiy3             = _mm256_setzero_ps();
985         fiz3             = _mm256_setzero_ps();
986
987         /* Start inner kernel loop */
988         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
989         {
990
991             /* Get j neighbor index, and coordinate index */
992             jnrA             = jjnr[jidx];
993             jnrB             = jjnr[jidx+1];
994             jnrC             = jjnr[jidx+2];
995             jnrD             = jjnr[jidx+3];
996             jnrE             = jjnr[jidx+4];
997             jnrF             = jjnr[jidx+5];
998             jnrG             = jjnr[jidx+6];
999             jnrH             = jjnr[jidx+7];
1000             j_coord_offsetA  = DIM*jnrA;
1001             j_coord_offsetB  = DIM*jnrB;
1002             j_coord_offsetC  = DIM*jnrC;
1003             j_coord_offsetD  = DIM*jnrD;
1004             j_coord_offsetE  = DIM*jnrE;
1005             j_coord_offsetF  = DIM*jnrF;
1006             j_coord_offsetG  = DIM*jnrG;
1007             j_coord_offsetH  = DIM*jnrH;
1008
1009             /* load j atom coordinates */
1010             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1011                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1012                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1013                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1014                                                  &jx0,&jy0,&jz0);
1015
1016             /* Calculate displacement vector */
1017             dx00             = _mm256_sub_ps(ix0,jx0);
1018             dy00             = _mm256_sub_ps(iy0,jy0);
1019             dz00             = _mm256_sub_ps(iz0,jz0);
1020             dx10             = _mm256_sub_ps(ix1,jx0);
1021             dy10             = _mm256_sub_ps(iy1,jy0);
1022             dz10             = _mm256_sub_ps(iz1,jz0);
1023             dx20             = _mm256_sub_ps(ix2,jx0);
1024             dy20             = _mm256_sub_ps(iy2,jy0);
1025             dz20             = _mm256_sub_ps(iz2,jz0);
1026             dx30             = _mm256_sub_ps(ix3,jx0);
1027             dy30             = _mm256_sub_ps(iy3,jy0);
1028             dz30             = _mm256_sub_ps(iz3,jz0);
1029
1030             /* Calculate squared distance and things based on it */
1031             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1032             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1033             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1034             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1035
1036             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1037             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1038             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1039             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1040
1041             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1042             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1043             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1044             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1045
1046             /* Load parameters for j particles */
1047             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1048                                                                  charge+jnrC+0,charge+jnrD+0,
1049                                                                  charge+jnrE+0,charge+jnrF+0,
1050                                                                  charge+jnrG+0,charge+jnrH+0);
1051             vdwjidx0A        = 2*vdwtype[jnrA+0];
1052             vdwjidx0B        = 2*vdwtype[jnrB+0];
1053             vdwjidx0C        = 2*vdwtype[jnrC+0];
1054             vdwjidx0D        = 2*vdwtype[jnrD+0];
1055             vdwjidx0E        = 2*vdwtype[jnrE+0];
1056             vdwjidx0F        = 2*vdwtype[jnrF+0];
1057             vdwjidx0G        = 2*vdwtype[jnrG+0];
1058             vdwjidx0H        = 2*vdwtype[jnrH+0];
1059
1060             fjx0             = _mm256_setzero_ps();
1061             fjy0             = _mm256_setzero_ps();
1062             fjz0             = _mm256_setzero_ps();
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             r00              = _mm256_mul_ps(rsq00,rinv00);
1069
1070             /* Compute parameters for interactions between i and j atoms */
1071             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1072                                             vdwioffsetptr0+vdwjidx0B,
1073                                             vdwioffsetptr0+vdwjidx0C,
1074                                             vdwioffsetptr0+vdwjidx0D,
1075                                             vdwioffsetptr0+vdwjidx0E,
1076                                             vdwioffsetptr0+vdwjidx0F,
1077                                             vdwioffsetptr0+vdwjidx0G,
1078                                             vdwioffsetptr0+vdwjidx0H,
1079                                             &c6_00,&c12_00);
1080
1081             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1082                                                                   vdwgridioffsetptr0+vdwjidx0B,
1083                                                                   vdwgridioffsetptr0+vdwjidx0C,
1084                                                                   vdwgridioffsetptr0+vdwjidx0D,
1085                                                                   vdwgridioffsetptr0+vdwjidx0E,
1086                                                                   vdwgridioffsetptr0+vdwjidx0F,
1087                                                                   vdwgridioffsetptr0+vdwjidx0G,
1088                                                                   vdwgridioffsetptr0+vdwjidx0H);
1089
1090             /* Analytical LJ-PME */
1091             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1092             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1093             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1094             exponent         = gmx_simd_exp_r(ewcljrsq);
1095             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1096             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1097             /* f6A = 6 * C6grid * (1 - poly) */
1098             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1099             /* f6B = C6grid * exponent * beta^6 */
1100             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1101             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1102             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1103
1104             fscal            = fvdw;
1105
1106             /* Calculate temporary vectorial force */
1107             tx               = _mm256_mul_ps(fscal,dx00);
1108             ty               = _mm256_mul_ps(fscal,dy00);
1109             tz               = _mm256_mul_ps(fscal,dz00);
1110
1111             /* Update vectorial force */
1112             fix0             = _mm256_add_ps(fix0,tx);
1113             fiy0             = _mm256_add_ps(fiy0,ty);
1114             fiz0             = _mm256_add_ps(fiz0,tz);
1115
1116             fjx0             = _mm256_add_ps(fjx0,tx);
1117             fjy0             = _mm256_add_ps(fjy0,ty);
1118             fjz0             = _mm256_add_ps(fjz0,tz);
1119
1120             /**************************
1121              * CALCULATE INTERACTIONS *
1122              **************************/
1123
1124             r10              = _mm256_mul_ps(rsq10,rinv10);
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             qq10             = _mm256_mul_ps(iq1,jq0);
1128
1129             /* EWALD ELECTROSTATICS */
1130             
1131             /* Analytical PME correction */
1132             zeta2            = _mm256_mul_ps(beta2,rsq10);
1133             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1134             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1135             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1136             felec            = _mm256_mul_ps(qq10,felec);
1137             
1138             fscal            = felec;
1139
1140             /* Calculate temporary vectorial force */
1141             tx               = _mm256_mul_ps(fscal,dx10);
1142             ty               = _mm256_mul_ps(fscal,dy10);
1143             tz               = _mm256_mul_ps(fscal,dz10);
1144
1145             /* Update vectorial force */
1146             fix1             = _mm256_add_ps(fix1,tx);
1147             fiy1             = _mm256_add_ps(fiy1,ty);
1148             fiz1             = _mm256_add_ps(fiz1,tz);
1149
1150             fjx0             = _mm256_add_ps(fjx0,tx);
1151             fjy0             = _mm256_add_ps(fjy0,ty);
1152             fjz0             = _mm256_add_ps(fjz0,tz);
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             r20              = _mm256_mul_ps(rsq20,rinv20);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq20             = _mm256_mul_ps(iq2,jq0);
1162
1163             /* EWALD ELECTROSTATICS */
1164             
1165             /* Analytical PME correction */
1166             zeta2            = _mm256_mul_ps(beta2,rsq20);
1167             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1168             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1169             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1170             felec            = _mm256_mul_ps(qq20,felec);
1171             
1172             fscal            = felec;
1173
1174             /* Calculate temporary vectorial force */
1175             tx               = _mm256_mul_ps(fscal,dx20);
1176             ty               = _mm256_mul_ps(fscal,dy20);
1177             tz               = _mm256_mul_ps(fscal,dz20);
1178
1179             /* Update vectorial force */
1180             fix2             = _mm256_add_ps(fix2,tx);
1181             fiy2             = _mm256_add_ps(fiy2,ty);
1182             fiz2             = _mm256_add_ps(fiz2,tz);
1183
1184             fjx0             = _mm256_add_ps(fjx0,tx);
1185             fjy0             = _mm256_add_ps(fjy0,ty);
1186             fjz0             = _mm256_add_ps(fjz0,tz);
1187
1188             /**************************
1189              * CALCULATE INTERACTIONS *
1190              **************************/
1191
1192             r30              = _mm256_mul_ps(rsq30,rinv30);
1193
1194             /* Compute parameters for interactions between i and j atoms */
1195             qq30             = _mm256_mul_ps(iq3,jq0);
1196
1197             /* EWALD ELECTROSTATICS */
1198             
1199             /* Analytical PME correction */
1200             zeta2            = _mm256_mul_ps(beta2,rsq30);
1201             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1202             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1203             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1204             felec            = _mm256_mul_ps(qq30,felec);
1205             
1206             fscal            = felec;
1207
1208             /* Calculate temporary vectorial force */
1209             tx               = _mm256_mul_ps(fscal,dx30);
1210             ty               = _mm256_mul_ps(fscal,dy30);
1211             tz               = _mm256_mul_ps(fscal,dz30);
1212
1213             /* Update vectorial force */
1214             fix3             = _mm256_add_ps(fix3,tx);
1215             fiy3             = _mm256_add_ps(fiy3,ty);
1216             fiz3             = _mm256_add_ps(fiz3,tz);
1217
1218             fjx0             = _mm256_add_ps(fjx0,tx);
1219             fjy0             = _mm256_add_ps(fjy0,ty);
1220             fjz0             = _mm256_add_ps(fjz0,tz);
1221
1222             fjptrA             = f+j_coord_offsetA;
1223             fjptrB             = f+j_coord_offsetB;
1224             fjptrC             = f+j_coord_offsetC;
1225             fjptrD             = f+j_coord_offsetD;
1226             fjptrE             = f+j_coord_offsetE;
1227             fjptrF             = f+j_coord_offsetF;
1228             fjptrG             = f+j_coord_offsetG;
1229             fjptrH             = f+j_coord_offsetH;
1230
1231             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1232
1233             /* Inner loop uses 217 flops */
1234         }
1235
1236         if(jidx<j_index_end)
1237         {
1238
1239             /* Get j neighbor index, and coordinate index */
1240             jnrlistA         = jjnr[jidx];
1241             jnrlistB         = jjnr[jidx+1];
1242             jnrlistC         = jjnr[jidx+2];
1243             jnrlistD         = jjnr[jidx+3];
1244             jnrlistE         = jjnr[jidx+4];
1245             jnrlistF         = jjnr[jidx+5];
1246             jnrlistG         = jjnr[jidx+6];
1247             jnrlistH         = jjnr[jidx+7];
1248             /* Sign of each element will be negative for non-real atoms.
1249              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1250              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1251              */
1252             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1253                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1254                                             
1255             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1256             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1257             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1258             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1259             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1260             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1261             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1262             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1263             j_coord_offsetA  = DIM*jnrA;
1264             j_coord_offsetB  = DIM*jnrB;
1265             j_coord_offsetC  = DIM*jnrC;
1266             j_coord_offsetD  = DIM*jnrD;
1267             j_coord_offsetE  = DIM*jnrE;
1268             j_coord_offsetF  = DIM*jnrF;
1269             j_coord_offsetG  = DIM*jnrG;
1270             j_coord_offsetH  = DIM*jnrH;
1271
1272             /* load j atom coordinates */
1273             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1274                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1275                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1276                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1277                                                  &jx0,&jy0,&jz0);
1278
1279             /* Calculate displacement vector */
1280             dx00             = _mm256_sub_ps(ix0,jx0);
1281             dy00             = _mm256_sub_ps(iy0,jy0);
1282             dz00             = _mm256_sub_ps(iz0,jz0);
1283             dx10             = _mm256_sub_ps(ix1,jx0);
1284             dy10             = _mm256_sub_ps(iy1,jy0);
1285             dz10             = _mm256_sub_ps(iz1,jz0);
1286             dx20             = _mm256_sub_ps(ix2,jx0);
1287             dy20             = _mm256_sub_ps(iy2,jy0);
1288             dz20             = _mm256_sub_ps(iz2,jz0);
1289             dx30             = _mm256_sub_ps(ix3,jx0);
1290             dy30             = _mm256_sub_ps(iy3,jy0);
1291             dz30             = _mm256_sub_ps(iz3,jz0);
1292
1293             /* Calculate squared distance and things based on it */
1294             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1295             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1296             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1297             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1298
1299             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1300             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1301             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1302             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1303
1304             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1305             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1306             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1307             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1308
1309             /* Load parameters for j particles */
1310             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1311                                                                  charge+jnrC+0,charge+jnrD+0,
1312                                                                  charge+jnrE+0,charge+jnrF+0,
1313                                                                  charge+jnrG+0,charge+jnrH+0);
1314             vdwjidx0A        = 2*vdwtype[jnrA+0];
1315             vdwjidx0B        = 2*vdwtype[jnrB+0];
1316             vdwjidx0C        = 2*vdwtype[jnrC+0];
1317             vdwjidx0D        = 2*vdwtype[jnrD+0];
1318             vdwjidx0E        = 2*vdwtype[jnrE+0];
1319             vdwjidx0F        = 2*vdwtype[jnrF+0];
1320             vdwjidx0G        = 2*vdwtype[jnrG+0];
1321             vdwjidx0H        = 2*vdwtype[jnrH+0];
1322
1323             fjx0             = _mm256_setzero_ps();
1324             fjy0             = _mm256_setzero_ps();
1325             fjz0             = _mm256_setzero_ps();
1326
1327             /**************************
1328              * CALCULATE INTERACTIONS *
1329              **************************/
1330
1331             r00              = _mm256_mul_ps(rsq00,rinv00);
1332             r00              = _mm256_andnot_ps(dummy_mask,r00);
1333
1334             /* Compute parameters for interactions between i and j atoms */
1335             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1336                                             vdwioffsetptr0+vdwjidx0B,
1337                                             vdwioffsetptr0+vdwjidx0C,
1338                                             vdwioffsetptr0+vdwjidx0D,
1339                                             vdwioffsetptr0+vdwjidx0E,
1340                                             vdwioffsetptr0+vdwjidx0F,
1341                                             vdwioffsetptr0+vdwjidx0G,
1342                                             vdwioffsetptr0+vdwjidx0H,
1343                                             &c6_00,&c12_00);
1344
1345             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1346                                                                   vdwgridioffsetptr0+vdwjidx0B,
1347                                                                   vdwgridioffsetptr0+vdwjidx0C,
1348                                                                   vdwgridioffsetptr0+vdwjidx0D,
1349                                                                   vdwgridioffsetptr0+vdwjidx0E,
1350                                                                   vdwgridioffsetptr0+vdwjidx0F,
1351                                                                   vdwgridioffsetptr0+vdwjidx0G,
1352                                                                   vdwgridioffsetptr0+vdwjidx0H);
1353
1354             /* Analytical LJ-PME */
1355             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1356             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1357             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1358             exponent         = gmx_simd_exp_r(ewcljrsq);
1359             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1360             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1361             /* f6A = 6 * C6grid * (1 - poly) */
1362             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1363             /* f6B = C6grid * exponent * beta^6 */
1364             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1365             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1366             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1367
1368             fscal            = fvdw;
1369
1370             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1371
1372             /* Calculate temporary vectorial force */
1373             tx               = _mm256_mul_ps(fscal,dx00);
1374             ty               = _mm256_mul_ps(fscal,dy00);
1375             tz               = _mm256_mul_ps(fscal,dz00);
1376
1377             /* Update vectorial force */
1378             fix0             = _mm256_add_ps(fix0,tx);
1379             fiy0             = _mm256_add_ps(fiy0,ty);
1380             fiz0             = _mm256_add_ps(fiz0,tz);
1381
1382             fjx0             = _mm256_add_ps(fjx0,tx);
1383             fjy0             = _mm256_add_ps(fjy0,ty);
1384             fjz0             = _mm256_add_ps(fjz0,tz);
1385
1386             /**************************
1387              * CALCULATE INTERACTIONS *
1388              **************************/
1389
1390             r10              = _mm256_mul_ps(rsq10,rinv10);
1391             r10              = _mm256_andnot_ps(dummy_mask,r10);
1392
1393             /* Compute parameters for interactions between i and j atoms */
1394             qq10             = _mm256_mul_ps(iq1,jq0);
1395
1396             /* EWALD ELECTROSTATICS */
1397             
1398             /* Analytical PME correction */
1399             zeta2            = _mm256_mul_ps(beta2,rsq10);
1400             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1401             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1402             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1403             felec            = _mm256_mul_ps(qq10,felec);
1404             
1405             fscal            = felec;
1406
1407             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1408
1409             /* Calculate temporary vectorial force */
1410             tx               = _mm256_mul_ps(fscal,dx10);
1411             ty               = _mm256_mul_ps(fscal,dy10);
1412             tz               = _mm256_mul_ps(fscal,dz10);
1413
1414             /* Update vectorial force */
1415             fix1             = _mm256_add_ps(fix1,tx);
1416             fiy1             = _mm256_add_ps(fiy1,ty);
1417             fiz1             = _mm256_add_ps(fiz1,tz);
1418
1419             fjx0             = _mm256_add_ps(fjx0,tx);
1420             fjy0             = _mm256_add_ps(fjy0,ty);
1421             fjz0             = _mm256_add_ps(fjz0,tz);
1422
1423             /**************************
1424              * CALCULATE INTERACTIONS *
1425              **************************/
1426
1427             r20              = _mm256_mul_ps(rsq20,rinv20);
1428             r20              = _mm256_andnot_ps(dummy_mask,r20);
1429
1430             /* Compute parameters for interactions between i and j atoms */
1431             qq20             = _mm256_mul_ps(iq2,jq0);
1432
1433             /* EWALD ELECTROSTATICS */
1434             
1435             /* Analytical PME correction */
1436             zeta2            = _mm256_mul_ps(beta2,rsq20);
1437             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1438             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1439             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1440             felec            = _mm256_mul_ps(qq20,felec);
1441             
1442             fscal            = felec;
1443
1444             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1445
1446             /* Calculate temporary vectorial force */
1447             tx               = _mm256_mul_ps(fscal,dx20);
1448             ty               = _mm256_mul_ps(fscal,dy20);
1449             tz               = _mm256_mul_ps(fscal,dz20);
1450
1451             /* Update vectorial force */
1452             fix2             = _mm256_add_ps(fix2,tx);
1453             fiy2             = _mm256_add_ps(fiy2,ty);
1454             fiz2             = _mm256_add_ps(fiz2,tz);
1455
1456             fjx0             = _mm256_add_ps(fjx0,tx);
1457             fjy0             = _mm256_add_ps(fjy0,ty);
1458             fjz0             = _mm256_add_ps(fjz0,tz);
1459
1460             /**************************
1461              * CALCULATE INTERACTIONS *
1462              **************************/
1463
1464             r30              = _mm256_mul_ps(rsq30,rinv30);
1465             r30              = _mm256_andnot_ps(dummy_mask,r30);
1466
1467             /* Compute parameters for interactions between i and j atoms */
1468             qq30             = _mm256_mul_ps(iq3,jq0);
1469
1470             /* EWALD ELECTROSTATICS */
1471             
1472             /* Analytical PME correction */
1473             zeta2            = _mm256_mul_ps(beta2,rsq30);
1474             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1475             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1476             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1477             felec            = _mm256_mul_ps(qq30,felec);
1478             
1479             fscal            = felec;
1480
1481             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1482
1483             /* Calculate temporary vectorial force */
1484             tx               = _mm256_mul_ps(fscal,dx30);
1485             ty               = _mm256_mul_ps(fscal,dy30);
1486             tz               = _mm256_mul_ps(fscal,dz30);
1487
1488             /* Update vectorial force */
1489             fix3             = _mm256_add_ps(fix3,tx);
1490             fiy3             = _mm256_add_ps(fiy3,ty);
1491             fiz3             = _mm256_add_ps(fiz3,tz);
1492
1493             fjx0             = _mm256_add_ps(fjx0,tx);
1494             fjy0             = _mm256_add_ps(fjy0,ty);
1495             fjz0             = _mm256_add_ps(fjz0,tz);
1496
1497             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1498             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1499             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1500             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1501             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1502             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1503             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1504             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1505
1506             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1507
1508             /* Inner loop uses 221 flops */
1509         }
1510
1511         /* End of innermost loop */
1512
1513         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1514                                                  f+i_coord_offset,fshift+i_shift_offset);
1515
1516         /* Increment number of inner iterations */
1517         inneriter                  += j_index_end - j_index_start;
1518
1519         /* Outer loop uses 24 flops */
1520     }
1521
1522     /* Increment number of outer iterations */
1523     outeriter        += nri;
1524
1525     /* Update outer/inner flops */
1526
1527     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*221);
1528 }