Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     real *           vdwgridioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     real *           vdwgridioffsetptr1;
90     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
91     real *           vdwioffsetptr2;
92     real *           vdwgridioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256           c6grid_00;
108     __m256           c6grid_10;
109     __m256           c6grid_20;
110     real             *vdwgridparam;
111     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
112     __m256           one_half  = _mm256_set1_ps(0.5);
113     __m256           minus_one = _mm256_set1_ps(-1.0);
114     __m256i          ewitab;
115     __m128i          ewitab_lo,ewitab_hi;
116     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
118     real             *ewtab;
119     __m256           dummy_mask,cutoff_mask;
120     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
121     __m256           one     = _mm256_set1_ps(1.0);
122     __m256           two     = _mm256_set1_ps(2.0);
123     x                = xx[0];
124     f                = ff[0];
125
126     nri              = nlist->nri;
127     iinr             = nlist->iinr;
128     jindex           = nlist->jindex;
129     jjnr             = nlist->jjnr;
130     shiftidx         = nlist->shift;
131     gid              = nlist->gid;
132     shiftvec         = fr->shift_vec[0];
133     fshift           = fr->fshift[0];
134     facel            = _mm256_set1_ps(fr->ic->epsfac);
135     charge           = mdatoms->chargeA;
136     nvdwtype         = fr->ntype;
137     vdwparam         = fr->nbfp;
138     vdwtype          = mdatoms->typeA;
139     vdwgridparam     = fr->ljpme_c6grid;
140     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
141     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
142     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
143
144     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
145     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
146     beta2            = _mm256_mul_ps(beta,beta);
147     beta3            = _mm256_mul_ps(beta,beta2);
148
149     ewtab            = fr->ic->tabq_coul_FDV0;
150     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
151     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
152
153     /* Setup water-specific parameters */
154     inr              = nlist->iinr[0];
155     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
156     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
157     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
158     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
159     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
160
161     /* Avoid stupid compiler warnings */
162     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
163     j_coord_offsetA = 0;
164     j_coord_offsetB = 0;
165     j_coord_offsetC = 0;
166     j_coord_offsetD = 0;
167     j_coord_offsetE = 0;
168     j_coord_offsetF = 0;
169     j_coord_offsetG = 0;
170     j_coord_offsetH = 0;
171
172     outeriter        = 0;
173     inneriter        = 0;
174
175     for(iidx=0;iidx<4*DIM;iidx++)
176     {
177         scratch[iidx] = 0.0;
178     }
179
180     /* Start outer loop over neighborlists */
181     for(iidx=0; iidx<nri; iidx++)
182     {
183         /* Load shift vector for this list */
184         i_shift_offset   = DIM*shiftidx[iidx];
185
186         /* Load limits for loop over neighbors */
187         j_index_start    = jindex[iidx];
188         j_index_end      = jindex[iidx+1];
189
190         /* Get outer coordinate index */
191         inr              = iinr[iidx];
192         i_coord_offset   = DIM*inr;
193
194         /* Load i particle coords and add shift vector */
195         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
196                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
197
198         fix0             = _mm256_setzero_ps();
199         fiy0             = _mm256_setzero_ps();
200         fiz0             = _mm256_setzero_ps();
201         fix1             = _mm256_setzero_ps();
202         fiy1             = _mm256_setzero_ps();
203         fiz1             = _mm256_setzero_ps();
204         fix2             = _mm256_setzero_ps();
205         fiy2             = _mm256_setzero_ps();
206         fiz2             = _mm256_setzero_ps();
207
208         /* Reset potential sums */
209         velecsum         = _mm256_setzero_ps();
210         vvdwsum          = _mm256_setzero_ps();
211
212         /* Start inner kernel loop */
213         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
214         {
215
216             /* Get j neighbor index, and coordinate index */
217             jnrA             = jjnr[jidx];
218             jnrB             = jjnr[jidx+1];
219             jnrC             = jjnr[jidx+2];
220             jnrD             = jjnr[jidx+3];
221             jnrE             = jjnr[jidx+4];
222             jnrF             = jjnr[jidx+5];
223             jnrG             = jjnr[jidx+6];
224             jnrH             = jjnr[jidx+7];
225             j_coord_offsetA  = DIM*jnrA;
226             j_coord_offsetB  = DIM*jnrB;
227             j_coord_offsetC  = DIM*jnrC;
228             j_coord_offsetD  = DIM*jnrD;
229             j_coord_offsetE  = DIM*jnrE;
230             j_coord_offsetF  = DIM*jnrF;
231             j_coord_offsetG  = DIM*jnrG;
232             j_coord_offsetH  = DIM*jnrH;
233
234             /* load j atom coordinates */
235             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
236                                                  x+j_coord_offsetC,x+j_coord_offsetD,
237                                                  x+j_coord_offsetE,x+j_coord_offsetF,
238                                                  x+j_coord_offsetG,x+j_coord_offsetH,
239                                                  &jx0,&jy0,&jz0);
240
241             /* Calculate displacement vector */
242             dx00             = _mm256_sub_ps(ix0,jx0);
243             dy00             = _mm256_sub_ps(iy0,jy0);
244             dz00             = _mm256_sub_ps(iz0,jz0);
245             dx10             = _mm256_sub_ps(ix1,jx0);
246             dy10             = _mm256_sub_ps(iy1,jy0);
247             dz10             = _mm256_sub_ps(iz1,jz0);
248             dx20             = _mm256_sub_ps(ix2,jx0);
249             dy20             = _mm256_sub_ps(iy2,jy0);
250             dz20             = _mm256_sub_ps(iz2,jz0);
251
252             /* Calculate squared distance and things based on it */
253             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
254             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
255             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
256
257             rinv00           = avx256_invsqrt_f(rsq00);
258             rinv10           = avx256_invsqrt_f(rsq10);
259             rinv20           = avx256_invsqrt_f(rsq20);
260
261             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
262             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
263             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
264
265             /* Load parameters for j particles */
266             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
267                                                                  charge+jnrC+0,charge+jnrD+0,
268                                                                  charge+jnrE+0,charge+jnrF+0,
269                                                                  charge+jnrG+0,charge+jnrH+0);
270             vdwjidx0A        = 2*vdwtype[jnrA+0];
271             vdwjidx0B        = 2*vdwtype[jnrB+0];
272             vdwjidx0C        = 2*vdwtype[jnrC+0];
273             vdwjidx0D        = 2*vdwtype[jnrD+0];
274             vdwjidx0E        = 2*vdwtype[jnrE+0];
275             vdwjidx0F        = 2*vdwtype[jnrF+0];
276             vdwjidx0G        = 2*vdwtype[jnrG+0];
277             vdwjidx0H        = 2*vdwtype[jnrH+0];
278
279             fjx0             = _mm256_setzero_ps();
280             fjy0             = _mm256_setzero_ps();
281             fjz0             = _mm256_setzero_ps();
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             r00              = _mm256_mul_ps(rsq00,rinv00);
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq00             = _mm256_mul_ps(iq0,jq0);
291             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
292                                             vdwioffsetptr0+vdwjidx0B,
293                                             vdwioffsetptr0+vdwjidx0C,
294                                             vdwioffsetptr0+vdwjidx0D,
295                                             vdwioffsetptr0+vdwjidx0E,
296                                             vdwioffsetptr0+vdwjidx0F,
297                                             vdwioffsetptr0+vdwjidx0G,
298                                             vdwioffsetptr0+vdwjidx0H,
299                                             &c6_00,&c12_00);
300
301             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
302                                                                   vdwgridioffsetptr0+vdwjidx0B,
303                                                                   vdwgridioffsetptr0+vdwjidx0C,
304                                                                   vdwgridioffsetptr0+vdwjidx0D,
305                                                                   vdwgridioffsetptr0+vdwjidx0E,
306                                                                   vdwgridioffsetptr0+vdwjidx0F,
307                                                                   vdwgridioffsetptr0+vdwjidx0G,
308                                                                   vdwgridioffsetptr0+vdwjidx0H);
309
310             /* EWALD ELECTROSTATICS */
311             
312             /* Analytical PME correction */
313             zeta2            = _mm256_mul_ps(beta2,rsq00);
314             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
315             pmecorrF         = avx256_pmecorrF_f(zeta2);
316             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
317             felec            = _mm256_mul_ps(qq00,felec);
318             pmecorrV         = avx256_pmecorrV_f(zeta2);
319             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
320             velec            = _mm256_sub_ps(rinv00,pmecorrV);
321             velec            = _mm256_mul_ps(qq00,velec);
322             
323             /* Analytical LJ-PME */
324             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
325             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
326             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
327             exponent         = avx256_exp_f(ewcljrsq);
328             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
329             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
330             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
331             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
332             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
333             vvdw             = _mm256_sub_ps(_mm256_mul_ps(vvdw12,one_twelfth),_mm256_mul_ps(vvdw6,one_sixth));
334             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
335             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velecsum         = _mm256_add_ps(velecsum,velec);
339             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
340
341             fscal            = _mm256_add_ps(felec,fvdw);
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm256_mul_ps(fscal,dx00);
345             ty               = _mm256_mul_ps(fscal,dy00);
346             tz               = _mm256_mul_ps(fscal,dz00);
347
348             /* Update vectorial force */
349             fix0             = _mm256_add_ps(fix0,tx);
350             fiy0             = _mm256_add_ps(fiy0,ty);
351             fiz0             = _mm256_add_ps(fiz0,tz);
352
353             fjx0             = _mm256_add_ps(fjx0,tx);
354             fjy0             = _mm256_add_ps(fjy0,ty);
355             fjz0             = _mm256_add_ps(fjz0,tz);
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             r10              = _mm256_mul_ps(rsq10,rinv10);
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq10             = _mm256_mul_ps(iq1,jq0);
365
366             /* EWALD ELECTROSTATICS */
367             
368             /* Analytical PME correction */
369             zeta2            = _mm256_mul_ps(beta2,rsq10);
370             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
371             pmecorrF         = avx256_pmecorrF_f(zeta2);
372             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
373             felec            = _mm256_mul_ps(qq10,felec);
374             pmecorrV         = avx256_pmecorrV_f(zeta2);
375             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
376             velec            = _mm256_sub_ps(rinv10,pmecorrV);
377             velec            = _mm256_mul_ps(qq10,velec);
378             
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm256_add_ps(velecsum,velec);
381
382             fscal            = felec;
383
384             /* Calculate temporary vectorial force */
385             tx               = _mm256_mul_ps(fscal,dx10);
386             ty               = _mm256_mul_ps(fscal,dy10);
387             tz               = _mm256_mul_ps(fscal,dz10);
388
389             /* Update vectorial force */
390             fix1             = _mm256_add_ps(fix1,tx);
391             fiy1             = _mm256_add_ps(fiy1,ty);
392             fiz1             = _mm256_add_ps(fiz1,tz);
393
394             fjx0             = _mm256_add_ps(fjx0,tx);
395             fjy0             = _mm256_add_ps(fjy0,ty);
396             fjz0             = _mm256_add_ps(fjz0,tz);
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             r20              = _mm256_mul_ps(rsq20,rinv20);
403
404             /* Compute parameters for interactions between i and j atoms */
405             qq20             = _mm256_mul_ps(iq2,jq0);
406
407             /* EWALD ELECTROSTATICS */
408             
409             /* Analytical PME correction */
410             zeta2            = _mm256_mul_ps(beta2,rsq20);
411             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
412             pmecorrF         = avx256_pmecorrF_f(zeta2);
413             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
414             felec            = _mm256_mul_ps(qq20,felec);
415             pmecorrV         = avx256_pmecorrV_f(zeta2);
416             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
417             velec            = _mm256_sub_ps(rinv20,pmecorrV);
418             velec            = _mm256_mul_ps(qq20,velec);
419             
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velecsum         = _mm256_add_ps(velecsum,velec);
422
423             fscal            = felec;
424
425             /* Calculate temporary vectorial force */
426             tx               = _mm256_mul_ps(fscal,dx20);
427             ty               = _mm256_mul_ps(fscal,dy20);
428             tz               = _mm256_mul_ps(fscal,dz20);
429
430             /* Update vectorial force */
431             fix2             = _mm256_add_ps(fix2,tx);
432             fiy2             = _mm256_add_ps(fiy2,ty);
433             fiz2             = _mm256_add_ps(fiz2,tz);
434
435             fjx0             = _mm256_add_ps(fjx0,tx);
436             fjy0             = _mm256_add_ps(fjy0,ty);
437             fjz0             = _mm256_add_ps(fjz0,tz);
438
439             fjptrA             = f+j_coord_offsetA;
440             fjptrB             = f+j_coord_offsetB;
441             fjptrC             = f+j_coord_offsetC;
442             fjptrD             = f+j_coord_offsetD;
443             fjptrE             = f+j_coord_offsetE;
444             fjptrF             = f+j_coord_offsetF;
445             fjptrG             = f+j_coord_offsetG;
446             fjptrH             = f+j_coord_offsetH;
447
448             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
449
450             /* Inner loop uses 283 flops */
451         }
452
453         if(jidx<j_index_end)
454         {
455
456             /* Get j neighbor index, and coordinate index */
457             jnrlistA         = jjnr[jidx];
458             jnrlistB         = jjnr[jidx+1];
459             jnrlistC         = jjnr[jidx+2];
460             jnrlistD         = jjnr[jidx+3];
461             jnrlistE         = jjnr[jidx+4];
462             jnrlistF         = jjnr[jidx+5];
463             jnrlistG         = jjnr[jidx+6];
464             jnrlistH         = jjnr[jidx+7];
465             /* Sign of each element will be negative for non-real atoms.
466              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
467              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
468              */
469             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
470                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
471                                             
472             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
473             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
474             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
475             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
476             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
477             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
478             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
479             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
480             j_coord_offsetA  = DIM*jnrA;
481             j_coord_offsetB  = DIM*jnrB;
482             j_coord_offsetC  = DIM*jnrC;
483             j_coord_offsetD  = DIM*jnrD;
484             j_coord_offsetE  = DIM*jnrE;
485             j_coord_offsetF  = DIM*jnrF;
486             j_coord_offsetG  = DIM*jnrG;
487             j_coord_offsetH  = DIM*jnrH;
488
489             /* load j atom coordinates */
490             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
491                                                  x+j_coord_offsetC,x+j_coord_offsetD,
492                                                  x+j_coord_offsetE,x+j_coord_offsetF,
493                                                  x+j_coord_offsetG,x+j_coord_offsetH,
494                                                  &jx0,&jy0,&jz0);
495
496             /* Calculate displacement vector */
497             dx00             = _mm256_sub_ps(ix0,jx0);
498             dy00             = _mm256_sub_ps(iy0,jy0);
499             dz00             = _mm256_sub_ps(iz0,jz0);
500             dx10             = _mm256_sub_ps(ix1,jx0);
501             dy10             = _mm256_sub_ps(iy1,jy0);
502             dz10             = _mm256_sub_ps(iz1,jz0);
503             dx20             = _mm256_sub_ps(ix2,jx0);
504             dy20             = _mm256_sub_ps(iy2,jy0);
505             dz20             = _mm256_sub_ps(iz2,jz0);
506
507             /* Calculate squared distance and things based on it */
508             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
509             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
510             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
511
512             rinv00           = avx256_invsqrt_f(rsq00);
513             rinv10           = avx256_invsqrt_f(rsq10);
514             rinv20           = avx256_invsqrt_f(rsq20);
515
516             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
517             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
518             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
519
520             /* Load parameters for j particles */
521             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
522                                                                  charge+jnrC+0,charge+jnrD+0,
523                                                                  charge+jnrE+0,charge+jnrF+0,
524                                                                  charge+jnrG+0,charge+jnrH+0);
525             vdwjidx0A        = 2*vdwtype[jnrA+0];
526             vdwjidx0B        = 2*vdwtype[jnrB+0];
527             vdwjidx0C        = 2*vdwtype[jnrC+0];
528             vdwjidx0D        = 2*vdwtype[jnrD+0];
529             vdwjidx0E        = 2*vdwtype[jnrE+0];
530             vdwjidx0F        = 2*vdwtype[jnrF+0];
531             vdwjidx0G        = 2*vdwtype[jnrG+0];
532             vdwjidx0H        = 2*vdwtype[jnrH+0];
533
534             fjx0             = _mm256_setzero_ps();
535             fjy0             = _mm256_setzero_ps();
536             fjz0             = _mm256_setzero_ps();
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             r00              = _mm256_mul_ps(rsq00,rinv00);
543             r00              = _mm256_andnot_ps(dummy_mask,r00);
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq00             = _mm256_mul_ps(iq0,jq0);
547             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
548                                             vdwioffsetptr0+vdwjidx0B,
549                                             vdwioffsetptr0+vdwjidx0C,
550                                             vdwioffsetptr0+vdwjidx0D,
551                                             vdwioffsetptr0+vdwjidx0E,
552                                             vdwioffsetptr0+vdwjidx0F,
553                                             vdwioffsetptr0+vdwjidx0G,
554                                             vdwioffsetptr0+vdwjidx0H,
555                                             &c6_00,&c12_00);
556
557             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
558                                                                   vdwgridioffsetptr0+vdwjidx0B,
559                                                                   vdwgridioffsetptr0+vdwjidx0C,
560                                                                   vdwgridioffsetptr0+vdwjidx0D,
561                                                                   vdwgridioffsetptr0+vdwjidx0E,
562                                                                   vdwgridioffsetptr0+vdwjidx0F,
563                                                                   vdwgridioffsetptr0+vdwjidx0G,
564                                                                   vdwgridioffsetptr0+vdwjidx0H);
565
566             /* EWALD ELECTROSTATICS */
567             
568             /* Analytical PME correction */
569             zeta2            = _mm256_mul_ps(beta2,rsq00);
570             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
571             pmecorrF         = avx256_pmecorrF_f(zeta2);
572             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
573             felec            = _mm256_mul_ps(qq00,felec);
574             pmecorrV         = avx256_pmecorrV_f(zeta2);
575             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
576             velec            = _mm256_sub_ps(rinv00,pmecorrV);
577             velec            = _mm256_mul_ps(qq00,velec);
578             
579             /* Analytical LJ-PME */
580             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
581             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
582             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
583             exponent         = avx256_exp_f(ewcljrsq);
584             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
585             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
586             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
587             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
588             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
589             vvdw             = _mm256_sub_ps(_mm256_mul_ps(vvdw12,one_twelfth),_mm256_mul_ps(vvdw6,one_sixth));
590             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
591             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm256_andnot_ps(dummy_mask,velec);
595             velecsum         = _mm256_add_ps(velecsum,velec);
596             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
597             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
598
599             fscal            = _mm256_add_ps(felec,fvdw);
600
601             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
602
603             /* Calculate temporary vectorial force */
604             tx               = _mm256_mul_ps(fscal,dx00);
605             ty               = _mm256_mul_ps(fscal,dy00);
606             tz               = _mm256_mul_ps(fscal,dz00);
607
608             /* Update vectorial force */
609             fix0             = _mm256_add_ps(fix0,tx);
610             fiy0             = _mm256_add_ps(fiy0,ty);
611             fiz0             = _mm256_add_ps(fiz0,tz);
612
613             fjx0             = _mm256_add_ps(fjx0,tx);
614             fjy0             = _mm256_add_ps(fjy0,ty);
615             fjz0             = _mm256_add_ps(fjz0,tz);
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             r10              = _mm256_mul_ps(rsq10,rinv10);
622             r10              = _mm256_andnot_ps(dummy_mask,r10);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq10             = _mm256_mul_ps(iq1,jq0);
626
627             /* EWALD ELECTROSTATICS */
628             
629             /* Analytical PME correction */
630             zeta2            = _mm256_mul_ps(beta2,rsq10);
631             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
632             pmecorrF         = avx256_pmecorrF_f(zeta2);
633             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
634             felec            = _mm256_mul_ps(qq10,felec);
635             pmecorrV         = avx256_pmecorrV_f(zeta2);
636             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
637             velec            = _mm256_sub_ps(rinv10,pmecorrV);
638             velec            = _mm256_mul_ps(qq10,velec);
639             
640             /* Update potential sum for this i atom from the interaction with this j atom. */
641             velec            = _mm256_andnot_ps(dummy_mask,velec);
642             velecsum         = _mm256_add_ps(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm256_mul_ps(fscal,dx10);
650             ty               = _mm256_mul_ps(fscal,dy10);
651             tz               = _mm256_mul_ps(fscal,dz10);
652
653             /* Update vectorial force */
654             fix1             = _mm256_add_ps(fix1,tx);
655             fiy1             = _mm256_add_ps(fiy1,ty);
656             fiz1             = _mm256_add_ps(fiz1,tz);
657
658             fjx0             = _mm256_add_ps(fjx0,tx);
659             fjy0             = _mm256_add_ps(fjy0,ty);
660             fjz0             = _mm256_add_ps(fjz0,tz);
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             r20              = _mm256_mul_ps(rsq20,rinv20);
667             r20              = _mm256_andnot_ps(dummy_mask,r20);
668
669             /* Compute parameters for interactions between i and j atoms */
670             qq20             = _mm256_mul_ps(iq2,jq0);
671
672             /* EWALD ELECTROSTATICS */
673             
674             /* Analytical PME correction */
675             zeta2            = _mm256_mul_ps(beta2,rsq20);
676             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
677             pmecorrF         = avx256_pmecorrF_f(zeta2);
678             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
679             felec            = _mm256_mul_ps(qq20,felec);
680             pmecorrV         = avx256_pmecorrV_f(zeta2);
681             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
682             velec            = _mm256_sub_ps(rinv20,pmecorrV);
683             velec            = _mm256_mul_ps(qq20,velec);
684             
685             /* Update potential sum for this i atom from the interaction with this j atom. */
686             velec            = _mm256_andnot_ps(dummy_mask,velec);
687             velecsum         = _mm256_add_ps(velecsum,velec);
688
689             fscal            = felec;
690
691             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm256_mul_ps(fscal,dx20);
695             ty               = _mm256_mul_ps(fscal,dy20);
696             tz               = _mm256_mul_ps(fscal,dz20);
697
698             /* Update vectorial force */
699             fix2             = _mm256_add_ps(fix2,tx);
700             fiy2             = _mm256_add_ps(fiy2,ty);
701             fiz2             = _mm256_add_ps(fiz2,tz);
702
703             fjx0             = _mm256_add_ps(fjx0,tx);
704             fjy0             = _mm256_add_ps(fjy0,ty);
705             fjz0             = _mm256_add_ps(fjz0,tz);
706
707             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
708             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
709             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
710             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
711             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
712             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
713             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
714             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
715
716             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
717
718             /* Inner loop uses 286 flops */
719         }
720
721         /* End of innermost loop */
722
723         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
724                                                  f+i_coord_offset,fshift+i_shift_offset);
725
726         ggid                        = gid[iidx];
727         /* Update potential energies */
728         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
729         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
730
731         /* Increment number of inner iterations */
732         inneriter                  += j_index_end - j_index_start;
733
734         /* Outer loop uses 20 flops */
735     }
736
737     /* Increment number of outer iterations */
738     outeriter        += nri;
739
740     /* Update outer/inner flops */
741
742     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*286);
743 }
744 /*
745  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_single
746  * Electrostatics interaction: Ewald
747  * VdW interaction:            LJEwald
748  * Geometry:                   Water3-Particle
749  * Calculate force/pot:        Force
750  */
751 void
752 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_single
753                     (t_nblist                    * gmx_restrict       nlist,
754                      rvec                        * gmx_restrict          xx,
755                      rvec                        * gmx_restrict          ff,
756                      struct t_forcerec           * gmx_restrict          fr,
757                      t_mdatoms                   * gmx_restrict     mdatoms,
758                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
759                      t_nrnb                      * gmx_restrict        nrnb)
760 {
761     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
762      * just 0 for non-waters.
763      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
764      * jnr indices corresponding to data put in the four positions in the SIMD register.
765      */
766     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
767     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
768     int              jnrA,jnrB,jnrC,jnrD;
769     int              jnrE,jnrF,jnrG,jnrH;
770     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
771     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
772     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
773     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
774     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
775     real             rcutoff_scalar;
776     real             *shiftvec,*fshift,*x,*f;
777     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
778     real             scratch[4*DIM];
779     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
780     real *           vdwioffsetptr0;
781     real *           vdwgridioffsetptr0;
782     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
783     real *           vdwioffsetptr1;
784     real *           vdwgridioffsetptr1;
785     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
786     real *           vdwioffsetptr2;
787     real *           vdwgridioffsetptr2;
788     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
789     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
790     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
791     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
792     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
793     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
794     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
795     real             *charge;
796     int              nvdwtype;
797     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
798     int              *vdwtype;
799     real             *vdwparam;
800     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
801     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
802     __m256           c6grid_00;
803     __m256           c6grid_10;
804     __m256           c6grid_20;
805     real             *vdwgridparam;
806     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
807     __m256           one_half  = _mm256_set1_ps(0.5);
808     __m256           minus_one = _mm256_set1_ps(-1.0);
809     __m256i          ewitab;
810     __m128i          ewitab_lo,ewitab_hi;
811     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
812     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
813     real             *ewtab;
814     __m256           dummy_mask,cutoff_mask;
815     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
816     __m256           one     = _mm256_set1_ps(1.0);
817     __m256           two     = _mm256_set1_ps(2.0);
818     x                = xx[0];
819     f                = ff[0];
820
821     nri              = nlist->nri;
822     iinr             = nlist->iinr;
823     jindex           = nlist->jindex;
824     jjnr             = nlist->jjnr;
825     shiftidx         = nlist->shift;
826     gid              = nlist->gid;
827     shiftvec         = fr->shift_vec[0];
828     fshift           = fr->fshift[0];
829     facel            = _mm256_set1_ps(fr->ic->epsfac);
830     charge           = mdatoms->chargeA;
831     nvdwtype         = fr->ntype;
832     vdwparam         = fr->nbfp;
833     vdwtype          = mdatoms->typeA;
834     vdwgridparam     = fr->ljpme_c6grid;
835     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
836     ewclj            = _mm256_set1_ps(fr->ic->ewaldcoeff_lj);
837     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
838
839     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
840     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
841     beta2            = _mm256_mul_ps(beta,beta);
842     beta3            = _mm256_mul_ps(beta,beta2);
843
844     ewtab            = fr->ic->tabq_coul_F;
845     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
846     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
847
848     /* Setup water-specific parameters */
849     inr              = nlist->iinr[0];
850     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
851     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
852     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
853     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
854     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
855
856     /* Avoid stupid compiler warnings */
857     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
858     j_coord_offsetA = 0;
859     j_coord_offsetB = 0;
860     j_coord_offsetC = 0;
861     j_coord_offsetD = 0;
862     j_coord_offsetE = 0;
863     j_coord_offsetF = 0;
864     j_coord_offsetG = 0;
865     j_coord_offsetH = 0;
866
867     outeriter        = 0;
868     inneriter        = 0;
869
870     for(iidx=0;iidx<4*DIM;iidx++)
871     {
872         scratch[iidx] = 0.0;
873     }
874
875     /* Start outer loop over neighborlists */
876     for(iidx=0; iidx<nri; iidx++)
877     {
878         /* Load shift vector for this list */
879         i_shift_offset   = DIM*shiftidx[iidx];
880
881         /* Load limits for loop over neighbors */
882         j_index_start    = jindex[iidx];
883         j_index_end      = jindex[iidx+1];
884
885         /* Get outer coordinate index */
886         inr              = iinr[iidx];
887         i_coord_offset   = DIM*inr;
888
889         /* Load i particle coords and add shift vector */
890         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
891                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
892
893         fix0             = _mm256_setzero_ps();
894         fiy0             = _mm256_setzero_ps();
895         fiz0             = _mm256_setzero_ps();
896         fix1             = _mm256_setzero_ps();
897         fiy1             = _mm256_setzero_ps();
898         fiz1             = _mm256_setzero_ps();
899         fix2             = _mm256_setzero_ps();
900         fiy2             = _mm256_setzero_ps();
901         fiz2             = _mm256_setzero_ps();
902
903         /* Start inner kernel loop */
904         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
905         {
906
907             /* Get j neighbor index, and coordinate index */
908             jnrA             = jjnr[jidx];
909             jnrB             = jjnr[jidx+1];
910             jnrC             = jjnr[jidx+2];
911             jnrD             = jjnr[jidx+3];
912             jnrE             = jjnr[jidx+4];
913             jnrF             = jjnr[jidx+5];
914             jnrG             = jjnr[jidx+6];
915             jnrH             = jjnr[jidx+7];
916             j_coord_offsetA  = DIM*jnrA;
917             j_coord_offsetB  = DIM*jnrB;
918             j_coord_offsetC  = DIM*jnrC;
919             j_coord_offsetD  = DIM*jnrD;
920             j_coord_offsetE  = DIM*jnrE;
921             j_coord_offsetF  = DIM*jnrF;
922             j_coord_offsetG  = DIM*jnrG;
923             j_coord_offsetH  = DIM*jnrH;
924
925             /* load j atom coordinates */
926             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
927                                                  x+j_coord_offsetC,x+j_coord_offsetD,
928                                                  x+j_coord_offsetE,x+j_coord_offsetF,
929                                                  x+j_coord_offsetG,x+j_coord_offsetH,
930                                                  &jx0,&jy0,&jz0);
931
932             /* Calculate displacement vector */
933             dx00             = _mm256_sub_ps(ix0,jx0);
934             dy00             = _mm256_sub_ps(iy0,jy0);
935             dz00             = _mm256_sub_ps(iz0,jz0);
936             dx10             = _mm256_sub_ps(ix1,jx0);
937             dy10             = _mm256_sub_ps(iy1,jy0);
938             dz10             = _mm256_sub_ps(iz1,jz0);
939             dx20             = _mm256_sub_ps(ix2,jx0);
940             dy20             = _mm256_sub_ps(iy2,jy0);
941             dz20             = _mm256_sub_ps(iz2,jz0);
942
943             /* Calculate squared distance and things based on it */
944             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
945             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
946             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
947
948             rinv00           = avx256_invsqrt_f(rsq00);
949             rinv10           = avx256_invsqrt_f(rsq10);
950             rinv20           = avx256_invsqrt_f(rsq20);
951
952             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
953             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
954             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
955
956             /* Load parameters for j particles */
957             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
958                                                                  charge+jnrC+0,charge+jnrD+0,
959                                                                  charge+jnrE+0,charge+jnrF+0,
960                                                                  charge+jnrG+0,charge+jnrH+0);
961             vdwjidx0A        = 2*vdwtype[jnrA+0];
962             vdwjidx0B        = 2*vdwtype[jnrB+0];
963             vdwjidx0C        = 2*vdwtype[jnrC+0];
964             vdwjidx0D        = 2*vdwtype[jnrD+0];
965             vdwjidx0E        = 2*vdwtype[jnrE+0];
966             vdwjidx0F        = 2*vdwtype[jnrF+0];
967             vdwjidx0G        = 2*vdwtype[jnrG+0];
968             vdwjidx0H        = 2*vdwtype[jnrH+0];
969
970             fjx0             = _mm256_setzero_ps();
971             fjy0             = _mm256_setzero_ps();
972             fjz0             = _mm256_setzero_ps();
973
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             r00              = _mm256_mul_ps(rsq00,rinv00);
979
980             /* Compute parameters for interactions between i and j atoms */
981             qq00             = _mm256_mul_ps(iq0,jq0);
982             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
983                                             vdwioffsetptr0+vdwjidx0B,
984                                             vdwioffsetptr0+vdwjidx0C,
985                                             vdwioffsetptr0+vdwjidx0D,
986                                             vdwioffsetptr0+vdwjidx0E,
987                                             vdwioffsetptr0+vdwjidx0F,
988                                             vdwioffsetptr0+vdwjidx0G,
989                                             vdwioffsetptr0+vdwjidx0H,
990                                             &c6_00,&c12_00);
991
992             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
993                                                                   vdwgridioffsetptr0+vdwjidx0B,
994                                                                   vdwgridioffsetptr0+vdwjidx0C,
995                                                                   vdwgridioffsetptr0+vdwjidx0D,
996                                                                   vdwgridioffsetptr0+vdwjidx0E,
997                                                                   vdwgridioffsetptr0+vdwjidx0F,
998                                                                   vdwgridioffsetptr0+vdwjidx0G,
999                                                                   vdwgridioffsetptr0+vdwjidx0H);
1000
1001             /* EWALD ELECTROSTATICS */
1002             
1003             /* Analytical PME correction */
1004             zeta2            = _mm256_mul_ps(beta2,rsq00);
1005             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1006             pmecorrF         = avx256_pmecorrF_f(zeta2);
1007             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1008             felec            = _mm256_mul_ps(qq00,felec);
1009             
1010             /* Analytical LJ-PME */
1011             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1012             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1013             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1014             exponent         = avx256_exp_f(ewcljrsq);
1015             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1016             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1017             /* f6A = 6 * C6grid * (1 - poly) */
1018             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1019             /* f6B = C6grid * exponent * beta^6 */
1020             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1021             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1022             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1023
1024             fscal            = _mm256_add_ps(felec,fvdw);
1025
1026             /* Calculate temporary vectorial force */
1027             tx               = _mm256_mul_ps(fscal,dx00);
1028             ty               = _mm256_mul_ps(fscal,dy00);
1029             tz               = _mm256_mul_ps(fscal,dz00);
1030
1031             /* Update vectorial force */
1032             fix0             = _mm256_add_ps(fix0,tx);
1033             fiy0             = _mm256_add_ps(fiy0,ty);
1034             fiz0             = _mm256_add_ps(fiz0,tz);
1035
1036             fjx0             = _mm256_add_ps(fjx0,tx);
1037             fjy0             = _mm256_add_ps(fjy0,ty);
1038             fjz0             = _mm256_add_ps(fjz0,tz);
1039
1040             /**************************
1041              * CALCULATE INTERACTIONS *
1042              **************************/
1043
1044             r10              = _mm256_mul_ps(rsq10,rinv10);
1045
1046             /* Compute parameters for interactions between i and j atoms */
1047             qq10             = _mm256_mul_ps(iq1,jq0);
1048
1049             /* EWALD ELECTROSTATICS */
1050             
1051             /* Analytical PME correction */
1052             zeta2            = _mm256_mul_ps(beta2,rsq10);
1053             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1054             pmecorrF         = avx256_pmecorrF_f(zeta2);
1055             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1056             felec            = _mm256_mul_ps(qq10,felec);
1057             
1058             fscal            = felec;
1059
1060             /* Calculate temporary vectorial force */
1061             tx               = _mm256_mul_ps(fscal,dx10);
1062             ty               = _mm256_mul_ps(fscal,dy10);
1063             tz               = _mm256_mul_ps(fscal,dz10);
1064
1065             /* Update vectorial force */
1066             fix1             = _mm256_add_ps(fix1,tx);
1067             fiy1             = _mm256_add_ps(fiy1,ty);
1068             fiz1             = _mm256_add_ps(fiz1,tz);
1069
1070             fjx0             = _mm256_add_ps(fjx0,tx);
1071             fjy0             = _mm256_add_ps(fjy0,ty);
1072             fjz0             = _mm256_add_ps(fjz0,tz);
1073
1074             /**************************
1075              * CALCULATE INTERACTIONS *
1076              **************************/
1077
1078             r20              = _mm256_mul_ps(rsq20,rinv20);
1079
1080             /* Compute parameters for interactions between i and j atoms */
1081             qq20             = _mm256_mul_ps(iq2,jq0);
1082
1083             /* EWALD ELECTROSTATICS */
1084             
1085             /* Analytical PME correction */
1086             zeta2            = _mm256_mul_ps(beta2,rsq20);
1087             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1088             pmecorrF         = avx256_pmecorrF_f(zeta2);
1089             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1090             felec            = _mm256_mul_ps(qq20,felec);
1091             
1092             fscal            = felec;
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm256_mul_ps(fscal,dx20);
1096             ty               = _mm256_mul_ps(fscal,dy20);
1097             tz               = _mm256_mul_ps(fscal,dz20);
1098
1099             /* Update vectorial force */
1100             fix2             = _mm256_add_ps(fix2,tx);
1101             fiy2             = _mm256_add_ps(fiy2,ty);
1102             fiz2             = _mm256_add_ps(fiz2,tz);
1103
1104             fjx0             = _mm256_add_ps(fjx0,tx);
1105             fjy0             = _mm256_add_ps(fjy0,ty);
1106             fjz0             = _mm256_add_ps(fjz0,tz);
1107
1108             fjptrA             = f+j_coord_offsetA;
1109             fjptrB             = f+j_coord_offsetB;
1110             fjptrC             = f+j_coord_offsetC;
1111             fjptrD             = f+j_coord_offsetD;
1112             fjptrE             = f+j_coord_offsetE;
1113             fjptrF             = f+j_coord_offsetF;
1114             fjptrG             = f+j_coord_offsetG;
1115             fjptrH             = f+j_coord_offsetH;
1116
1117             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1118
1119             /* Inner loop uses 194 flops */
1120         }
1121
1122         if(jidx<j_index_end)
1123         {
1124
1125             /* Get j neighbor index, and coordinate index */
1126             jnrlistA         = jjnr[jidx];
1127             jnrlistB         = jjnr[jidx+1];
1128             jnrlistC         = jjnr[jidx+2];
1129             jnrlistD         = jjnr[jidx+3];
1130             jnrlistE         = jjnr[jidx+4];
1131             jnrlistF         = jjnr[jidx+5];
1132             jnrlistG         = jjnr[jidx+6];
1133             jnrlistH         = jjnr[jidx+7];
1134             /* Sign of each element will be negative for non-real atoms.
1135              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1136              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1137              */
1138             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1139                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1140                                             
1141             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1142             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1143             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1144             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1145             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1146             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1147             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1148             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1149             j_coord_offsetA  = DIM*jnrA;
1150             j_coord_offsetB  = DIM*jnrB;
1151             j_coord_offsetC  = DIM*jnrC;
1152             j_coord_offsetD  = DIM*jnrD;
1153             j_coord_offsetE  = DIM*jnrE;
1154             j_coord_offsetF  = DIM*jnrF;
1155             j_coord_offsetG  = DIM*jnrG;
1156             j_coord_offsetH  = DIM*jnrH;
1157
1158             /* load j atom coordinates */
1159             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1160                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1161                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1162                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1163                                                  &jx0,&jy0,&jz0);
1164
1165             /* Calculate displacement vector */
1166             dx00             = _mm256_sub_ps(ix0,jx0);
1167             dy00             = _mm256_sub_ps(iy0,jy0);
1168             dz00             = _mm256_sub_ps(iz0,jz0);
1169             dx10             = _mm256_sub_ps(ix1,jx0);
1170             dy10             = _mm256_sub_ps(iy1,jy0);
1171             dz10             = _mm256_sub_ps(iz1,jz0);
1172             dx20             = _mm256_sub_ps(ix2,jx0);
1173             dy20             = _mm256_sub_ps(iy2,jy0);
1174             dz20             = _mm256_sub_ps(iz2,jz0);
1175
1176             /* Calculate squared distance and things based on it */
1177             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1178             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1179             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1180
1181             rinv00           = avx256_invsqrt_f(rsq00);
1182             rinv10           = avx256_invsqrt_f(rsq10);
1183             rinv20           = avx256_invsqrt_f(rsq20);
1184
1185             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1186             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1187             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1188
1189             /* Load parameters for j particles */
1190             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1191                                                                  charge+jnrC+0,charge+jnrD+0,
1192                                                                  charge+jnrE+0,charge+jnrF+0,
1193                                                                  charge+jnrG+0,charge+jnrH+0);
1194             vdwjidx0A        = 2*vdwtype[jnrA+0];
1195             vdwjidx0B        = 2*vdwtype[jnrB+0];
1196             vdwjidx0C        = 2*vdwtype[jnrC+0];
1197             vdwjidx0D        = 2*vdwtype[jnrD+0];
1198             vdwjidx0E        = 2*vdwtype[jnrE+0];
1199             vdwjidx0F        = 2*vdwtype[jnrF+0];
1200             vdwjidx0G        = 2*vdwtype[jnrG+0];
1201             vdwjidx0H        = 2*vdwtype[jnrH+0];
1202
1203             fjx0             = _mm256_setzero_ps();
1204             fjy0             = _mm256_setzero_ps();
1205             fjz0             = _mm256_setzero_ps();
1206
1207             /**************************
1208              * CALCULATE INTERACTIONS *
1209              **************************/
1210
1211             r00              = _mm256_mul_ps(rsq00,rinv00);
1212             r00              = _mm256_andnot_ps(dummy_mask,r00);
1213
1214             /* Compute parameters for interactions between i and j atoms */
1215             qq00             = _mm256_mul_ps(iq0,jq0);
1216             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1217                                             vdwioffsetptr0+vdwjidx0B,
1218                                             vdwioffsetptr0+vdwjidx0C,
1219                                             vdwioffsetptr0+vdwjidx0D,
1220                                             vdwioffsetptr0+vdwjidx0E,
1221                                             vdwioffsetptr0+vdwjidx0F,
1222                                             vdwioffsetptr0+vdwjidx0G,
1223                                             vdwioffsetptr0+vdwjidx0H,
1224                                             &c6_00,&c12_00);
1225
1226             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1227                                                                   vdwgridioffsetptr0+vdwjidx0B,
1228                                                                   vdwgridioffsetptr0+vdwjidx0C,
1229                                                                   vdwgridioffsetptr0+vdwjidx0D,
1230                                                                   vdwgridioffsetptr0+vdwjidx0E,
1231                                                                   vdwgridioffsetptr0+vdwjidx0F,
1232                                                                   vdwgridioffsetptr0+vdwjidx0G,
1233                                                                   vdwgridioffsetptr0+vdwjidx0H);
1234
1235             /* EWALD ELECTROSTATICS */
1236             
1237             /* Analytical PME correction */
1238             zeta2            = _mm256_mul_ps(beta2,rsq00);
1239             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1240             pmecorrF         = avx256_pmecorrF_f(zeta2);
1241             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1242             felec            = _mm256_mul_ps(qq00,felec);
1243             
1244             /* Analytical LJ-PME */
1245             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1246             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1247             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1248             exponent         = avx256_exp_f(ewcljrsq);
1249             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1250             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1251             /* f6A = 6 * C6grid * (1 - poly) */
1252             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1253             /* f6B = C6grid * exponent * beta^6 */
1254             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1255             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1256             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1257
1258             fscal            = _mm256_add_ps(felec,fvdw);
1259
1260             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1261
1262             /* Calculate temporary vectorial force */
1263             tx               = _mm256_mul_ps(fscal,dx00);
1264             ty               = _mm256_mul_ps(fscal,dy00);
1265             tz               = _mm256_mul_ps(fscal,dz00);
1266
1267             /* Update vectorial force */
1268             fix0             = _mm256_add_ps(fix0,tx);
1269             fiy0             = _mm256_add_ps(fiy0,ty);
1270             fiz0             = _mm256_add_ps(fiz0,tz);
1271
1272             fjx0             = _mm256_add_ps(fjx0,tx);
1273             fjy0             = _mm256_add_ps(fjy0,ty);
1274             fjz0             = _mm256_add_ps(fjz0,tz);
1275
1276             /**************************
1277              * CALCULATE INTERACTIONS *
1278              **************************/
1279
1280             r10              = _mm256_mul_ps(rsq10,rinv10);
1281             r10              = _mm256_andnot_ps(dummy_mask,r10);
1282
1283             /* Compute parameters for interactions between i and j atoms */
1284             qq10             = _mm256_mul_ps(iq1,jq0);
1285
1286             /* EWALD ELECTROSTATICS */
1287             
1288             /* Analytical PME correction */
1289             zeta2            = _mm256_mul_ps(beta2,rsq10);
1290             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1291             pmecorrF         = avx256_pmecorrF_f(zeta2);
1292             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1293             felec            = _mm256_mul_ps(qq10,felec);
1294             
1295             fscal            = felec;
1296
1297             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1298
1299             /* Calculate temporary vectorial force */
1300             tx               = _mm256_mul_ps(fscal,dx10);
1301             ty               = _mm256_mul_ps(fscal,dy10);
1302             tz               = _mm256_mul_ps(fscal,dz10);
1303
1304             /* Update vectorial force */
1305             fix1             = _mm256_add_ps(fix1,tx);
1306             fiy1             = _mm256_add_ps(fiy1,ty);
1307             fiz1             = _mm256_add_ps(fiz1,tz);
1308
1309             fjx0             = _mm256_add_ps(fjx0,tx);
1310             fjy0             = _mm256_add_ps(fjy0,ty);
1311             fjz0             = _mm256_add_ps(fjz0,tz);
1312
1313             /**************************
1314              * CALCULATE INTERACTIONS *
1315              **************************/
1316
1317             r20              = _mm256_mul_ps(rsq20,rinv20);
1318             r20              = _mm256_andnot_ps(dummy_mask,r20);
1319
1320             /* Compute parameters for interactions between i and j atoms */
1321             qq20             = _mm256_mul_ps(iq2,jq0);
1322
1323             /* EWALD ELECTROSTATICS */
1324             
1325             /* Analytical PME correction */
1326             zeta2            = _mm256_mul_ps(beta2,rsq20);
1327             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1328             pmecorrF         = avx256_pmecorrF_f(zeta2);
1329             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1330             felec            = _mm256_mul_ps(qq20,felec);
1331             
1332             fscal            = felec;
1333
1334             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1335
1336             /* Calculate temporary vectorial force */
1337             tx               = _mm256_mul_ps(fscal,dx20);
1338             ty               = _mm256_mul_ps(fscal,dy20);
1339             tz               = _mm256_mul_ps(fscal,dz20);
1340
1341             /* Update vectorial force */
1342             fix2             = _mm256_add_ps(fix2,tx);
1343             fiy2             = _mm256_add_ps(fiy2,ty);
1344             fiz2             = _mm256_add_ps(fiz2,tz);
1345
1346             fjx0             = _mm256_add_ps(fjx0,tx);
1347             fjy0             = _mm256_add_ps(fjy0,ty);
1348             fjz0             = _mm256_add_ps(fjz0,tz);
1349
1350             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1351             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1352             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1353             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1354             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1355             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1356             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1357             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1358
1359             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1360
1361             /* Inner loop uses 197 flops */
1362         }
1363
1364         /* End of innermost loop */
1365
1366         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1367                                                  f+i_coord_offset,fshift+i_shift_offset);
1368
1369         /* Increment number of inner iterations */
1370         inneriter                  += j_index_end - j_index_start;
1371
1372         /* Outer loop uses 18 flops */
1373     }
1374
1375     /* Increment number of outer iterations */
1376     outeriter        += nri;
1377
1378     /* Update outer/inner flops */
1379
1380     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*197);
1381 }