Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     real *           vdwgridioffsetptr0;
90     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
91     real *           vdwioffsetptr1;
92     real *           vdwgridioffsetptr1;
93     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
94     real *           vdwioffsetptr2;
95     real *           vdwgridioffsetptr2;
96     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
97     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
98     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
99     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
100     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
101     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
102     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
109     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
110     __m256           c6grid_00;
111     __m256           c6grid_10;
112     __m256           c6grid_20;
113     real             *vdwgridparam;
114     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
115     __m256           one_half  = _mm256_set1_ps(0.5);
116     __m256           minus_one = _mm256_set1_ps(-1.0);
117     __m256i          ewitab;
118     __m128i          ewitab_lo,ewitab_hi;
119     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
120     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
121     real             *ewtab;
122     __m256           dummy_mask,cutoff_mask;
123     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
124     __m256           one     = _mm256_set1_ps(1.0);
125     __m256           two     = _mm256_set1_ps(2.0);
126     x                = xx[0];
127     f                = ff[0];
128
129     nri              = nlist->nri;
130     iinr             = nlist->iinr;
131     jindex           = nlist->jindex;
132     jjnr             = nlist->jjnr;
133     shiftidx         = nlist->shift;
134     gid              = nlist->gid;
135     shiftvec         = fr->shift_vec[0];
136     fshift           = fr->fshift[0];
137     facel            = _mm256_set1_ps(fr->epsfac);
138     charge           = mdatoms->chargeA;
139     nvdwtype         = fr->ntype;
140     vdwparam         = fr->nbfp;
141     vdwtype          = mdatoms->typeA;
142     vdwgridparam     = fr->ljpme_c6grid;
143     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
144     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
145     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
146
147     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
148     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
149     beta2            = _mm256_mul_ps(beta,beta);
150     beta3            = _mm256_mul_ps(beta,beta2);
151
152     ewtab            = fr->ic->tabq_coul_FDV0;
153     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
154     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
155
156     /* Setup water-specific parameters */
157     inr              = nlist->iinr[0];
158     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
159     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
160     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
161     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
162     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
163
164     /* Avoid stupid compiler warnings */
165     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
166     j_coord_offsetA = 0;
167     j_coord_offsetB = 0;
168     j_coord_offsetC = 0;
169     j_coord_offsetD = 0;
170     j_coord_offsetE = 0;
171     j_coord_offsetF = 0;
172     j_coord_offsetG = 0;
173     j_coord_offsetH = 0;
174
175     outeriter        = 0;
176     inneriter        = 0;
177
178     for(iidx=0;iidx<4*DIM;iidx++)
179     {
180         scratch[iidx] = 0.0;
181     }
182
183     /* Start outer loop over neighborlists */
184     for(iidx=0; iidx<nri; iidx++)
185     {
186         /* Load shift vector for this list */
187         i_shift_offset   = DIM*shiftidx[iidx];
188
189         /* Load limits for loop over neighbors */
190         j_index_start    = jindex[iidx];
191         j_index_end      = jindex[iidx+1];
192
193         /* Get outer coordinate index */
194         inr              = iinr[iidx];
195         i_coord_offset   = DIM*inr;
196
197         /* Load i particle coords and add shift vector */
198         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
199                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
200
201         fix0             = _mm256_setzero_ps();
202         fiy0             = _mm256_setzero_ps();
203         fiz0             = _mm256_setzero_ps();
204         fix1             = _mm256_setzero_ps();
205         fiy1             = _mm256_setzero_ps();
206         fiz1             = _mm256_setzero_ps();
207         fix2             = _mm256_setzero_ps();
208         fiy2             = _mm256_setzero_ps();
209         fiz2             = _mm256_setzero_ps();
210
211         /* Reset potential sums */
212         velecsum         = _mm256_setzero_ps();
213         vvdwsum          = _mm256_setzero_ps();
214
215         /* Start inner kernel loop */
216         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
217         {
218
219             /* Get j neighbor index, and coordinate index */
220             jnrA             = jjnr[jidx];
221             jnrB             = jjnr[jidx+1];
222             jnrC             = jjnr[jidx+2];
223             jnrD             = jjnr[jidx+3];
224             jnrE             = jjnr[jidx+4];
225             jnrF             = jjnr[jidx+5];
226             jnrG             = jjnr[jidx+6];
227             jnrH             = jjnr[jidx+7];
228             j_coord_offsetA  = DIM*jnrA;
229             j_coord_offsetB  = DIM*jnrB;
230             j_coord_offsetC  = DIM*jnrC;
231             j_coord_offsetD  = DIM*jnrD;
232             j_coord_offsetE  = DIM*jnrE;
233             j_coord_offsetF  = DIM*jnrF;
234             j_coord_offsetG  = DIM*jnrG;
235             j_coord_offsetH  = DIM*jnrH;
236
237             /* load j atom coordinates */
238             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
239                                                  x+j_coord_offsetC,x+j_coord_offsetD,
240                                                  x+j_coord_offsetE,x+j_coord_offsetF,
241                                                  x+j_coord_offsetG,x+j_coord_offsetH,
242                                                  &jx0,&jy0,&jz0);
243
244             /* Calculate displacement vector */
245             dx00             = _mm256_sub_ps(ix0,jx0);
246             dy00             = _mm256_sub_ps(iy0,jy0);
247             dz00             = _mm256_sub_ps(iz0,jz0);
248             dx10             = _mm256_sub_ps(ix1,jx0);
249             dy10             = _mm256_sub_ps(iy1,jy0);
250             dz10             = _mm256_sub_ps(iz1,jz0);
251             dx20             = _mm256_sub_ps(ix2,jx0);
252             dy20             = _mm256_sub_ps(iy2,jy0);
253             dz20             = _mm256_sub_ps(iz2,jz0);
254
255             /* Calculate squared distance and things based on it */
256             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
257             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
258             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
259
260             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
261             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
262             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
263
264             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
265             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
266             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
267
268             /* Load parameters for j particles */
269             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
270                                                                  charge+jnrC+0,charge+jnrD+0,
271                                                                  charge+jnrE+0,charge+jnrF+0,
272                                                                  charge+jnrG+0,charge+jnrH+0);
273             vdwjidx0A        = 2*vdwtype[jnrA+0];
274             vdwjidx0B        = 2*vdwtype[jnrB+0];
275             vdwjidx0C        = 2*vdwtype[jnrC+0];
276             vdwjidx0D        = 2*vdwtype[jnrD+0];
277             vdwjidx0E        = 2*vdwtype[jnrE+0];
278             vdwjidx0F        = 2*vdwtype[jnrF+0];
279             vdwjidx0G        = 2*vdwtype[jnrG+0];
280             vdwjidx0H        = 2*vdwtype[jnrH+0];
281
282             fjx0             = _mm256_setzero_ps();
283             fjy0             = _mm256_setzero_ps();
284             fjz0             = _mm256_setzero_ps();
285
286             /**************************
287              * CALCULATE INTERACTIONS *
288              **************************/
289
290             r00              = _mm256_mul_ps(rsq00,rinv00);
291
292             /* Compute parameters for interactions between i and j atoms */
293             qq00             = _mm256_mul_ps(iq0,jq0);
294             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
295                                             vdwioffsetptr0+vdwjidx0B,
296                                             vdwioffsetptr0+vdwjidx0C,
297                                             vdwioffsetptr0+vdwjidx0D,
298                                             vdwioffsetptr0+vdwjidx0E,
299                                             vdwioffsetptr0+vdwjidx0F,
300                                             vdwioffsetptr0+vdwjidx0G,
301                                             vdwioffsetptr0+vdwjidx0H,
302                                             &c6_00,&c12_00);
303
304             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
305                                                                   vdwgridioffsetptr0+vdwjidx0B,
306                                                                   vdwgridioffsetptr0+vdwjidx0C,
307                                                                   vdwgridioffsetptr0+vdwjidx0D,
308                                                                   vdwgridioffsetptr0+vdwjidx0E,
309                                                                   vdwgridioffsetptr0+vdwjidx0F,
310                                                                   vdwgridioffsetptr0+vdwjidx0G,
311                                                                   vdwgridioffsetptr0+vdwjidx0H);
312
313             /* EWALD ELECTROSTATICS */
314             
315             /* Analytical PME correction */
316             zeta2            = _mm256_mul_ps(beta2,rsq00);
317             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
318             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
319             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
320             felec            = _mm256_mul_ps(qq00,felec);
321             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
322             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
323             velec            = _mm256_sub_ps(rinv00,pmecorrV);
324             velec            = _mm256_mul_ps(qq00,velec);
325             
326             /* Analytical LJ-PME */
327             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
328             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
329             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
330             exponent         = gmx_simd_exp_r(ewcljrsq);
331             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
332             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
333             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
334             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
335             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
336             vvdw             = _mm256_sub_ps(_mm256_mul_ps(vvdw12,one_twelfth),_mm256_mul_ps(vvdw6,one_sixth));
337             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
338             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _mm256_add_ps(velecsum,velec);
342             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
343
344             fscal            = _mm256_add_ps(felec,fvdw);
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm256_mul_ps(fscal,dx00);
348             ty               = _mm256_mul_ps(fscal,dy00);
349             tz               = _mm256_mul_ps(fscal,dz00);
350
351             /* Update vectorial force */
352             fix0             = _mm256_add_ps(fix0,tx);
353             fiy0             = _mm256_add_ps(fiy0,ty);
354             fiz0             = _mm256_add_ps(fiz0,tz);
355
356             fjx0             = _mm256_add_ps(fjx0,tx);
357             fjy0             = _mm256_add_ps(fjy0,ty);
358             fjz0             = _mm256_add_ps(fjz0,tz);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r10              = _mm256_mul_ps(rsq10,rinv10);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq10             = _mm256_mul_ps(iq1,jq0);
368
369             /* EWALD ELECTROSTATICS */
370             
371             /* Analytical PME correction */
372             zeta2            = _mm256_mul_ps(beta2,rsq10);
373             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
374             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
375             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
376             felec            = _mm256_mul_ps(qq10,felec);
377             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
378             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
379             velec            = _mm256_sub_ps(rinv10,pmecorrV);
380             velec            = _mm256_mul_ps(qq10,velec);
381             
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velecsum         = _mm256_add_ps(velecsum,velec);
384
385             fscal            = felec;
386
387             /* Calculate temporary vectorial force */
388             tx               = _mm256_mul_ps(fscal,dx10);
389             ty               = _mm256_mul_ps(fscal,dy10);
390             tz               = _mm256_mul_ps(fscal,dz10);
391
392             /* Update vectorial force */
393             fix1             = _mm256_add_ps(fix1,tx);
394             fiy1             = _mm256_add_ps(fiy1,ty);
395             fiz1             = _mm256_add_ps(fiz1,tz);
396
397             fjx0             = _mm256_add_ps(fjx0,tx);
398             fjy0             = _mm256_add_ps(fjy0,ty);
399             fjz0             = _mm256_add_ps(fjz0,tz);
400
401             /**************************
402              * CALCULATE INTERACTIONS *
403              **************************/
404
405             r20              = _mm256_mul_ps(rsq20,rinv20);
406
407             /* Compute parameters for interactions between i and j atoms */
408             qq20             = _mm256_mul_ps(iq2,jq0);
409
410             /* EWALD ELECTROSTATICS */
411             
412             /* Analytical PME correction */
413             zeta2            = _mm256_mul_ps(beta2,rsq20);
414             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
415             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
416             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
417             felec            = _mm256_mul_ps(qq20,felec);
418             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
419             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
420             velec            = _mm256_sub_ps(rinv20,pmecorrV);
421             velec            = _mm256_mul_ps(qq20,velec);
422             
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velecsum         = _mm256_add_ps(velecsum,velec);
425
426             fscal            = felec;
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm256_mul_ps(fscal,dx20);
430             ty               = _mm256_mul_ps(fscal,dy20);
431             tz               = _mm256_mul_ps(fscal,dz20);
432
433             /* Update vectorial force */
434             fix2             = _mm256_add_ps(fix2,tx);
435             fiy2             = _mm256_add_ps(fiy2,ty);
436             fiz2             = _mm256_add_ps(fiz2,tz);
437
438             fjx0             = _mm256_add_ps(fjx0,tx);
439             fjy0             = _mm256_add_ps(fjy0,ty);
440             fjz0             = _mm256_add_ps(fjz0,tz);
441
442             fjptrA             = f+j_coord_offsetA;
443             fjptrB             = f+j_coord_offsetB;
444             fjptrC             = f+j_coord_offsetC;
445             fjptrD             = f+j_coord_offsetD;
446             fjptrE             = f+j_coord_offsetE;
447             fjptrF             = f+j_coord_offsetF;
448             fjptrG             = f+j_coord_offsetG;
449             fjptrH             = f+j_coord_offsetH;
450
451             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
452
453             /* Inner loop uses 283 flops */
454         }
455
456         if(jidx<j_index_end)
457         {
458
459             /* Get j neighbor index, and coordinate index */
460             jnrlistA         = jjnr[jidx];
461             jnrlistB         = jjnr[jidx+1];
462             jnrlistC         = jjnr[jidx+2];
463             jnrlistD         = jjnr[jidx+3];
464             jnrlistE         = jjnr[jidx+4];
465             jnrlistF         = jjnr[jidx+5];
466             jnrlistG         = jjnr[jidx+6];
467             jnrlistH         = jjnr[jidx+7];
468             /* Sign of each element will be negative for non-real atoms.
469              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
470              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
471              */
472             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
473                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
474                                             
475             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
476             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
477             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
478             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
479             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
480             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
481             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
482             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
483             j_coord_offsetA  = DIM*jnrA;
484             j_coord_offsetB  = DIM*jnrB;
485             j_coord_offsetC  = DIM*jnrC;
486             j_coord_offsetD  = DIM*jnrD;
487             j_coord_offsetE  = DIM*jnrE;
488             j_coord_offsetF  = DIM*jnrF;
489             j_coord_offsetG  = DIM*jnrG;
490             j_coord_offsetH  = DIM*jnrH;
491
492             /* load j atom coordinates */
493             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
494                                                  x+j_coord_offsetC,x+j_coord_offsetD,
495                                                  x+j_coord_offsetE,x+j_coord_offsetF,
496                                                  x+j_coord_offsetG,x+j_coord_offsetH,
497                                                  &jx0,&jy0,&jz0);
498
499             /* Calculate displacement vector */
500             dx00             = _mm256_sub_ps(ix0,jx0);
501             dy00             = _mm256_sub_ps(iy0,jy0);
502             dz00             = _mm256_sub_ps(iz0,jz0);
503             dx10             = _mm256_sub_ps(ix1,jx0);
504             dy10             = _mm256_sub_ps(iy1,jy0);
505             dz10             = _mm256_sub_ps(iz1,jz0);
506             dx20             = _mm256_sub_ps(ix2,jx0);
507             dy20             = _mm256_sub_ps(iy2,jy0);
508             dz20             = _mm256_sub_ps(iz2,jz0);
509
510             /* Calculate squared distance and things based on it */
511             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
512             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
513             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
514
515             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
516             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
517             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
518
519             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
520             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
521             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
522
523             /* Load parameters for j particles */
524             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
525                                                                  charge+jnrC+0,charge+jnrD+0,
526                                                                  charge+jnrE+0,charge+jnrF+0,
527                                                                  charge+jnrG+0,charge+jnrH+0);
528             vdwjidx0A        = 2*vdwtype[jnrA+0];
529             vdwjidx0B        = 2*vdwtype[jnrB+0];
530             vdwjidx0C        = 2*vdwtype[jnrC+0];
531             vdwjidx0D        = 2*vdwtype[jnrD+0];
532             vdwjidx0E        = 2*vdwtype[jnrE+0];
533             vdwjidx0F        = 2*vdwtype[jnrF+0];
534             vdwjidx0G        = 2*vdwtype[jnrG+0];
535             vdwjidx0H        = 2*vdwtype[jnrH+0];
536
537             fjx0             = _mm256_setzero_ps();
538             fjy0             = _mm256_setzero_ps();
539             fjz0             = _mm256_setzero_ps();
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             r00              = _mm256_mul_ps(rsq00,rinv00);
546             r00              = _mm256_andnot_ps(dummy_mask,r00);
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq00             = _mm256_mul_ps(iq0,jq0);
550             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
551                                             vdwioffsetptr0+vdwjidx0B,
552                                             vdwioffsetptr0+vdwjidx0C,
553                                             vdwioffsetptr0+vdwjidx0D,
554                                             vdwioffsetptr0+vdwjidx0E,
555                                             vdwioffsetptr0+vdwjidx0F,
556                                             vdwioffsetptr0+vdwjidx0G,
557                                             vdwioffsetptr0+vdwjidx0H,
558                                             &c6_00,&c12_00);
559
560             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
561                                                                   vdwgridioffsetptr0+vdwjidx0B,
562                                                                   vdwgridioffsetptr0+vdwjidx0C,
563                                                                   vdwgridioffsetptr0+vdwjidx0D,
564                                                                   vdwgridioffsetptr0+vdwjidx0E,
565                                                                   vdwgridioffsetptr0+vdwjidx0F,
566                                                                   vdwgridioffsetptr0+vdwjidx0G,
567                                                                   vdwgridioffsetptr0+vdwjidx0H);
568
569             /* EWALD ELECTROSTATICS */
570             
571             /* Analytical PME correction */
572             zeta2            = _mm256_mul_ps(beta2,rsq00);
573             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
574             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
575             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
576             felec            = _mm256_mul_ps(qq00,felec);
577             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
578             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
579             velec            = _mm256_sub_ps(rinv00,pmecorrV);
580             velec            = _mm256_mul_ps(qq00,velec);
581             
582             /* Analytical LJ-PME */
583             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
584             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
585             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
586             exponent         = gmx_simd_exp_r(ewcljrsq);
587             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
588             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
589             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
590             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
591             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
592             vvdw             = _mm256_sub_ps(_mm256_mul_ps(vvdw12,one_twelfth),_mm256_mul_ps(vvdw6,one_sixth));
593             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
594             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
595
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velec            = _mm256_andnot_ps(dummy_mask,velec);
598             velecsum         = _mm256_add_ps(velecsum,velec);
599             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
600             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
601
602             fscal            = _mm256_add_ps(felec,fvdw);
603
604             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
605
606             /* Calculate temporary vectorial force */
607             tx               = _mm256_mul_ps(fscal,dx00);
608             ty               = _mm256_mul_ps(fscal,dy00);
609             tz               = _mm256_mul_ps(fscal,dz00);
610
611             /* Update vectorial force */
612             fix0             = _mm256_add_ps(fix0,tx);
613             fiy0             = _mm256_add_ps(fiy0,ty);
614             fiz0             = _mm256_add_ps(fiz0,tz);
615
616             fjx0             = _mm256_add_ps(fjx0,tx);
617             fjy0             = _mm256_add_ps(fjy0,ty);
618             fjz0             = _mm256_add_ps(fjz0,tz);
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             r10              = _mm256_mul_ps(rsq10,rinv10);
625             r10              = _mm256_andnot_ps(dummy_mask,r10);
626
627             /* Compute parameters for interactions between i and j atoms */
628             qq10             = _mm256_mul_ps(iq1,jq0);
629
630             /* EWALD ELECTROSTATICS */
631             
632             /* Analytical PME correction */
633             zeta2            = _mm256_mul_ps(beta2,rsq10);
634             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
635             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
636             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
637             felec            = _mm256_mul_ps(qq10,felec);
638             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
639             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
640             velec            = _mm256_sub_ps(rinv10,pmecorrV);
641             velec            = _mm256_mul_ps(qq10,velec);
642             
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm256_andnot_ps(dummy_mask,velec);
645             velecsum         = _mm256_add_ps(velecsum,velec);
646
647             fscal            = felec;
648
649             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
650
651             /* Calculate temporary vectorial force */
652             tx               = _mm256_mul_ps(fscal,dx10);
653             ty               = _mm256_mul_ps(fscal,dy10);
654             tz               = _mm256_mul_ps(fscal,dz10);
655
656             /* Update vectorial force */
657             fix1             = _mm256_add_ps(fix1,tx);
658             fiy1             = _mm256_add_ps(fiy1,ty);
659             fiz1             = _mm256_add_ps(fiz1,tz);
660
661             fjx0             = _mm256_add_ps(fjx0,tx);
662             fjy0             = _mm256_add_ps(fjy0,ty);
663             fjz0             = _mm256_add_ps(fjz0,tz);
664
665             /**************************
666              * CALCULATE INTERACTIONS *
667              **************************/
668
669             r20              = _mm256_mul_ps(rsq20,rinv20);
670             r20              = _mm256_andnot_ps(dummy_mask,r20);
671
672             /* Compute parameters for interactions between i and j atoms */
673             qq20             = _mm256_mul_ps(iq2,jq0);
674
675             /* EWALD ELECTROSTATICS */
676             
677             /* Analytical PME correction */
678             zeta2            = _mm256_mul_ps(beta2,rsq20);
679             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
680             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
681             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
682             felec            = _mm256_mul_ps(qq20,felec);
683             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
684             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
685             velec            = _mm256_sub_ps(rinv20,pmecorrV);
686             velec            = _mm256_mul_ps(qq20,velec);
687             
688             /* Update potential sum for this i atom from the interaction with this j atom. */
689             velec            = _mm256_andnot_ps(dummy_mask,velec);
690             velecsum         = _mm256_add_ps(velecsum,velec);
691
692             fscal            = felec;
693
694             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
695
696             /* Calculate temporary vectorial force */
697             tx               = _mm256_mul_ps(fscal,dx20);
698             ty               = _mm256_mul_ps(fscal,dy20);
699             tz               = _mm256_mul_ps(fscal,dz20);
700
701             /* Update vectorial force */
702             fix2             = _mm256_add_ps(fix2,tx);
703             fiy2             = _mm256_add_ps(fiy2,ty);
704             fiz2             = _mm256_add_ps(fiz2,tz);
705
706             fjx0             = _mm256_add_ps(fjx0,tx);
707             fjy0             = _mm256_add_ps(fjy0,ty);
708             fjz0             = _mm256_add_ps(fjz0,tz);
709
710             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
711             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
712             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
713             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
714             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
715             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
716             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
717             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
718
719             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
720
721             /* Inner loop uses 286 flops */
722         }
723
724         /* End of innermost loop */
725
726         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
727                                                  f+i_coord_offset,fshift+i_shift_offset);
728
729         ggid                        = gid[iidx];
730         /* Update potential energies */
731         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
732         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
733
734         /* Increment number of inner iterations */
735         inneriter                  += j_index_end - j_index_start;
736
737         /* Outer loop uses 20 flops */
738     }
739
740     /* Increment number of outer iterations */
741     outeriter        += nri;
742
743     /* Update outer/inner flops */
744
745     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*286);
746 }
747 /*
748  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_single
749  * Electrostatics interaction: Ewald
750  * VdW interaction:            LJEwald
751  * Geometry:                   Water3-Particle
752  * Calculate force/pot:        Force
753  */
754 void
755 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_single
756                     (t_nblist                    * gmx_restrict       nlist,
757                      rvec                        * gmx_restrict          xx,
758                      rvec                        * gmx_restrict          ff,
759                      t_forcerec                  * gmx_restrict          fr,
760                      t_mdatoms                   * gmx_restrict     mdatoms,
761                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
762                      t_nrnb                      * gmx_restrict        nrnb)
763 {
764     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
765      * just 0 for non-waters.
766      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
767      * jnr indices corresponding to data put in the four positions in the SIMD register.
768      */
769     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
770     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
771     int              jnrA,jnrB,jnrC,jnrD;
772     int              jnrE,jnrF,jnrG,jnrH;
773     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
774     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
775     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
776     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
777     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
778     real             rcutoff_scalar;
779     real             *shiftvec,*fshift,*x,*f;
780     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
781     real             scratch[4*DIM];
782     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
783     real *           vdwioffsetptr0;
784     real *           vdwgridioffsetptr0;
785     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
786     real *           vdwioffsetptr1;
787     real *           vdwgridioffsetptr1;
788     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
789     real *           vdwioffsetptr2;
790     real *           vdwgridioffsetptr2;
791     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
792     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
793     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
794     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
795     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
796     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
797     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
798     real             *charge;
799     int              nvdwtype;
800     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
801     int              *vdwtype;
802     real             *vdwparam;
803     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
804     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
805     __m256           c6grid_00;
806     __m256           c6grid_10;
807     __m256           c6grid_20;
808     real             *vdwgridparam;
809     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
810     __m256           one_half  = _mm256_set1_ps(0.5);
811     __m256           minus_one = _mm256_set1_ps(-1.0);
812     __m256i          ewitab;
813     __m128i          ewitab_lo,ewitab_hi;
814     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
815     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
816     real             *ewtab;
817     __m256           dummy_mask,cutoff_mask;
818     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
819     __m256           one     = _mm256_set1_ps(1.0);
820     __m256           two     = _mm256_set1_ps(2.0);
821     x                = xx[0];
822     f                = ff[0];
823
824     nri              = nlist->nri;
825     iinr             = nlist->iinr;
826     jindex           = nlist->jindex;
827     jjnr             = nlist->jjnr;
828     shiftidx         = nlist->shift;
829     gid              = nlist->gid;
830     shiftvec         = fr->shift_vec[0];
831     fshift           = fr->fshift[0];
832     facel            = _mm256_set1_ps(fr->epsfac);
833     charge           = mdatoms->chargeA;
834     nvdwtype         = fr->ntype;
835     vdwparam         = fr->nbfp;
836     vdwtype          = mdatoms->typeA;
837     vdwgridparam     = fr->ljpme_c6grid;
838     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
839     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
840     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
841
842     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
843     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
844     beta2            = _mm256_mul_ps(beta,beta);
845     beta3            = _mm256_mul_ps(beta,beta2);
846
847     ewtab            = fr->ic->tabq_coul_F;
848     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
849     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
850
851     /* Setup water-specific parameters */
852     inr              = nlist->iinr[0];
853     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
854     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
855     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
856     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
857     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
858
859     /* Avoid stupid compiler warnings */
860     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
861     j_coord_offsetA = 0;
862     j_coord_offsetB = 0;
863     j_coord_offsetC = 0;
864     j_coord_offsetD = 0;
865     j_coord_offsetE = 0;
866     j_coord_offsetF = 0;
867     j_coord_offsetG = 0;
868     j_coord_offsetH = 0;
869
870     outeriter        = 0;
871     inneriter        = 0;
872
873     for(iidx=0;iidx<4*DIM;iidx++)
874     {
875         scratch[iidx] = 0.0;
876     }
877
878     /* Start outer loop over neighborlists */
879     for(iidx=0; iidx<nri; iidx++)
880     {
881         /* Load shift vector for this list */
882         i_shift_offset   = DIM*shiftidx[iidx];
883
884         /* Load limits for loop over neighbors */
885         j_index_start    = jindex[iidx];
886         j_index_end      = jindex[iidx+1];
887
888         /* Get outer coordinate index */
889         inr              = iinr[iidx];
890         i_coord_offset   = DIM*inr;
891
892         /* Load i particle coords and add shift vector */
893         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
894                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
895
896         fix0             = _mm256_setzero_ps();
897         fiy0             = _mm256_setzero_ps();
898         fiz0             = _mm256_setzero_ps();
899         fix1             = _mm256_setzero_ps();
900         fiy1             = _mm256_setzero_ps();
901         fiz1             = _mm256_setzero_ps();
902         fix2             = _mm256_setzero_ps();
903         fiy2             = _mm256_setzero_ps();
904         fiz2             = _mm256_setzero_ps();
905
906         /* Start inner kernel loop */
907         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
908         {
909
910             /* Get j neighbor index, and coordinate index */
911             jnrA             = jjnr[jidx];
912             jnrB             = jjnr[jidx+1];
913             jnrC             = jjnr[jidx+2];
914             jnrD             = jjnr[jidx+3];
915             jnrE             = jjnr[jidx+4];
916             jnrF             = jjnr[jidx+5];
917             jnrG             = jjnr[jidx+6];
918             jnrH             = jjnr[jidx+7];
919             j_coord_offsetA  = DIM*jnrA;
920             j_coord_offsetB  = DIM*jnrB;
921             j_coord_offsetC  = DIM*jnrC;
922             j_coord_offsetD  = DIM*jnrD;
923             j_coord_offsetE  = DIM*jnrE;
924             j_coord_offsetF  = DIM*jnrF;
925             j_coord_offsetG  = DIM*jnrG;
926             j_coord_offsetH  = DIM*jnrH;
927
928             /* load j atom coordinates */
929             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
930                                                  x+j_coord_offsetC,x+j_coord_offsetD,
931                                                  x+j_coord_offsetE,x+j_coord_offsetF,
932                                                  x+j_coord_offsetG,x+j_coord_offsetH,
933                                                  &jx0,&jy0,&jz0);
934
935             /* Calculate displacement vector */
936             dx00             = _mm256_sub_ps(ix0,jx0);
937             dy00             = _mm256_sub_ps(iy0,jy0);
938             dz00             = _mm256_sub_ps(iz0,jz0);
939             dx10             = _mm256_sub_ps(ix1,jx0);
940             dy10             = _mm256_sub_ps(iy1,jy0);
941             dz10             = _mm256_sub_ps(iz1,jz0);
942             dx20             = _mm256_sub_ps(ix2,jx0);
943             dy20             = _mm256_sub_ps(iy2,jy0);
944             dz20             = _mm256_sub_ps(iz2,jz0);
945
946             /* Calculate squared distance and things based on it */
947             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
948             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
949             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
950
951             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
952             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
953             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
954
955             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
956             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
957             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
958
959             /* Load parameters for j particles */
960             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
961                                                                  charge+jnrC+0,charge+jnrD+0,
962                                                                  charge+jnrE+0,charge+jnrF+0,
963                                                                  charge+jnrG+0,charge+jnrH+0);
964             vdwjidx0A        = 2*vdwtype[jnrA+0];
965             vdwjidx0B        = 2*vdwtype[jnrB+0];
966             vdwjidx0C        = 2*vdwtype[jnrC+0];
967             vdwjidx0D        = 2*vdwtype[jnrD+0];
968             vdwjidx0E        = 2*vdwtype[jnrE+0];
969             vdwjidx0F        = 2*vdwtype[jnrF+0];
970             vdwjidx0G        = 2*vdwtype[jnrG+0];
971             vdwjidx0H        = 2*vdwtype[jnrH+0];
972
973             fjx0             = _mm256_setzero_ps();
974             fjy0             = _mm256_setzero_ps();
975             fjz0             = _mm256_setzero_ps();
976
977             /**************************
978              * CALCULATE INTERACTIONS *
979              **************************/
980
981             r00              = _mm256_mul_ps(rsq00,rinv00);
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq00             = _mm256_mul_ps(iq0,jq0);
985             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
986                                             vdwioffsetptr0+vdwjidx0B,
987                                             vdwioffsetptr0+vdwjidx0C,
988                                             vdwioffsetptr0+vdwjidx0D,
989                                             vdwioffsetptr0+vdwjidx0E,
990                                             vdwioffsetptr0+vdwjidx0F,
991                                             vdwioffsetptr0+vdwjidx0G,
992                                             vdwioffsetptr0+vdwjidx0H,
993                                             &c6_00,&c12_00);
994
995             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
996                                                                   vdwgridioffsetptr0+vdwjidx0B,
997                                                                   vdwgridioffsetptr0+vdwjidx0C,
998                                                                   vdwgridioffsetptr0+vdwjidx0D,
999                                                                   vdwgridioffsetptr0+vdwjidx0E,
1000                                                                   vdwgridioffsetptr0+vdwjidx0F,
1001                                                                   vdwgridioffsetptr0+vdwjidx0G,
1002                                                                   vdwgridioffsetptr0+vdwjidx0H);
1003
1004             /* EWALD ELECTROSTATICS */
1005             
1006             /* Analytical PME correction */
1007             zeta2            = _mm256_mul_ps(beta2,rsq00);
1008             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1009             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1010             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1011             felec            = _mm256_mul_ps(qq00,felec);
1012             
1013             /* Analytical LJ-PME */
1014             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1015             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1016             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1017             exponent         = gmx_simd_exp_r(ewcljrsq);
1018             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1019             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1020             /* f6A = 6 * C6grid * (1 - poly) */
1021             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1022             /* f6B = C6grid * exponent * beta^6 */
1023             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1024             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1025             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1026
1027             fscal            = _mm256_add_ps(felec,fvdw);
1028
1029             /* Calculate temporary vectorial force */
1030             tx               = _mm256_mul_ps(fscal,dx00);
1031             ty               = _mm256_mul_ps(fscal,dy00);
1032             tz               = _mm256_mul_ps(fscal,dz00);
1033
1034             /* Update vectorial force */
1035             fix0             = _mm256_add_ps(fix0,tx);
1036             fiy0             = _mm256_add_ps(fiy0,ty);
1037             fiz0             = _mm256_add_ps(fiz0,tz);
1038
1039             fjx0             = _mm256_add_ps(fjx0,tx);
1040             fjy0             = _mm256_add_ps(fjy0,ty);
1041             fjz0             = _mm256_add_ps(fjz0,tz);
1042
1043             /**************************
1044              * CALCULATE INTERACTIONS *
1045              **************************/
1046
1047             r10              = _mm256_mul_ps(rsq10,rinv10);
1048
1049             /* Compute parameters for interactions between i and j atoms */
1050             qq10             = _mm256_mul_ps(iq1,jq0);
1051
1052             /* EWALD ELECTROSTATICS */
1053             
1054             /* Analytical PME correction */
1055             zeta2            = _mm256_mul_ps(beta2,rsq10);
1056             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1057             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1058             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1059             felec            = _mm256_mul_ps(qq10,felec);
1060             
1061             fscal            = felec;
1062
1063             /* Calculate temporary vectorial force */
1064             tx               = _mm256_mul_ps(fscal,dx10);
1065             ty               = _mm256_mul_ps(fscal,dy10);
1066             tz               = _mm256_mul_ps(fscal,dz10);
1067
1068             /* Update vectorial force */
1069             fix1             = _mm256_add_ps(fix1,tx);
1070             fiy1             = _mm256_add_ps(fiy1,ty);
1071             fiz1             = _mm256_add_ps(fiz1,tz);
1072
1073             fjx0             = _mm256_add_ps(fjx0,tx);
1074             fjy0             = _mm256_add_ps(fjy0,ty);
1075             fjz0             = _mm256_add_ps(fjz0,tz);
1076
1077             /**************************
1078              * CALCULATE INTERACTIONS *
1079              **************************/
1080
1081             r20              = _mm256_mul_ps(rsq20,rinv20);
1082
1083             /* Compute parameters for interactions between i and j atoms */
1084             qq20             = _mm256_mul_ps(iq2,jq0);
1085
1086             /* EWALD ELECTROSTATICS */
1087             
1088             /* Analytical PME correction */
1089             zeta2            = _mm256_mul_ps(beta2,rsq20);
1090             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1091             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1092             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1093             felec            = _mm256_mul_ps(qq20,felec);
1094             
1095             fscal            = felec;
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm256_mul_ps(fscal,dx20);
1099             ty               = _mm256_mul_ps(fscal,dy20);
1100             tz               = _mm256_mul_ps(fscal,dz20);
1101
1102             /* Update vectorial force */
1103             fix2             = _mm256_add_ps(fix2,tx);
1104             fiy2             = _mm256_add_ps(fiy2,ty);
1105             fiz2             = _mm256_add_ps(fiz2,tz);
1106
1107             fjx0             = _mm256_add_ps(fjx0,tx);
1108             fjy0             = _mm256_add_ps(fjy0,ty);
1109             fjz0             = _mm256_add_ps(fjz0,tz);
1110
1111             fjptrA             = f+j_coord_offsetA;
1112             fjptrB             = f+j_coord_offsetB;
1113             fjptrC             = f+j_coord_offsetC;
1114             fjptrD             = f+j_coord_offsetD;
1115             fjptrE             = f+j_coord_offsetE;
1116             fjptrF             = f+j_coord_offsetF;
1117             fjptrG             = f+j_coord_offsetG;
1118             fjptrH             = f+j_coord_offsetH;
1119
1120             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1121
1122             /* Inner loop uses 194 flops */
1123         }
1124
1125         if(jidx<j_index_end)
1126         {
1127
1128             /* Get j neighbor index, and coordinate index */
1129             jnrlistA         = jjnr[jidx];
1130             jnrlistB         = jjnr[jidx+1];
1131             jnrlistC         = jjnr[jidx+2];
1132             jnrlistD         = jjnr[jidx+3];
1133             jnrlistE         = jjnr[jidx+4];
1134             jnrlistF         = jjnr[jidx+5];
1135             jnrlistG         = jjnr[jidx+6];
1136             jnrlistH         = jjnr[jidx+7];
1137             /* Sign of each element will be negative for non-real atoms.
1138              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1139              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1140              */
1141             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1142                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1143                                             
1144             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1145             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1146             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1147             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1148             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1149             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1150             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1151             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1152             j_coord_offsetA  = DIM*jnrA;
1153             j_coord_offsetB  = DIM*jnrB;
1154             j_coord_offsetC  = DIM*jnrC;
1155             j_coord_offsetD  = DIM*jnrD;
1156             j_coord_offsetE  = DIM*jnrE;
1157             j_coord_offsetF  = DIM*jnrF;
1158             j_coord_offsetG  = DIM*jnrG;
1159             j_coord_offsetH  = DIM*jnrH;
1160
1161             /* load j atom coordinates */
1162             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1163                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1164                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1165                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1166                                                  &jx0,&jy0,&jz0);
1167
1168             /* Calculate displacement vector */
1169             dx00             = _mm256_sub_ps(ix0,jx0);
1170             dy00             = _mm256_sub_ps(iy0,jy0);
1171             dz00             = _mm256_sub_ps(iz0,jz0);
1172             dx10             = _mm256_sub_ps(ix1,jx0);
1173             dy10             = _mm256_sub_ps(iy1,jy0);
1174             dz10             = _mm256_sub_ps(iz1,jz0);
1175             dx20             = _mm256_sub_ps(ix2,jx0);
1176             dy20             = _mm256_sub_ps(iy2,jy0);
1177             dz20             = _mm256_sub_ps(iz2,jz0);
1178
1179             /* Calculate squared distance and things based on it */
1180             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1181             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1182             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1183
1184             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1185             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1186             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1187
1188             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1189             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1190             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1191
1192             /* Load parameters for j particles */
1193             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1194                                                                  charge+jnrC+0,charge+jnrD+0,
1195                                                                  charge+jnrE+0,charge+jnrF+0,
1196                                                                  charge+jnrG+0,charge+jnrH+0);
1197             vdwjidx0A        = 2*vdwtype[jnrA+0];
1198             vdwjidx0B        = 2*vdwtype[jnrB+0];
1199             vdwjidx0C        = 2*vdwtype[jnrC+0];
1200             vdwjidx0D        = 2*vdwtype[jnrD+0];
1201             vdwjidx0E        = 2*vdwtype[jnrE+0];
1202             vdwjidx0F        = 2*vdwtype[jnrF+0];
1203             vdwjidx0G        = 2*vdwtype[jnrG+0];
1204             vdwjidx0H        = 2*vdwtype[jnrH+0];
1205
1206             fjx0             = _mm256_setzero_ps();
1207             fjy0             = _mm256_setzero_ps();
1208             fjz0             = _mm256_setzero_ps();
1209
1210             /**************************
1211              * CALCULATE INTERACTIONS *
1212              **************************/
1213
1214             r00              = _mm256_mul_ps(rsq00,rinv00);
1215             r00              = _mm256_andnot_ps(dummy_mask,r00);
1216
1217             /* Compute parameters for interactions between i and j atoms */
1218             qq00             = _mm256_mul_ps(iq0,jq0);
1219             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1220                                             vdwioffsetptr0+vdwjidx0B,
1221                                             vdwioffsetptr0+vdwjidx0C,
1222                                             vdwioffsetptr0+vdwjidx0D,
1223                                             vdwioffsetptr0+vdwjidx0E,
1224                                             vdwioffsetptr0+vdwjidx0F,
1225                                             vdwioffsetptr0+vdwjidx0G,
1226                                             vdwioffsetptr0+vdwjidx0H,
1227                                             &c6_00,&c12_00);
1228
1229             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1230                                                                   vdwgridioffsetptr0+vdwjidx0B,
1231                                                                   vdwgridioffsetptr0+vdwjidx0C,
1232                                                                   vdwgridioffsetptr0+vdwjidx0D,
1233                                                                   vdwgridioffsetptr0+vdwjidx0E,
1234                                                                   vdwgridioffsetptr0+vdwjidx0F,
1235                                                                   vdwgridioffsetptr0+vdwjidx0G,
1236                                                                   vdwgridioffsetptr0+vdwjidx0H);
1237
1238             /* EWALD ELECTROSTATICS */
1239             
1240             /* Analytical PME correction */
1241             zeta2            = _mm256_mul_ps(beta2,rsq00);
1242             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1243             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1244             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1245             felec            = _mm256_mul_ps(qq00,felec);
1246             
1247             /* Analytical LJ-PME */
1248             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1249             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1250             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1251             exponent         = gmx_simd_exp_r(ewcljrsq);
1252             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1253             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1254             /* f6A = 6 * C6grid * (1 - poly) */
1255             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1256             /* f6B = C6grid * exponent * beta^6 */
1257             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1258             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1259             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1260
1261             fscal            = _mm256_add_ps(felec,fvdw);
1262
1263             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1264
1265             /* Calculate temporary vectorial force */
1266             tx               = _mm256_mul_ps(fscal,dx00);
1267             ty               = _mm256_mul_ps(fscal,dy00);
1268             tz               = _mm256_mul_ps(fscal,dz00);
1269
1270             /* Update vectorial force */
1271             fix0             = _mm256_add_ps(fix0,tx);
1272             fiy0             = _mm256_add_ps(fiy0,ty);
1273             fiz0             = _mm256_add_ps(fiz0,tz);
1274
1275             fjx0             = _mm256_add_ps(fjx0,tx);
1276             fjy0             = _mm256_add_ps(fjy0,ty);
1277             fjz0             = _mm256_add_ps(fjz0,tz);
1278
1279             /**************************
1280              * CALCULATE INTERACTIONS *
1281              **************************/
1282
1283             r10              = _mm256_mul_ps(rsq10,rinv10);
1284             r10              = _mm256_andnot_ps(dummy_mask,r10);
1285
1286             /* Compute parameters for interactions between i and j atoms */
1287             qq10             = _mm256_mul_ps(iq1,jq0);
1288
1289             /* EWALD ELECTROSTATICS */
1290             
1291             /* Analytical PME correction */
1292             zeta2            = _mm256_mul_ps(beta2,rsq10);
1293             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1294             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1295             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1296             felec            = _mm256_mul_ps(qq10,felec);
1297             
1298             fscal            = felec;
1299
1300             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1301
1302             /* Calculate temporary vectorial force */
1303             tx               = _mm256_mul_ps(fscal,dx10);
1304             ty               = _mm256_mul_ps(fscal,dy10);
1305             tz               = _mm256_mul_ps(fscal,dz10);
1306
1307             /* Update vectorial force */
1308             fix1             = _mm256_add_ps(fix1,tx);
1309             fiy1             = _mm256_add_ps(fiy1,ty);
1310             fiz1             = _mm256_add_ps(fiz1,tz);
1311
1312             fjx0             = _mm256_add_ps(fjx0,tx);
1313             fjy0             = _mm256_add_ps(fjy0,ty);
1314             fjz0             = _mm256_add_ps(fjz0,tz);
1315
1316             /**************************
1317              * CALCULATE INTERACTIONS *
1318              **************************/
1319
1320             r20              = _mm256_mul_ps(rsq20,rinv20);
1321             r20              = _mm256_andnot_ps(dummy_mask,r20);
1322
1323             /* Compute parameters for interactions between i and j atoms */
1324             qq20             = _mm256_mul_ps(iq2,jq0);
1325
1326             /* EWALD ELECTROSTATICS */
1327             
1328             /* Analytical PME correction */
1329             zeta2            = _mm256_mul_ps(beta2,rsq20);
1330             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1331             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1332             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1333             felec            = _mm256_mul_ps(qq20,felec);
1334             
1335             fscal            = felec;
1336
1337             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1338
1339             /* Calculate temporary vectorial force */
1340             tx               = _mm256_mul_ps(fscal,dx20);
1341             ty               = _mm256_mul_ps(fscal,dy20);
1342             tz               = _mm256_mul_ps(fscal,dz20);
1343
1344             /* Update vectorial force */
1345             fix2             = _mm256_add_ps(fix2,tx);
1346             fiy2             = _mm256_add_ps(fiy2,ty);
1347             fiz2             = _mm256_add_ps(fiz2,tz);
1348
1349             fjx0             = _mm256_add_ps(fjx0,tx);
1350             fjy0             = _mm256_add_ps(fjy0,ty);
1351             fjz0             = _mm256_add_ps(fjz0,tz);
1352
1353             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1354             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1355             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1356             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1357             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1358             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1359             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1360             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1361
1362             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1363
1364             /* Inner loop uses 197 flops */
1365         }
1366
1367         /* End of innermost loop */
1368
1369         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1370                                                  f+i_coord_offset,fshift+i_shift_offset);
1371
1372         /* Increment number of inner iterations */
1373         inneriter                  += j_index_end - j_index_start;
1374
1375         /* Outer loop uses 18 flops */
1376     }
1377
1378     /* Increment number of outer iterations */
1379     outeriter        += nri;
1380
1381     /* Update outer/inner flops */
1382
1383     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*197);
1384 }