c0233488694ded7e0495b1fa9b7117a81c19d686
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     real *           vdwgridioffsetptr0;
88     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89     real *           vdwioffsetptr1;
90     real *           vdwgridioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     real *           vdwgridioffsetptr2;
94     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
95     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
96     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
97     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
98     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
99     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
100     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
107     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
108     __m256           c6grid_00;
109     __m256           c6grid_10;
110     __m256           c6grid_20;
111     real             *vdwgridparam;
112     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
113     __m256           one_half  = _mm256_set1_ps(0.5);
114     __m256           minus_one = _mm256_set1_ps(-1.0);
115     __m256i          ewitab;
116     __m128i          ewitab_lo,ewitab_hi;
117     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
118     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
119     real             *ewtab;
120     __m256           dummy_mask,cutoff_mask;
121     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
122     __m256           one     = _mm256_set1_ps(1.0);
123     __m256           two     = _mm256_set1_ps(2.0);
124     x                = xx[0];
125     f                = ff[0];
126
127     nri              = nlist->nri;
128     iinr             = nlist->iinr;
129     jindex           = nlist->jindex;
130     jjnr             = nlist->jjnr;
131     shiftidx         = nlist->shift;
132     gid              = nlist->gid;
133     shiftvec         = fr->shift_vec[0];
134     fshift           = fr->fshift[0];
135     facel            = _mm256_set1_ps(fr->epsfac);
136     charge           = mdatoms->chargeA;
137     nvdwtype         = fr->ntype;
138     vdwparam         = fr->nbfp;
139     vdwtype          = mdatoms->typeA;
140     vdwgridparam     = fr->ljpme_c6grid;
141     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
142     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
143     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
144
145     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
146     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
147     beta2            = _mm256_mul_ps(beta,beta);
148     beta3            = _mm256_mul_ps(beta,beta2);
149
150     ewtab            = fr->ic->tabq_coul_FDV0;
151     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
152     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
153
154     /* Setup water-specific parameters */
155     inr              = nlist->iinr[0];
156     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
157     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
158     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
159     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
160     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
161
162     /* Avoid stupid compiler warnings */
163     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
164     j_coord_offsetA = 0;
165     j_coord_offsetB = 0;
166     j_coord_offsetC = 0;
167     j_coord_offsetD = 0;
168     j_coord_offsetE = 0;
169     j_coord_offsetF = 0;
170     j_coord_offsetG = 0;
171     j_coord_offsetH = 0;
172
173     outeriter        = 0;
174     inneriter        = 0;
175
176     for(iidx=0;iidx<4*DIM;iidx++)
177     {
178         scratch[iidx] = 0.0;
179     }
180
181     /* Start outer loop over neighborlists */
182     for(iidx=0; iidx<nri; iidx++)
183     {
184         /* Load shift vector for this list */
185         i_shift_offset   = DIM*shiftidx[iidx];
186
187         /* Load limits for loop over neighbors */
188         j_index_start    = jindex[iidx];
189         j_index_end      = jindex[iidx+1];
190
191         /* Get outer coordinate index */
192         inr              = iinr[iidx];
193         i_coord_offset   = DIM*inr;
194
195         /* Load i particle coords and add shift vector */
196         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
197                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
198
199         fix0             = _mm256_setzero_ps();
200         fiy0             = _mm256_setzero_ps();
201         fiz0             = _mm256_setzero_ps();
202         fix1             = _mm256_setzero_ps();
203         fiy1             = _mm256_setzero_ps();
204         fiz1             = _mm256_setzero_ps();
205         fix2             = _mm256_setzero_ps();
206         fiy2             = _mm256_setzero_ps();
207         fiz2             = _mm256_setzero_ps();
208
209         /* Reset potential sums */
210         velecsum         = _mm256_setzero_ps();
211         vvdwsum          = _mm256_setzero_ps();
212
213         /* Start inner kernel loop */
214         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
215         {
216
217             /* Get j neighbor index, and coordinate index */
218             jnrA             = jjnr[jidx];
219             jnrB             = jjnr[jidx+1];
220             jnrC             = jjnr[jidx+2];
221             jnrD             = jjnr[jidx+3];
222             jnrE             = jjnr[jidx+4];
223             jnrF             = jjnr[jidx+5];
224             jnrG             = jjnr[jidx+6];
225             jnrH             = jjnr[jidx+7];
226             j_coord_offsetA  = DIM*jnrA;
227             j_coord_offsetB  = DIM*jnrB;
228             j_coord_offsetC  = DIM*jnrC;
229             j_coord_offsetD  = DIM*jnrD;
230             j_coord_offsetE  = DIM*jnrE;
231             j_coord_offsetF  = DIM*jnrF;
232             j_coord_offsetG  = DIM*jnrG;
233             j_coord_offsetH  = DIM*jnrH;
234
235             /* load j atom coordinates */
236             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
237                                                  x+j_coord_offsetC,x+j_coord_offsetD,
238                                                  x+j_coord_offsetE,x+j_coord_offsetF,
239                                                  x+j_coord_offsetG,x+j_coord_offsetH,
240                                                  &jx0,&jy0,&jz0);
241
242             /* Calculate displacement vector */
243             dx00             = _mm256_sub_ps(ix0,jx0);
244             dy00             = _mm256_sub_ps(iy0,jy0);
245             dz00             = _mm256_sub_ps(iz0,jz0);
246             dx10             = _mm256_sub_ps(ix1,jx0);
247             dy10             = _mm256_sub_ps(iy1,jy0);
248             dz10             = _mm256_sub_ps(iz1,jz0);
249             dx20             = _mm256_sub_ps(ix2,jx0);
250             dy20             = _mm256_sub_ps(iy2,jy0);
251             dz20             = _mm256_sub_ps(iz2,jz0);
252
253             /* Calculate squared distance and things based on it */
254             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
255             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
256             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
257
258             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
259             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
260             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
261
262             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
263             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
264             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
265
266             /* Load parameters for j particles */
267             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
268                                                                  charge+jnrC+0,charge+jnrD+0,
269                                                                  charge+jnrE+0,charge+jnrF+0,
270                                                                  charge+jnrG+0,charge+jnrH+0);
271             vdwjidx0A        = 2*vdwtype[jnrA+0];
272             vdwjidx0B        = 2*vdwtype[jnrB+0];
273             vdwjidx0C        = 2*vdwtype[jnrC+0];
274             vdwjidx0D        = 2*vdwtype[jnrD+0];
275             vdwjidx0E        = 2*vdwtype[jnrE+0];
276             vdwjidx0F        = 2*vdwtype[jnrF+0];
277             vdwjidx0G        = 2*vdwtype[jnrG+0];
278             vdwjidx0H        = 2*vdwtype[jnrH+0];
279
280             fjx0             = _mm256_setzero_ps();
281             fjy0             = _mm256_setzero_ps();
282             fjz0             = _mm256_setzero_ps();
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             r00              = _mm256_mul_ps(rsq00,rinv00);
289
290             /* Compute parameters for interactions between i and j atoms */
291             qq00             = _mm256_mul_ps(iq0,jq0);
292             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
293                                             vdwioffsetptr0+vdwjidx0B,
294                                             vdwioffsetptr0+vdwjidx0C,
295                                             vdwioffsetptr0+vdwjidx0D,
296                                             vdwioffsetptr0+vdwjidx0E,
297                                             vdwioffsetptr0+vdwjidx0F,
298                                             vdwioffsetptr0+vdwjidx0G,
299                                             vdwioffsetptr0+vdwjidx0H,
300                                             &c6_00,&c12_00);
301
302             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
303                                                                   vdwgridioffsetptr0+vdwjidx0B,
304                                                                   vdwgridioffsetptr0+vdwjidx0C,
305                                                                   vdwgridioffsetptr0+vdwjidx0D,
306                                                                   vdwgridioffsetptr0+vdwjidx0E,
307                                                                   vdwgridioffsetptr0+vdwjidx0F,
308                                                                   vdwgridioffsetptr0+vdwjidx0G,
309                                                                   vdwgridioffsetptr0+vdwjidx0H);
310
311             /* EWALD ELECTROSTATICS */
312             
313             /* Analytical PME correction */
314             zeta2            = _mm256_mul_ps(beta2,rsq00);
315             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
316             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
317             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
318             felec            = _mm256_mul_ps(qq00,felec);
319             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
320             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
321             velec            = _mm256_sub_ps(rinv00,pmecorrV);
322             velec            = _mm256_mul_ps(qq00,velec);
323             
324             /* Analytical LJ-PME */
325             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
326             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
327             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
328             exponent         = gmx_simd_exp_r(ewcljrsq);
329             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
330             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
331             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
332             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
333             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
334             vvdw             = _mm256_sub_ps(_mm256_mul_ps(vvdw12,one_twelfth),_mm256_mul_ps(vvdw6,one_sixth));
335             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
336             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm256_add_ps(velecsum,velec);
340             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
341
342             fscal            = _mm256_add_ps(felec,fvdw);
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm256_mul_ps(fscal,dx00);
346             ty               = _mm256_mul_ps(fscal,dy00);
347             tz               = _mm256_mul_ps(fscal,dz00);
348
349             /* Update vectorial force */
350             fix0             = _mm256_add_ps(fix0,tx);
351             fiy0             = _mm256_add_ps(fiy0,ty);
352             fiz0             = _mm256_add_ps(fiz0,tz);
353
354             fjx0             = _mm256_add_ps(fjx0,tx);
355             fjy0             = _mm256_add_ps(fjy0,ty);
356             fjz0             = _mm256_add_ps(fjz0,tz);
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             r10              = _mm256_mul_ps(rsq10,rinv10);
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq10             = _mm256_mul_ps(iq1,jq0);
366
367             /* EWALD ELECTROSTATICS */
368             
369             /* Analytical PME correction */
370             zeta2            = _mm256_mul_ps(beta2,rsq10);
371             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
372             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
373             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
374             felec            = _mm256_mul_ps(qq10,felec);
375             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
376             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
377             velec            = _mm256_sub_ps(rinv10,pmecorrV);
378             velec            = _mm256_mul_ps(qq10,velec);
379             
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velecsum         = _mm256_add_ps(velecsum,velec);
382
383             fscal            = felec;
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm256_mul_ps(fscal,dx10);
387             ty               = _mm256_mul_ps(fscal,dy10);
388             tz               = _mm256_mul_ps(fscal,dz10);
389
390             /* Update vectorial force */
391             fix1             = _mm256_add_ps(fix1,tx);
392             fiy1             = _mm256_add_ps(fiy1,ty);
393             fiz1             = _mm256_add_ps(fiz1,tz);
394
395             fjx0             = _mm256_add_ps(fjx0,tx);
396             fjy0             = _mm256_add_ps(fjy0,ty);
397             fjz0             = _mm256_add_ps(fjz0,tz);
398
399             /**************************
400              * CALCULATE INTERACTIONS *
401              **************************/
402
403             r20              = _mm256_mul_ps(rsq20,rinv20);
404
405             /* Compute parameters for interactions between i and j atoms */
406             qq20             = _mm256_mul_ps(iq2,jq0);
407
408             /* EWALD ELECTROSTATICS */
409             
410             /* Analytical PME correction */
411             zeta2            = _mm256_mul_ps(beta2,rsq20);
412             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
413             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
414             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
415             felec            = _mm256_mul_ps(qq20,felec);
416             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
417             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
418             velec            = _mm256_sub_ps(rinv20,pmecorrV);
419             velec            = _mm256_mul_ps(qq20,velec);
420             
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             velecsum         = _mm256_add_ps(velecsum,velec);
423
424             fscal            = felec;
425
426             /* Calculate temporary vectorial force */
427             tx               = _mm256_mul_ps(fscal,dx20);
428             ty               = _mm256_mul_ps(fscal,dy20);
429             tz               = _mm256_mul_ps(fscal,dz20);
430
431             /* Update vectorial force */
432             fix2             = _mm256_add_ps(fix2,tx);
433             fiy2             = _mm256_add_ps(fiy2,ty);
434             fiz2             = _mm256_add_ps(fiz2,tz);
435
436             fjx0             = _mm256_add_ps(fjx0,tx);
437             fjy0             = _mm256_add_ps(fjy0,ty);
438             fjz0             = _mm256_add_ps(fjz0,tz);
439
440             fjptrA             = f+j_coord_offsetA;
441             fjptrB             = f+j_coord_offsetB;
442             fjptrC             = f+j_coord_offsetC;
443             fjptrD             = f+j_coord_offsetD;
444             fjptrE             = f+j_coord_offsetE;
445             fjptrF             = f+j_coord_offsetF;
446             fjptrG             = f+j_coord_offsetG;
447             fjptrH             = f+j_coord_offsetH;
448
449             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
450
451             /* Inner loop uses 283 flops */
452         }
453
454         if(jidx<j_index_end)
455         {
456
457             /* Get j neighbor index, and coordinate index */
458             jnrlistA         = jjnr[jidx];
459             jnrlistB         = jjnr[jidx+1];
460             jnrlistC         = jjnr[jidx+2];
461             jnrlistD         = jjnr[jidx+3];
462             jnrlistE         = jjnr[jidx+4];
463             jnrlistF         = jjnr[jidx+5];
464             jnrlistG         = jjnr[jidx+6];
465             jnrlistH         = jjnr[jidx+7];
466             /* Sign of each element will be negative for non-real atoms.
467              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
468              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
469              */
470             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
471                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
472                                             
473             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
474             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
475             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
476             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
477             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
478             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
479             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
480             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
481             j_coord_offsetA  = DIM*jnrA;
482             j_coord_offsetB  = DIM*jnrB;
483             j_coord_offsetC  = DIM*jnrC;
484             j_coord_offsetD  = DIM*jnrD;
485             j_coord_offsetE  = DIM*jnrE;
486             j_coord_offsetF  = DIM*jnrF;
487             j_coord_offsetG  = DIM*jnrG;
488             j_coord_offsetH  = DIM*jnrH;
489
490             /* load j atom coordinates */
491             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
492                                                  x+j_coord_offsetC,x+j_coord_offsetD,
493                                                  x+j_coord_offsetE,x+j_coord_offsetF,
494                                                  x+j_coord_offsetG,x+j_coord_offsetH,
495                                                  &jx0,&jy0,&jz0);
496
497             /* Calculate displacement vector */
498             dx00             = _mm256_sub_ps(ix0,jx0);
499             dy00             = _mm256_sub_ps(iy0,jy0);
500             dz00             = _mm256_sub_ps(iz0,jz0);
501             dx10             = _mm256_sub_ps(ix1,jx0);
502             dy10             = _mm256_sub_ps(iy1,jy0);
503             dz10             = _mm256_sub_ps(iz1,jz0);
504             dx20             = _mm256_sub_ps(ix2,jx0);
505             dy20             = _mm256_sub_ps(iy2,jy0);
506             dz20             = _mm256_sub_ps(iz2,jz0);
507
508             /* Calculate squared distance and things based on it */
509             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
510             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
511             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
512
513             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
514             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
515             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
516
517             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
518             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
519             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
520
521             /* Load parameters for j particles */
522             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
523                                                                  charge+jnrC+0,charge+jnrD+0,
524                                                                  charge+jnrE+0,charge+jnrF+0,
525                                                                  charge+jnrG+0,charge+jnrH+0);
526             vdwjidx0A        = 2*vdwtype[jnrA+0];
527             vdwjidx0B        = 2*vdwtype[jnrB+0];
528             vdwjidx0C        = 2*vdwtype[jnrC+0];
529             vdwjidx0D        = 2*vdwtype[jnrD+0];
530             vdwjidx0E        = 2*vdwtype[jnrE+0];
531             vdwjidx0F        = 2*vdwtype[jnrF+0];
532             vdwjidx0G        = 2*vdwtype[jnrG+0];
533             vdwjidx0H        = 2*vdwtype[jnrH+0];
534
535             fjx0             = _mm256_setzero_ps();
536             fjy0             = _mm256_setzero_ps();
537             fjz0             = _mm256_setzero_ps();
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             r00              = _mm256_mul_ps(rsq00,rinv00);
544             r00              = _mm256_andnot_ps(dummy_mask,r00);
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq00             = _mm256_mul_ps(iq0,jq0);
548             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
549                                             vdwioffsetptr0+vdwjidx0B,
550                                             vdwioffsetptr0+vdwjidx0C,
551                                             vdwioffsetptr0+vdwjidx0D,
552                                             vdwioffsetptr0+vdwjidx0E,
553                                             vdwioffsetptr0+vdwjidx0F,
554                                             vdwioffsetptr0+vdwjidx0G,
555                                             vdwioffsetptr0+vdwjidx0H,
556                                             &c6_00,&c12_00);
557
558             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
559                                                                   vdwgridioffsetptr0+vdwjidx0B,
560                                                                   vdwgridioffsetptr0+vdwjidx0C,
561                                                                   vdwgridioffsetptr0+vdwjidx0D,
562                                                                   vdwgridioffsetptr0+vdwjidx0E,
563                                                                   vdwgridioffsetptr0+vdwjidx0F,
564                                                                   vdwgridioffsetptr0+vdwjidx0G,
565                                                                   vdwgridioffsetptr0+vdwjidx0H);
566
567             /* EWALD ELECTROSTATICS */
568             
569             /* Analytical PME correction */
570             zeta2            = _mm256_mul_ps(beta2,rsq00);
571             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
572             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
573             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
574             felec            = _mm256_mul_ps(qq00,felec);
575             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
576             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
577             velec            = _mm256_sub_ps(rinv00,pmecorrV);
578             velec            = _mm256_mul_ps(qq00,velec);
579             
580             /* Analytical LJ-PME */
581             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
582             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
583             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
584             exponent         = gmx_simd_exp_r(ewcljrsq);
585             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
586             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
587             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
588             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
589             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
590             vvdw             = _mm256_sub_ps(_mm256_mul_ps(vvdw12,one_twelfth),_mm256_mul_ps(vvdw6,one_sixth));
591             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
592             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
593
594             /* Update potential sum for this i atom from the interaction with this j atom. */
595             velec            = _mm256_andnot_ps(dummy_mask,velec);
596             velecsum         = _mm256_add_ps(velecsum,velec);
597             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
598             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
599
600             fscal            = _mm256_add_ps(felec,fvdw);
601
602             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
603
604             /* Calculate temporary vectorial force */
605             tx               = _mm256_mul_ps(fscal,dx00);
606             ty               = _mm256_mul_ps(fscal,dy00);
607             tz               = _mm256_mul_ps(fscal,dz00);
608
609             /* Update vectorial force */
610             fix0             = _mm256_add_ps(fix0,tx);
611             fiy0             = _mm256_add_ps(fiy0,ty);
612             fiz0             = _mm256_add_ps(fiz0,tz);
613
614             fjx0             = _mm256_add_ps(fjx0,tx);
615             fjy0             = _mm256_add_ps(fjy0,ty);
616             fjz0             = _mm256_add_ps(fjz0,tz);
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             r10              = _mm256_mul_ps(rsq10,rinv10);
623             r10              = _mm256_andnot_ps(dummy_mask,r10);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq10             = _mm256_mul_ps(iq1,jq0);
627
628             /* EWALD ELECTROSTATICS */
629             
630             /* Analytical PME correction */
631             zeta2            = _mm256_mul_ps(beta2,rsq10);
632             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
633             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
634             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
635             felec            = _mm256_mul_ps(qq10,felec);
636             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
637             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
638             velec            = _mm256_sub_ps(rinv10,pmecorrV);
639             velec            = _mm256_mul_ps(qq10,velec);
640             
641             /* Update potential sum for this i atom from the interaction with this j atom. */
642             velec            = _mm256_andnot_ps(dummy_mask,velec);
643             velecsum         = _mm256_add_ps(velecsum,velec);
644
645             fscal            = felec;
646
647             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
648
649             /* Calculate temporary vectorial force */
650             tx               = _mm256_mul_ps(fscal,dx10);
651             ty               = _mm256_mul_ps(fscal,dy10);
652             tz               = _mm256_mul_ps(fscal,dz10);
653
654             /* Update vectorial force */
655             fix1             = _mm256_add_ps(fix1,tx);
656             fiy1             = _mm256_add_ps(fiy1,ty);
657             fiz1             = _mm256_add_ps(fiz1,tz);
658
659             fjx0             = _mm256_add_ps(fjx0,tx);
660             fjy0             = _mm256_add_ps(fjy0,ty);
661             fjz0             = _mm256_add_ps(fjz0,tz);
662
663             /**************************
664              * CALCULATE INTERACTIONS *
665              **************************/
666
667             r20              = _mm256_mul_ps(rsq20,rinv20);
668             r20              = _mm256_andnot_ps(dummy_mask,r20);
669
670             /* Compute parameters for interactions between i and j atoms */
671             qq20             = _mm256_mul_ps(iq2,jq0);
672
673             /* EWALD ELECTROSTATICS */
674             
675             /* Analytical PME correction */
676             zeta2            = _mm256_mul_ps(beta2,rsq20);
677             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
678             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
679             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
680             felec            = _mm256_mul_ps(qq20,felec);
681             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
682             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
683             velec            = _mm256_sub_ps(rinv20,pmecorrV);
684             velec            = _mm256_mul_ps(qq20,velec);
685             
686             /* Update potential sum for this i atom from the interaction with this j atom. */
687             velec            = _mm256_andnot_ps(dummy_mask,velec);
688             velecsum         = _mm256_add_ps(velecsum,velec);
689
690             fscal            = felec;
691
692             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm256_mul_ps(fscal,dx20);
696             ty               = _mm256_mul_ps(fscal,dy20);
697             tz               = _mm256_mul_ps(fscal,dz20);
698
699             /* Update vectorial force */
700             fix2             = _mm256_add_ps(fix2,tx);
701             fiy2             = _mm256_add_ps(fiy2,ty);
702             fiz2             = _mm256_add_ps(fiz2,tz);
703
704             fjx0             = _mm256_add_ps(fjx0,tx);
705             fjy0             = _mm256_add_ps(fjy0,ty);
706             fjz0             = _mm256_add_ps(fjz0,tz);
707
708             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
709             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
710             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
711             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
712             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
713             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
714             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
715             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
716
717             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
718
719             /* Inner loop uses 286 flops */
720         }
721
722         /* End of innermost loop */
723
724         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
725                                                  f+i_coord_offset,fshift+i_shift_offset);
726
727         ggid                        = gid[iidx];
728         /* Update potential energies */
729         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
730         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
731
732         /* Increment number of inner iterations */
733         inneriter                  += j_index_end - j_index_start;
734
735         /* Outer loop uses 20 flops */
736     }
737
738     /* Increment number of outer iterations */
739     outeriter        += nri;
740
741     /* Update outer/inner flops */
742
743     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*286);
744 }
745 /*
746  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_single
747  * Electrostatics interaction: Ewald
748  * VdW interaction:            LJEwald
749  * Geometry:                   Water3-Particle
750  * Calculate force/pot:        Force
751  */
752 void
753 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_single
754                     (t_nblist                    * gmx_restrict       nlist,
755                      rvec                        * gmx_restrict          xx,
756                      rvec                        * gmx_restrict          ff,
757                      t_forcerec                  * gmx_restrict          fr,
758                      t_mdatoms                   * gmx_restrict     mdatoms,
759                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
760                      t_nrnb                      * gmx_restrict        nrnb)
761 {
762     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
763      * just 0 for non-waters.
764      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
765      * jnr indices corresponding to data put in the four positions in the SIMD register.
766      */
767     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
768     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
769     int              jnrA,jnrB,jnrC,jnrD;
770     int              jnrE,jnrF,jnrG,jnrH;
771     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
772     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
773     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
774     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
775     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
776     real             rcutoff_scalar;
777     real             *shiftvec,*fshift,*x,*f;
778     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
779     real             scratch[4*DIM];
780     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
781     real *           vdwioffsetptr0;
782     real *           vdwgridioffsetptr0;
783     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
784     real *           vdwioffsetptr1;
785     real *           vdwgridioffsetptr1;
786     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
787     real *           vdwioffsetptr2;
788     real *           vdwgridioffsetptr2;
789     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
790     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
791     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
792     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
793     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
794     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
795     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
796     real             *charge;
797     int              nvdwtype;
798     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
799     int              *vdwtype;
800     real             *vdwparam;
801     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
802     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
803     __m256           c6grid_00;
804     __m256           c6grid_10;
805     __m256           c6grid_20;
806     real             *vdwgridparam;
807     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
808     __m256           one_half  = _mm256_set1_ps(0.5);
809     __m256           minus_one = _mm256_set1_ps(-1.0);
810     __m256i          ewitab;
811     __m128i          ewitab_lo,ewitab_hi;
812     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
813     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
814     real             *ewtab;
815     __m256           dummy_mask,cutoff_mask;
816     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
817     __m256           one     = _mm256_set1_ps(1.0);
818     __m256           two     = _mm256_set1_ps(2.0);
819     x                = xx[0];
820     f                = ff[0];
821
822     nri              = nlist->nri;
823     iinr             = nlist->iinr;
824     jindex           = nlist->jindex;
825     jjnr             = nlist->jjnr;
826     shiftidx         = nlist->shift;
827     gid              = nlist->gid;
828     shiftvec         = fr->shift_vec[0];
829     fshift           = fr->fshift[0];
830     facel            = _mm256_set1_ps(fr->epsfac);
831     charge           = mdatoms->chargeA;
832     nvdwtype         = fr->ntype;
833     vdwparam         = fr->nbfp;
834     vdwtype          = mdatoms->typeA;
835     vdwgridparam     = fr->ljpme_c6grid;
836     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
837     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
838     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
839
840     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
841     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
842     beta2            = _mm256_mul_ps(beta,beta);
843     beta3            = _mm256_mul_ps(beta,beta2);
844
845     ewtab            = fr->ic->tabq_coul_F;
846     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
847     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
848
849     /* Setup water-specific parameters */
850     inr              = nlist->iinr[0];
851     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
852     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
853     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
854     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
855     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
856
857     /* Avoid stupid compiler warnings */
858     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
859     j_coord_offsetA = 0;
860     j_coord_offsetB = 0;
861     j_coord_offsetC = 0;
862     j_coord_offsetD = 0;
863     j_coord_offsetE = 0;
864     j_coord_offsetF = 0;
865     j_coord_offsetG = 0;
866     j_coord_offsetH = 0;
867
868     outeriter        = 0;
869     inneriter        = 0;
870
871     for(iidx=0;iidx<4*DIM;iidx++)
872     {
873         scratch[iidx] = 0.0;
874     }
875
876     /* Start outer loop over neighborlists */
877     for(iidx=0; iidx<nri; iidx++)
878     {
879         /* Load shift vector for this list */
880         i_shift_offset   = DIM*shiftidx[iidx];
881
882         /* Load limits for loop over neighbors */
883         j_index_start    = jindex[iidx];
884         j_index_end      = jindex[iidx+1];
885
886         /* Get outer coordinate index */
887         inr              = iinr[iidx];
888         i_coord_offset   = DIM*inr;
889
890         /* Load i particle coords and add shift vector */
891         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
892                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
893
894         fix0             = _mm256_setzero_ps();
895         fiy0             = _mm256_setzero_ps();
896         fiz0             = _mm256_setzero_ps();
897         fix1             = _mm256_setzero_ps();
898         fiy1             = _mm256_setzero_ps();
899         fiz1             = _mm256_setzero_ps();
900         fix2             = _mm256_setzero_ps();
901         fiy2             = _mm256_setzero_ps();
902         fiz2             = _mm256_setzero_ps();
903
904         /* Start inner kernel loop */
905         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
906         {
907
908             /* Get j neighbor index, and coordinate index */
909             jnrA             = jjnr[jidx];
910             jnrB             = jjnr[jidx+1];
911             jnrC             = jjnr[jidx+2];
912             jnrD             = jjnr[jidx+3];
913             jnrE             = jjnr[jidx+4];
914             jnrF             = jjnr[jidx+5];
915             jnrG             = jjnr[jidx+6];
916             jnrH             = jjnr[jidx+7];
917             j_coord_offsetA  = DIM*jnrA;
918             j_coord_offsetB  = DIM*jnrB;
919             j_coord_offsetC  = DIM*jnrC;
920             j_coord_offsetD  = DIM*jnrD;
921             j_coord_offsetE  = DIM*jnrE;
922             j_coord_offsetF  = DIM*jnrF;
923             j_coord_offsetG  = DIM*jnrG;
924             j_coord_offsetH  = DIM*jnrH;
925
926             /* load j atom coordinates */
927             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
928                                                  x+j_coord_offsetC,x+j_coord_offsetD,
929                                                  x+j_coord_offsetE,x+j_coord_offsetF,
930                                                  x+j_coord_offsetG,x+j_coord_offsetH,
931                                                  &jx0,&jy0,&jz0);
932
933             /* Calculate displacement vector */
934             dx00             = _mm256_sub_ps(ix0,jx0);
935             dy00             = _mm256_sub_ps(iy0,jy0);
936             dz00             = _mm256_sub_ps(iz0,jz0);
937             dx10             = _mm256_sub_ps(ix1,jx0);
938             dy10             = _mm256_sub_ps(iy1,jy0);
939             dz10             = _mm256_sub_ps(iz1,jz0);
940             dx20             = _mm256_sub_ps(ix2,jx0);
941             dy20             = _mm256_sub_ps(iy2,jy0);
942             dz20             = _mm256_sub_ps(iz2,jz0);
943
944             /* Calculate squared distance and things based on it */
945             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
946             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
947             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
948
949             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
950             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
951             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
952
953             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
954             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
955             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
956
957             /* Load parameters for j particles */
958             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
959                                                                  charge+jnrC+0,charge+jnrD+0,
960                                                                  charge+jnrE+0,charge+jnrF+0,
961                                                                  charge+jnrG+0,charge+jnrH+0);
962             vdwjidx0A        = 2*vdwtype[jnrA+0];
963             vdwjidx0B        = 2*vdwtype[jnrB+0];
964             vdwjidx0C        = 2*vdwtype[jnrC+0];
965             vdwjidx0D        = 2*vdwtype[jnrD+0];
966             vdwjidx0E        = 2*vdwtype[jnrE+0];
967             vdwjidx0F        = 2*vdwtype[jnrF+0];
968             vdwjidx0G        = 2*vdwtype[jnrG+0];
969             vdwjidx0H        = 2*vdwtype[jnrH+0];
970
971             fjx0             = _mm256_setzero_ps();
972             fjy0             = _mm256_setzero_ps();
973             fjz0             = _mm256_setzero_ps();
974
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             r00              = _mm256_mul_ps(rsq00,rinv00);
980
981             /* Compute parameters for interactions between i and j atoms */
982             qq00             = _mm256_mul_ps(iq0,jq0);
983             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
984                                             vdwioffsetptr0+vdwjidx0B,
985                                             vdwioffsetptr0+vdwjidx0C,
986                                             vdwioffsetptr0+vdwjidx0D,
987                                             vdwioffsetptr0+vdwjidx0E,
988                                             vdwioffsetptr0+vdwjidx0F,
989                                             vdwioffsetptr0+vdwjidx0G,
990                                             vdwioffsetptr0+vdwjidx0H,
991                                             &c6_00,&c12_00);
992
993             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
994                                                                   vdwgridioffsetptr0+vdwjidx0B,
995                                                                   vdwgridioffsetptr0+vdwjidx0C,
996                                                                   vdwgridioffsetptr0+vdwjidx0D,
997                                                                   vdwgridioffsetptr0+vdwjidx0E,
998                                                                   vdwgridioffsetptr0+vdwjidx0F,
999                                                                   vdwgridioffsetptr0+vdwjidx0G,
1000                                                                   vdwgridioffsetptr0+vdwjidx0H);
1001
1002             /* EWALD ELECTROSTATICS */
1003             
1004             /* Analytical PME correction */
1005             zeta2            = _mm256_mul_ps(beta2,rsq00);
1006             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1007             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1008             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1009             felec            = _mm256_mul_ps(qq00,felec);
1010             
1011             /* Analytical LJ-PME */
1012             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1013             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1014             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1015             exponent         = gmx_simd_exp_r(ewcljrsq);
1016             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1017             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1018             /* f6A = 6 * C6grid * (1 - poly) */
1019             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1020             /* f6B = C6grid * exponent * beta^6 */
1021             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1022             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1023             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1024
1025             fscal            = _mm256_add_ps(felec,fvdw);
1026
1027             /* Calculate temporary vectorial force */
1028             tx               = _mm256_mul_ps(fscal,dx00);
1029             ty               = _mm256_mul_ps(fscal,dy00);
1030             tz               = _mm256_mul_ps(fscal,dz00);
1031
1032             /* Update vectorial force */
1033             fix0             = _mm256_add_ps(fix0,tx);
1034             fiy0             = _mm256_add_ps(fiy0,ty);
1035             fiz0             = _mm256_add_ps(fiz0,tz);
1036
1037             fjx0             = _mm256_add_ps(fjx0,tx);
1038             fjy0             = _mm256_add_ps(fjy0,ty);
1039             fjz0             = _mm256_add_ps(fjz0,tz);
1040
1041             /**************************
1042              * CALCULATE INTERACTIONS *
1043              **************************/
1044
1045             r10              = _mm256_mul_ps(rsq10,rinv10);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq10             = _mm256_mul_ps(iq1,jq0);
1049
1050             /* EWALD ELECTROSTATICS */
1051             
1052             /* Analytical PME correction */
1053             zeta2            = _mm256_mul_ps(beta2,rsq10);
1054             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1055             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1056             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1057             felec            = _mm256_mul_ps(qq10,felec);
1058             
1059             fscal            = felec;
1060
1061             /* Calculate temporary vectorial force */
1062             tx               = _mm256_mul_ps(fscal,dx10);
1063             ty               = _mm256_mul_ps(fscal,dy10);
1064             tz               = _mm256_mul_ps(fscal,dz10);
1065
1066             /* Update vectorial force */
1067             fix1             = _mm256_add_ps(fix1,tx);
1068             fiy1             = _mm256_add_ps(fiy1,ty);
1069             fiz1             = _mm256_add_ps(fiz1,tz);
1070
1071             fjx0             = _mm256_add_ps(fjx0,tx);
1072             fjy0             = _mm256_add_ps(fjy0,ty);
1073             fjz0             = _mm256_add_ps(fjz0,tz);
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             r20              = _mm256_mul_ps(rsq20,rinv20);
1080
1081             /* Compute parameters for interactions between i and j atoms */
1082             qq20             = _mm256_mul_ps(iq2,jq0);
1083
1084             /* EWALD ELECTROSTATICS */
1085             
1086             /* Analytical PME correction */
1087             zeta2            = _mm256_mul_ps(beta2,rsq20);
1088             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1089             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1090             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1091             felec            = _mm256_mul_ps(qq20,felec);
1092             
1093             fscal            = felec;
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm256_mul_ps(fscal,dx20);
1097             ty               = _mm256_mul_ps(fscal,dy20);
1098             tz               = _mm256_mul_ps(fscal,dz20);
1099
1100             /* Update vectorial force */
1101             fix2             = _mm256_add_ps(fix2,tx);
1102             fiy2             = _mm256_add_ps(fiy2,ty);
1103             fiz2             = _mm256_add_ps(fiz2,tz);
1104
1105             fjx0             = _mm256_add_ps(fjx0,tx);
1106             fjy0             = _mm256_add_ps(fjy0,ty);
1107             fjz0             = _mm256_add_ps(fjz0,tz);
1108
1109             fjptrA             = f+j_coord_offsetA;
1110             fjptrB             = f+j_coord_offsetB;
1111             fjptrC             = f+j_coord_offsetC;
1112             fjptrD             = f+j_coord_offsetD;
1113             fjptrE             = f+j_coord_offsetE;
1114             fjptrF             = f+j_coord_offsetF;
1115             fjptrG             = f+j_coord_offsetG;
1116             fjptrH             = f+j_coord_offsetH;
1117
1118             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1119
1120             /* Inner loop uses 194 flops */
1121         }
1122
1123         if(jidx<j_index_end)
1124         {
1125
1126             /* Get j neighbor index, and coordinate index */
1127             jnrlistA         = jjnr[jidx];
1128             jnrlistB         = jjnr[jidx+1];
1129             jnrlistC         = jjnr[jidx+2];
1130             jnrlistD         = jjnr[jidx+3];
1131             jnrlistE         = jjnr[jidx+4];
1132             jnrlistF         = jjnr[jidx+5];
1133             jnrlistG         = jjnr[jidx+6];
1134             jnrlistH         = jjnr[jidx+7];
1135             /* Sign of each element will be negative for non-real atoms.
1136              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1137              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1138              */
1139             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1140                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1141                                             
1142             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1143             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1144             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1145             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1146             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1147             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1148             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1149             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1150             j_coord_offsetA  = DIM*jnrA;
1151             j_coord_offsetB  = DIM*jnrB;
1152             j_coord_offsetC  = DIM*jnrC;
1153             j_coord_offsetD  = DIM*jnrD;
1154             j_coord_offsetE  = DIM*jnrE;
1155             j_coord_offsetF  = DIM*jnrF;
1156             j_coord_offsetG  = DIM*jnrG;
1157             j_coord_offsetH  = DIM*jnrH;
1158
1159             /* load j atom coordinates */
1160             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1161                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1162                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1163                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1164                                                  &jx0,&jy0,&jz0);
1165
1166             /* Calculate displacement vector */
1167             dx00             = _mm256_sub_ps(ix0,jx0);
1168             dy00             = _mm256_sub_ps(iy0,jy0);
1169             dz00             = _mm256_sub_ps(iz0,jz0);
1170             dx10             = _mm256_sub_ps(ix1,jx0);
1171             dy10             = _mm256_sub_ps(iy1,jy0);
1172             dz10             = _mm256_sub_ps(iz1,jz0);
1173             dx20             = _mm256_sub_ps(ix2,jx0);
1174             dy20             = _mm256_sub_ps(iy2,jy0);
1175             dz20             = _mm256_sub_ps(iz2,jz0);
1176
1177             /* Calculate squared distance and things based on it */
1178             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1179             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1180             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1181
1182             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1183             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1184             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1185
1186             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1187             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1188             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1189
1190             /* Load parameters for j particles */
1191             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1192                                                                  charge+jnrC+0,charge+jnrD+0,
1193                                                                  charge+jnrE+0,charge+jnrF+0,
1194                                                                  charge+jnrG+0,charge+jnrH+0);
1195             vdwjidx0A        = 2*vdwtype[jnrA+0];
1196             vdwjidx0B        = 2*vdwtype[jnrB+0];
1197             vdwjidx0C        = 2*vdwtype[jnrC+0];
1198             vdwjidx0D        = 2*vdwtype[jnrD+0];
1199             vdwjidx0E        = 2*vdwtype[jnrE+0];
1200             vdwjidx0F        = 2*vdwtype[jnrF+0];
1201             vdwjidx0G        = 2*vdwtype[jnrG+0];
1202             vdwjidx0H        = 2*vdwtype[jnrH+0];
1203
1204             fjx0             = _mm256_setzero_ps();
1205             fjy0             = _mm256_setzero_ps();
1206             fjz0             = _mm256_setzero_ps();
1207
1208             /**************************
1209              * CALCULATE INTERACTIONS *
1210              **************************/
1211
1212             r00              = _mm256_mul_ps(rsq00,rinv00);
1213             r00              = _mm256_andnot_ps(dummy_mask,r00);
1214
1215             /* Compute parameters for interactions between i and j atoms */
1216             qq00             = _mm256_mul_ps(iq0,jq0);
1217             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1218                                             vdwioffsetptr0+vdwjidx0B,
1219                                             vdwioffsetptr0+vdwjidx0C,
1220                                             vdwioffsetptr0+vdwjidx0D,
1221                                             vdwioffsetptr0+vdwjidx0E,
1222                                             vdwioffsetptr0+vdwjidx0F,
1223                                             vdwioffsetptr0+vdwjidx0G,
1224                                             vdwioffsetptr0+vdwjidx0H,
1225                                             &c6_00,&c12_00);
1226
1227             c6grid_00       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
1228                                                                   vdwgridioffsetptr0+vdwjidx0B,
1229                                                                   vdwgridioffsetptr0+vdwjidx0C,
1230                                                                   vdwgridioffsetptr0+vdwjidx0D,
1231                                                                   vdwgridioffsetptr0+vdwjidx0E,
1232                                                                   vdwgridioffsetptr0+vdwjidx0F,
1233                                                                   vdwgridioffsetptr0+vdwjidx0G,
1234                                                                   vdwgridioffsetptr0+vdwjidx0H);
1235
1236             /* EWALD ELECTROSTATICS */
1237             
1238             /* Analytical PME correction */
1239             zeta2            = _mm256_mul_ps(beta2,rsq00);
1240             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1241             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1242             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1243             felec            = _mm256_mul_ps(qq00,felec);
1244             
1245             /* Analytical LJ-PME */
1246             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1247             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq00);
1248             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
1249             exponent         = gmx_simd_exp_r(ewcljrsq);
1250             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1251             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1252             /* f6A = 6 * C6grid * (1 - poly) */
1253             f6A              = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
1254             /* f6B = C6grid * exponent * beta^6 */
1255             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
1256             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1257             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1258
1259             fscal            = _mm256_add_ps(felec,fvdw);
1260
1261             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1262
1263             /* Calculate temporary vectorial force */
1264             tx               = _mm256_mul_ps(fscal,dx00);
1265             ty               = _mm256_mul_ps(fscal,dy00);
1266             tz               = _mm256_mul_ps(fscal,dz00);
1267
1268             /* Update vectorial force */
1269             fix0             = _mm256_add_ps(fix0,tx);
1270             fiy0             = _mm256_add_ps(fiy0,ty);
1271             fiz0             = _mm256_add_ps(fiz0,tz);
1272
1273             fjx0             = _mm256_add_ps(fjx0,tx);
1274             fjy0             = _mm256_add_ps(fjy0,ty);
1275             fjz0             = _mm256_add_ps(fjz0,tz);
1276
1277             /**************************
1278              * CALCULATE INTERACTIONS *
1279              **************************/
1280
1281             r10              = _mm256_mul_ps(rsq10,rinv10);
1282             r10              = _mm256_andnot_ps(dummy_mask,r10);
1283
1284             /* Compute parameters for interactions between i and j atoms */
1285             qq10             = _mm256_mul_ps(iq1,jq0);
1286
1287             /* EWALD ELECTROSTATICS */
1288             
1289             /* Analytical PME correction */
1290             zeta2            = _mm256_mul_ps(beta2,rsq10);
1291             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1292             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1293             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1294             felec            = _mm256_mul_ps(qq10,felec);
1295             
1296             fscal            = felec;
1297
1298             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1299
1300             /* Calculate temporary vectorial force */
1301             tx               = _mm256_mul_ps(fscal,dx10);
1302             ty               = _mm256_mul_ps(fscal,dy10);
1303             tz               = _mm256_mul_ps(fscal,dz10);
1304
1305             /* Update vectorial force */
1306             fix1             = _mm256_add_ps(fix1,tx);
1307             fiy1             = _mm256_add_ps(fiy1,ty);
1308             fiz1             = _mm256_add_ps(fiz1,tz);
1309
1310             fjx0             = _mm256_add_ps(fjx0,tx);
1311             fjy0             = _mm256_add_ps(fjy0,ty);
1312             fjz0             = _mm256_add_ps(fjz0,tz);
1313
1314             /**************************
1315              * CALCULATE INTERACTIONS *
1316              **************************/
1317
1318             r20              = _mm256_mul_ps(rsq20,rinv20);
1319             r20              = _mm256_andnot_ps(dummy_mask,r20);
1320
1321             /* Compute parameters for interactions between i and j atoms */
1322             qq20             = _mm256_mul_ps(iq2,jq0);
1323
1324             /* EWALD ELECTROSTATICS */
1325             
1326             /* Analytical PME correction */
1327             zeta2            = _mm256_mul_ps(beta2,rsq20);
1328             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1329             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1330             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1331             felec            = _mm256_mul_ps(qq20,felec);
1332             
1333             fscal            = felec;
1334
1335             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1336
1337             /* Calculate temporary vectorial force */
1338             tx               = _mm256_mul_ps(fscal,dx20);
1339             ty               = _mm256_mul_ps(fscal,dy20);
1340             tz               = _mm256_mul_ps(fscal,dz20);
1341
1342             /* Update vectorial force */
1343             fix2             = _mm256_add_ps(fix2,tx);
1344             fiy2             = _mm256_add_ps(fiy2,ty);
1345             fiz2             = _mm256_add_ps(fiz2,tz);
1346
1347             fjx0             = _mm256_add_ps(fjx0,tx);
1348             fjy0             = _mm256_add_ps(fjy0,ty);
1349             fjz0             = _mm256_add_ps(fjz0,tz);
1350
1351             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1352             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1353             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1354             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1355             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1356             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1357             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1358             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1359
1360             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1361
1362             /* Inner loop uses 197 flops */
1363         }
1364
1365         /* End of innermost loop */
1366
1367         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1368                                                  f+i_coord_offset,fshift+i_shift_offset);
1369
1370         /* Increment number of inner iterations */
1371         inneriter                  += j_index_end - j_index_start;
1372
1373         /* Outer loop uses 18 flops */
1374     }
1375
1376     /* Increment number of outer iterations */
1377     outeriter        += nri;
1378
1379     /* Update outer/inner flops */
1380
1381     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*197);
1382 }