Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     real *           vdwioffsetptr3;
95     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
96     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
97     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
98     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
100     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
102     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
109     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
110     __m256i          vfitab;
111     __m128i          vfitab_lo,vfitab_hi;
112     __m128i          ifour       = _mm_set1_epi32(4);
113     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
114     real             *vftab;
115     __m256i          ewitab;
116     __m128i          ewitab_lo,ewitab_hi;
117     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
118     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
119     real             *ewtab;
120     __m256           dummy_mask,cutoff_mask;
121     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
122     __m256           one     = _mm256_set1_ps(1.0);
123     __m256           two     = _mm256_set1_ps(2.0);
124     x                = xx[0];
125     f                = ff[0];
126
127     nri              = nlist->nri;
128     iinr             = nlist->iinr;
129     jindex           = nlist->jindex;
130     jjnr             = nlist->jjnr;
131     shiftidx         = nlist->shift;
132     gid              = nlist->gid;
133     shiftvec         = fr->shift_vec[0];
134     fshift           = fr->fshift[0];
135     facel            = _mm256_set1_ps(fr->epsfac);
136     charge           = mdatoms->chargeA;
137     nvdwtype         = fr->ntype;
138     vdwparam         = fr->nbfp;
139     vdwtype          = mdatoms->typeA;
140
141     vftab            = kernel_data->table_vdw->data;
142     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
143
144     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
145     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
146     beta2            = _mm256_mul_ps(beta,beta);
147     beta3            = _mm256_mul_ps(beta,beta2);
148
149     ewtab            = fr->ic->tabq_coul_FDV0;
150     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
151     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
152
153     /* Setup water-specific parameters */
154     inr              = nlist->iinr[0];
155     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
156     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
157     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
158     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164     j_coord_offsetC = 0;
165     j_coord_offsetD = 0;
166     j_coord_offsetE = 0;
167     j_coord_offsetF = 0;
168     j_coord_offsetG = 0;
169     j_coord_offsetH = 0;
170
171     outeriter        = 0;
172     inneriter        = 0;
173
174     for(iidx=0;iidx<4*DIM;iidx++)
175     {
176         scratch[iidx] = 0.0;
177     }
178
179     /* Start outer loop over neighborlists */
180     for(iidx=0; iidx<nri; iidx++)
181     {
182         /* Load shift vector for this list */
183         i_shift_offset   = DIM*shiftidx[iidx];
184
185         /* Load limits for loop over neighbors */
186         j_index_start    = jindex[iidx];
187         j_index_end      = jindex[iidx+1];
188
189         /* Get outer coordinate index */
190         inr              = iinr[iidx];
191         i_coord_offset   = DIM*inr;
192
193         /* Load i particle coords and add shift vector */
194         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
195                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
196
197         fix0             = _mm256_setzero_ps();
198         fiy0             = _mm256_setzero_ps();
199         fiz0             = _mm256_setzero_ps();
200         fix1             = _mm256_setzero_ps();
201         fiy1             = _mm256_setzero_ps();
202         fiz1             = _mm256_setzero_ps();
203         fix2             = _mm256_setzero_ps();
204         fiy2             = _mm256_setzero_ps();
205         fiz2             = _mm256_setzero_ps();
206         fix3             = _mm256_setzero_ps();
207         fiy3             = _mm256_setzero_ps();
208         fiz3             = _mm256_setzero_ps();
209
210         /* Reset potential sums */
211         velecsum         = _mm256_setzero_ps();
212         vvdwsum          = _mm256_setzero_ps();
213
214         /* Start inner kernel loop */
215         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
216         {
217
218             /* Get j neighbor index, and coordinate index */
219             jnrA             = jjnr[jidx];
220             jnrB             = jjnr[jidx+1];
221             jnrC             = jjnr[jidx+2];
222             jnrD             = jjnr[jidx+3];
223             jnrE             = jjnr[jidx+4];
224             jnrF             = jjnr[jidx+5];
225             jnrG             = jjnr[jidx+6];
226             jnrH             = jjnr[jidx+7];
227             j_coord_offsetA  = DIM*jnrA;
228             j_coord_offsetB  = DIM*jnrB;
229             j_coord_offsetC  = DIM*jnrC;
230             j_coord_offsetD  = DIM*jnrD;
231             j_coord_offsetE  = DIM*jnrE;
232             j_coord_offsetF  = DIM*jnrF;
233             j_coord_offsetG  = DIM*jnrG;
234             j_coord_offsetH  = DIM*jnrH;
235
236             /* load j atom coordinates */
237             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
238                                                  x+j_coord_offsetC,x+j_coord_offsetD,
239                                                  x+j_coord_offsetE,x+j_coord_offsetF,
240                                                  x+j_coord_offsetG,x+j_coord_offsetH,
241                                                  &jx0,&jy0,&jz0);
242
243             /* Calculate displacement vector */
244             dx00             = _mm256_sub_ps(ix0,jx0);
245             dy00             = _mm256_sub_ps(iy0,jy0);
246             dz00             = _mm256_sub_ps(iz0,jz0);
247             dx10             = _mm256_sub_ps(ix1,jx0);
248             dy10             = _mm256_sub_ps(iy1,jy0);
249             dz10             = _mm256_sub_ps(iz1,jz0);
250             dx20             = _mm256_sub_ps(ix2,jx0);
251             dy20             = _mm256_sub_ps(iy2,jy0);
252             dz20             = _mm256_sub_ps(iz2,jz0);
253             dx30             = _mm256_sub_ps(ix3,jx0);
254             dy30             = _mm256_sub_ps(iy3,jy0);
255             dz30             = _mm256_sub_ps(iz3,jz0);
256
257             /* Calculate squared distance and things based on it */
258             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
259             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
260             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
261             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
262
263             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
264             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
265             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
266             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
267
268             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
269             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
270             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
271
272             /* Load parameters for j particles */
273             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
274                                                                  charge+jnrC+0,charge+jnrD+0,
275                                                                  charge+jnrE+0,charge+jnrF+0,
276                                                                  charge+jnrG+0,charge+jnrH+0);
277             vdwjidx0A        = 2*vdwtype[jnrA+0];
278             vdwjidx0B        = 2*vdwtype[jnrB+0];
279             vdwjidx0C        = 2*vdwtype[jnrC+0];
280             vdwjidx0D        = 2*vdwtype[jnrD+0];
281             vdwjidx0E        = 2*vdwtype[jnrE+0];
282             vdwjidx0F        = 2*vdwtype[jnrF+0];
283             vdwjidx0G        = 2*vdwtype[jnrG+0];
284             vdwjidx0H        = 2*vdwtype[jnrH+0];
285
286             fjx0             = _mm256_setzero_ps();
287             fjy0             = _mm256_setzero_ps();
288             fjz0             = _mm256_setzero_ps();
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             r00              = _mm256_mul_ps(rsq00,rinv00);
295
296             /* Compute parameters for interactions between i and j atoms */
297             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
298                                             vdwioffsetptr0+vdwjidx0B,
299                                             vdwioffsetptr0+vdwjidx0C,
300                                             vdwioffsetptr0+vdwjidx0D,
301                                             vdwioffsetptr0+vdwjidx0E,
302                                             vdwioffsetptr0+vdwjidx0F,
303                                             vdwioffsetptr0+vdwjidx0G,
304                                             vdwioffsetptr0+vdwjidx0H,
305                                             &c6_00,&c12_00);
306
307             /* Calculate table index by multiplying r with table scale and truncate to integer */
308             rt               = _mm256_mul_ps(r00,vftabscale);
309             vfitab           = _mm256_cvttps_epi32(rt);
310             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
311             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
312             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
313             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
314             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
315             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
316
317             /* CUBIC SPLINE TABLE DISPERSION */
318             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
319                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
320             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
321                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
322             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
323                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
324             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
326             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
327             Heps             = _mm256_mul_ps(vfeps,H);
328             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
329             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
330             vvdw6            = _mm256_mul_ps(c6_00,VV);
331             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
332             fvdw6            = _mm256_mul_ps(c6_00,FF);
333
334             /* CUBIC SPLINE TABLE REPULSION */
335             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
336             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
337             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
338                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
339             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
340                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
341             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
342                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
343             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
344                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
345             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
346             Heps             = _mm256_mul_ps(vfeps,H);
347             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
348             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
349             vvdw12           = _mm256_mul_ps(c12_00,VV);
350             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
351             fvdw12           = _mm256_mul_ps(c12_00,FF);
352             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
353             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
357
358             fscal            = fvdw;
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm256_mul_ps(fscal,dx00);
362             ty               = _mm256_mul_ps(fscal,dy00);
363             tz               = _mm256_mul_ps(fscal,dz00);
364
365             /* Update vectorial force */
366             fix0             = _mm256_add_ps(fix0,tx);
367             fiy0             = _mm256_add_ps(fiy0,ty);
368             fiz0             = _mm256_add_ps(fiz0,tz);
369
370             fjx0             = _mm256_add_ps(fjx0,tx);
371             fjy0             = _mm256_add_ps(fjy0,ty);
372             fjz0             = _mm256_add_ps(fjz0,tz);
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             r10              = _mm256_mul_ps(rsq10,rinv10);
379
380             /* Compute parameters for interactions between i and j atoms */
381             qq10             = _mm256_mul_ps(iq1,jq0);
382
383             /* EWALD ELECTROSTATICS */
384             
385             /* Analytical PME correction */
386             zeta2            = _mm256_mul_ps(beta2,rsq10);
387             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
388             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
389             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
390             felec            = _mm256_mul_ps(qq10,felec);
391             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
392             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
393             velec            = _mm256_sub_ps(rinv10,pmecorrV);
394             velec            = _mm256_mul_ps(qq10,velec);
395             
396             /* Update potential sum for this i atom from the interaction with this j atom. */
397             velecsum         = _mm256_add_ps(velecsum,velec);
398
399             fscal            = felec;
400
401             /* Calculate temporary vectorial force */
402             tx               = _mm256_mul_ps(fscal,dx10);
403             ty               = _mm256_mul_ps(fscal,dy10);
404             tz               = _mm256_mul_ps(fscal,dz10);
405
406             /* Update vectorial force */
407             fix1             = _mm256_add_ps(fix1,tx);
408             fiy1             = _mm256_add_ps(fiy1,ty);
409             fiz1             = _mm256_add_ps(fiz1,tz);
410
411             fjx0             = _mm256_add_ps(fjx0,tx);
412             fjy0             = _mm256_add_ps(fjy0,ty);
413             fjz0             = _mm256_add_ps(fjz0,tz);
414
415             /**************************
416              * CALCULATE INTERACTIONS *
417              **************************/
418
419             r20              = _mm256_mul_ps(rsq20,rinv20);
420
421             /* Compute parameters for interactions between i and j atoms */
422             qq20             = _mm256_mul_ps(iq2,jq0);
423
424             /* EWALD ELECTROSTATICS */
425             
426             /* Analytical PME correction */
427             zeta2            = _mm256_mul_ps(beta2,rsq20);
428             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
429             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
430             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
431             felec            = _mm256_mul_ps(qq20,felec);
432             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
433             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
434             velec            = _mm256_sub_ps(rinv20,pmecorrV);
435             velec            = _mm256_mul_ps(qq20,velec);
436             
437             /* Update potential sum for this i atom from the interaction with this j atom. */
438             velecsum         = _mm256_add_ps(velecsum,velec);
439
440             fscal            = felec;
441
442             /* Calculate temporary vectorial force */
443             tx               = _mm256_mul_ps(fscal,dx20);
444             ty               = _mm256_mul_ps(fscal,dy20);
445             tz               = _mm256_mul_ps(fscal,dz20);
446
447             /* Update vectorial force */
448             fix2             = _mm256_add_ps(fix2,tx);
449             fiy2             = _mm256_add_ps(fiy2,ty);
450             fiz2             = _mm256_add_ps(fiz2,tz);
451
452             fjx0             = _mm256_add_ps(fjx0,tx);
453             fjy0             = _mm256_add_ps(fjy0,ty);
454             fjz0             = _mm256_add_ps(fjz0,tz);
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             r30              = _mm256_mul_ps(rsq30,rinv30);
461
462             /* Compute parameters for interactions between i and j atoms */
463             qq30             = _mm256_mul_ps(iq3,jq0);
464
465             /* EWALD ELECTROSTATICS */
466             
467             /* Analytical PME correction */
468             zeta2            = _mm256_mul_ps(beta2,rsq30);
469             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
470             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
471             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
472             felec            = _mm256_mul_ps(qq30,felec);
473             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
474             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
475             velec            = _mm256_sub_ps(rinv30,pmecorrV);
476             velec            = _mm256_mul_ps(qq30,velec);
477             
478             /* Update potential sum for this i atom from the interaction with this j atom. */
479             velecsum         = _mm256_add_ps(velecsum,velec);
480
481             fscal            = felec;
482
483             /* Calculate temporary vectorial force */
484             tx               = _mm256_mul_ps(fscal,dx30);
485             ty               = _mm256_mul_ps(fscal,dy30);
486             tz               = _mm256_mul_ps(fscal,dz30);
487
488             /* Update vectorial force */
489             fix3             = _mm256_add_ps(fix3,tx);
490             fiy3             = _mm256_add_ps(fiy3,ty);
491             fiz3             = _mm256_add_ps(fiz3,tz);
492
493             fjx0             = _mm256_add_ps(fjx0,tx);
494             fjy0             = _mm256_add_ps(fjy0,ty);
495             fjz0             = _mm256_add_ps(fjz0,tz);
496
497             fjptrA             = f+j_coord_offsetA;
498             fjptrB             = f+j_coord_offsetB;
499             fjptrC             = f+j_coord_offsetC;
500             fjptrD             = f+j_coord_offsetD;
501             fjptrE             = f+j_coord_offsetE;
502             fjptrF             = f+j_coord_offsetF;
503             fjptrG             = f+j_coord_offsetG;
504             fjptrH             = f+j_coord_offsetH;
505
506             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
507
508             /* Inner loop uses 311 flops */
509         }
510
511         if(jidx<j_index_end)
512         {
513
514             /* Get j neighbor index, and coordinate index */
515             jnrlistA         = jjnr[jidx];
516             jnrlistB         = jjnr[jidx+1];
517             jnrlistC         = jjnr[jidx+2];
518             jnrlistD         = jjnr[jidx+3];
519             jnrlistE         = jjnr[jidx+4];
520             jnrlistF         = jjnr[jidx+5];
521             jnrlistG         = jjnr[jidx+6];
522             jnrlistH         = jjnr[jidx+7];
523             /* Sign of each element will be negative for non-real atoms.
524              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
525              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
526              */
527             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
528                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
529                                             
530             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
531             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
532             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
533             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
534             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
535             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
536             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
537             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
538             j_coord_offsetA  = DIM*jnrA;
539             j_coord_offsetB  = DIM*jnrB;
540             j_coord_offsetC  = DIM*jnrC;
541             j_coord_offsetD  = DIM*jnrD;
542             j_coord_offsetE  = DIM*jnrE;
543             j_coord_offsetF  = DIM*jnrF;
544             j_coord_offsetG  = DIM*jnrG;
545             j_coord_offsetH  = DIM*jnrH;
546
547             /* load j atom coordinates */
548             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
549                                                  x+j_coord_offsetC,x+j_coord_offsetD,
550                                                  x+j_coord_offsetE,x+j_coord_offsetF,
551                                                  x+j_coord_offsetG,x+j_coord_offsetH,
552                                                  &jx0,&jy0,&jz0);
553
554             /* Calculate displacement vector */
555             dx00             = _mm256_sub_ps(ix0,jx0);
556             dy00             = _mm256_sub_ps(iy0,jy0);
557             dz00             = _mm256_sub_ps(iz0,jz0);
558             dx10             = _mm256_sub_ps(ix1,jx0);
559             dy10             = _mm256_sub_ps(iy1,jy0);
560             dz10             = _mm256_sub_ps(iz1,jz0);
561             dx20             = _mm256_sub_ps(ix2,jx0);
562             dy20             = _mm256_sub_ps(iy2,jy0);
563             dz20             = _mm256_sub_ps(iz2,jz0);
564             dx30             = _mm256_sub_ps(ix3,jx0);
565             dy30             = _mm256_sub_ps(iy3,jy0);
566             dz30             = _mm256_sub_ps(iz3,jz0);
567
568             /* Calculate squared distance and things based on it */
569             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
570             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
571             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
572             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
573
574             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
575             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
576             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
577             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
578
579             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
580             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
581             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
582
583             /* Load parameters for j particles */
584             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
585                                                                  charge+jnrC+0,charge+jnrD+0,
586                                                                  charge+jnrE+0,charge+jnrF+0,
587                                                                  charge+jnrG+0,charge+jnrH+0);
588             vdwjidx0A        = 2*vdwtype[jnrA+0];
589             vdwjidx0B        = 2*vdwtype[jnrB+0];
590             vdwjidx0C        = 2*vdwtype[jnrC+0];
591             vdwjidx0D        = 2*vdwtype[jnrD+0];
592             vdwjidx0E        = 2*vdwtype[jnrE+0];
593             vdwjidx0F        = 2*vdwtype[jnrF+0];
594             vdwjidx0G        = 2*vdwtype[jnrG+0];
595             vdwjidx0H        = 2*vdwtype[jnrH+0];
596
597             fjx0             = _mm256_setzero_ps();
598             fjy0             = _mm256_setzero_ps();
599             fjz0             = _mm256_setzero_ps();
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             r00              = _mm256_mul_ps(rsq00,rinv00);
606             r00              = _mm256_andnot_ps(dummy_mask,r00);
607
608             /* Compute parameters for interactions between i and j atoms */
609             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
610                                             vdwioffsetptr0+vdwjidx0B,
611                                             vdwioffsetptr0+vdwjidx0C,
612                                             vdwioffsetptr0+vdwjidx0D,
613                                             vdwioffsetptr0+vdwjidx0E,
614                                             vdwioffsetptr0+vdwjidx0F,
615                                             vdwioffsetptr0+vdwjidx0G,
616                                             vdwioffsetptr0+vdwjidx0H,
617                                             &c6_00,&c12_00);
618
619             /* Calculate table index by multiplying r with table scale and truncate to integer */
620             rt               = _mm256_mul_ps(r00,vftabscale);
621             vfitab           = _mm256_cvttps_epi32(rt);
622             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
623             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
624             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
625             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
626             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
627             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
628
629             /* CUBIC SPLINE TABLE DISPERSION */
630             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
631                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
632             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
633                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
634             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
635                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
636             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
637                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
638             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
639             Heps             = _mm256_mul_ps(vfeps,H);
640             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
641             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
642             vvdw6            = _mm256_mul_ps(c6_00,VV);
643             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
644             fvdw6            = _mm256_mul_ps(c6_00,FF);
645
646             /* CUBIC SPLINE TABLE REPULSION */
647             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
648             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
649             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
650                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
651             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
652                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
653             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
654                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
655             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
656                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
657             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
658             Heps             = _mm256_mul_ps(vfeps,H);
659             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
660             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
661             vvdw12           = _mm256_mul_ps(c12_00,VV);
662             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
663             fvdw12           = _mm256_mul_ps(c12_00,FF);
664             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
665             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
666
667             /* Update potential sum for this i atom from the interaction with this j atom. */
668             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
669             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
670
671             fscal            = fvdw;
672
673             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
674
675             /* Calculate temporary vectorial force */
676             tx               = _mm256_mul_ps(fscal,dx00);
677             ty               = _mm256_mul_ps(fscal,dy00);
678             tz               = _mm256_mul_ps(fscal,dz00);
679
680             /* Update vectorial force */
681             fix0             = _mm256_add_ps(fix0,tx);
682             fiy0             = _mm256_add_ps(fiy0,ty);
683             fiz0             = _mm256_add_ps(fiz0,tz);
684
685             fjx0             = _mm256_add_ps(fjx0,tx);
686             fjy0             = _mm256_add_ps(fjy0,ty);
687             fjz0             = _mm256_add_ps(fjz0,tz);
688
689             /**************************
690              * CALCULATE INTERACTIONS *
691              **************************/
692
693             r10              = _mm256_mul_ps(rsq10,rinv10);
694             r10              = _mm256_andnot_ps(dummy_mask,r10);
695
696             /* Compute parameters for interactions between i and j atoms */
697             qq10             = _mm256_mul_ps(iq1,jq0);
698
699             /* EWALD ELECTROSTATICS */
700             
701             /* Analytical PME correction */
702             zeta2            = _mm256_mul_ps(beta2,rsq10);
703             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
704             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
705             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
706             felec            = _mm256_mul_ps(qq10,felec);
707             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
708             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
709             velec            = _mm256_sub_ps(rinv10,pmecorrV);
710             velec            = _mm256_mul_ps(qq10,velec);
711             
712             /* Update potential sum for this i atom from the interaction with this j atom. */
713             velec            = _mm256_andnot_ps(dummy_mask,velec);
714             velecsum         = _mm256_add_ps(velecsum,velec);
715
716             fscal            = felec;
717
718             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
719
720             /* Calculate temporary vectorial force */
721             tx               = _mm256_mul_ps(fscal,dx10);
722             ty               = _mm256_mul_ps(fscal,dy10);
723             tz               = _mm256_mul_ps(fscal,dz10);
724
725             /* Update vectorial force */
726             fix1             = _mm256_add_ps(fix1,tx);
727             fiy1             = _mm256_add_ps(fiy1,ty);
728             fiz1             = _mm256_add_ps(fiz1,tz);
729
730             fjx0             = _mm256_add_ps(fjx0,tx);
731             fjy0             = _mm256_add_ps(fjy0,ty);
732             fjz0             = _mm256_add_ps(fjz0,tz);
733
734             /**************************
735              * CALCULATE INTERACTIONS *
736              **************************/
737
738             r20              = _mm256_mul_ps(rsq20,rinv20);
739             r20              = _mm256_andnot_ps(dummy_mask,r20);
740
741             /* Compute parameters for interactions between i and j atoms */
742             qq20             = _mm256_mul_ps(iq2,jq0);
743
744             /* EWALD ELECTROSTATICS */
745             
746             /* Analytical PME correction */
747             zeta2            = _mm256_mul_ps(beta2,rsq20);
748             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
749             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
750             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
751             felec            = _mm256_mul_ps(qq20,felec);
752             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
753             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
754             velec            = _mm256_sub_ps(rinv20,pmecorrV);
755             velec            = _mm256_mul_ps(qq20,velec);
756             
757             /* Update potential sum for this i atom from the interaction with this j atom. */
758             velec            = _mm256_andnot_ps(dummy_mask,velec);
759             velecsum         = _mm256_add_ps(velecsum,velec);
760
761             fscal            = felec;
762
763             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
764
765             /* Calculate temporary vectorial force */
766             tx               = _mm256_mul_ps(fscal,dx20);
767             ty               = _mm256_mul_ps(fscal,dy20);
768             tz               = _mm256_mul_ps(fscal,dz20);
769
770             /* Update vectorial force */
771             fix2             = _mm256_add_ps(fix2,tx);
772             fiy2             = _mm256_add_ps(fiy2,ty);
773             fiz2             = _mm256_add_ps(fiz2,tz);
774
775             fjx0             = _mm256_add_ps(fjx0,tx);
776             fjy0             = _mm256_add_ps(fjy0,ty);
777             fjz0             = _mm256_add_ps(fjz0,tz);
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             r30              = _mm256_mul_ps(rsq30,rinv30);
784             r30              = _mm256_andnot_ps(dummy_mask,r30);
785
786             /* Compute parameters for interactions between i and j atoms */
787             qq30             = _mm256_mul_ps(iq3,jq0);
788
789             /* EWALD ELECTROSTATICS */
790             
791             /* Analytical PME correction */
792             zeta2            = _mm256_mul_ps(beta2,rsq30);
793             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
794             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
795             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
796             felec            = _mm256_mul_ps(qq30,felec);
797             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
798             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
799             velec            = _mm256_sub_ps(rinv30,pmecorrV);
800             velec            = _mm256_mul_ps(qq30,velec);
801             
802             /* Update potential sum for this i atom from the interaction with this j atom. */
803             velec            = _mm256_andnot_ps(dummy_mask,velec);
804             velecsum         = _mm256_add_ps(velecsum,velec);
805
806             fscal            = felec;
807
808             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
809
810             /* Calculate temporary vectorial force */
811             tx               = _mm256_mul_ps(fscal,dx30);
812             ty               = _mm256_mul_ps(fscal,dy30);
813             tz               = _mm256_mul_ps(fscal,dz30);
814
815             /* Update vectorial force */
816             fix3             = _mm256_add_ps(fix3,tx);
817             fiy3             = _mm256_add_ps(fiy3,ty);
818             fiz3             = _mm256_add_ps(fiz3,tz);
819
820             fjx0             = _mm256_add_ps(fjx0,tx);
821             fjy0             = _mm256_add_ps(fjy0,ty);
822             fjz0             = _mm256_add_ps(fjz0,tz);
823
824             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
825             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
826             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
827             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
828             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
829             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
830             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
831             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
832
833             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
834
835             /* Inner loop uses 315 flops */
836         }
837
838         /* End of innermost loop */
839
840         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
841                                                  f+i_coord_offset,fshift+i_shift_offset);
842
843         ggid                        = gid[iidx];
844         /* Update potential energies */
845         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
846         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
847
848         /* Increment number of inner iterations */
849         inneriter                  += j_index_end - j_index_start;
850
851         /* Outer loop uses 26 flops */
852     }
853
854     /* Increment number of outer iterations */
855     outeriter        += nri;
856
857     /* Update outer/inner flops */
858
859     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*315);
860 }
861 /*
862  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_256_single
863  * Electrostatics interaction: Ewald
864  * VdW interaction:            CubicSplineTable
865  * Geometry:                   Water4-Particle
866  * Calculate force/pot:        Force
867  */
868 void
869 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_256_single
870                     (t_nblist                    * gmx_restrict       nlist,
871                      rvec                        * gmx_restrict          xx,
872                      rvec                        * gmx_restrict          ff,
873                      t_forcerec                  * gmx_restrict          fr,
874                      t_mdatoms                   * gmx_restrict     mdatoms,
875                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
876                      t_nrnb                      * gmx_restrict        nrnb)
877 {
878     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
879      * just 0 for non-waters.
880      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
881      * jnr indices corresponding to data put in the four positions in the SIMD register.
882      */
883     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
884     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
885     int              jnrA,jnrB,jnrC,jnrD;
886     int              jnrE,jnrF,jnrG,jnrH;
887     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
888     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
889     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
890     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
891     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
892     real             rcutoff_scalar;
893     real             *shiftvec,*fshift,*x,*f;
894     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
895     real             scratch[4*DIM];
896     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
897     real *           vdwioffsetptr0;
898     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
899     real *           vdwioffsetptr1;
900     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
901     real *           vdwioffsetptr2;
902     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
903     real *           vdwioffsetptr3;
904     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
905     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
906     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
907     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
908     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
909     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
910     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
911     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
912     real             *charge;
913     int              nvdwtype;
914     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
915     int              *vdwtype;
916     real             *vdwparam;
917     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
918     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
919     __m256i          vfitab;
920     __m128i          vfitab_lo,vfitab_hi;
921     __m128i          ifour       = _mm_set1_epi32(4);
922     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
923     real             *vftab;
924     __m256i          ewitab;
925     __m128i          ewitab_lo,ewitab_hi;
926     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
927     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
928     real             *ewtab;
929     __m256           dummy_mask,cutoff_mask;
930     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
931     __m256           one     = _mm256_set1_ps(1.0);
932     __m256           two     = _mm256_set1_ps(2.0);
933     x                = xx[0];
934     f                = ff[0];
935
936     nri              = nlist->nri;
937     iinr             = nlist->iinr;
938     jindex           = nlist->jindex;
939     jjnr             = nlist->jjnr;
940     shiftidx         = nlist->shift;
941     gid              = nlist->gid;
942     shiftvec         = fr->shift_vec[0];
943     fshift           = fr->fshift[0];
944     facel            = _mm256_set1_ps(fr->epsfac);
945     charge           = mdatoms->chargeA;
946     nvdwtype         = fr->ntype;
947     vdwparam         = fr->nbfp;
948     vdwtype          = mdatoms->typeA;
949
950     vftab            = kernel_data->table_vdw->data;
951     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
952
953     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
954     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
955     beta2            = _mm256_mul_ps(beta,beta);
956     beta3            = _mm256_mul_ps(beta,beta2);
957
958     ewtab            = fr->ic->tabq_coul_F;
959     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
960     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
961
962     /* Setup water-specific parameters */
963     inr              = nlist->iinr[0];
964     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
965     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
966     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
967     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
968
969     /* Avoid stupid compiler warnings */
970     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
971     j_coord_offsetA = 0;
972     j_coord_offsetB = 0;
973     j_coord_offsetC = 0;
974     j_coord_offsetD = 0;
975     j_coord_offsetE = 0;
976     j_coord_offsetF = 0;
977     j_coord_offsetG = 0;
978     j_coord_offsetH = 0;
979
980     outeriter        = 0;
981     inneriter        = 0;
982
983     for(iidx=0;iidx<4*DIM;iidx++)
984     {
985         scratch[iidx] = 0.0;
986     }
987
988     /* Start outer loop over neighborlists */
989     for(iidx=0; iidx<nri; iidx++)
990     {
991         /* Load shift vector for this list */
992         i_shift_offset   = DIM*shiftidx[iidx];
993
994         /* Load limits for loop over neighbors */
995         j_index_start    = jindex[iidx];
996         j_index_end      = jindex[iidx+1];
997
998         /* Get outer coordinate index */
999         inr              = iinr[iidx];
1000         i_coord_offset   = DIM*inr;
1001
1002         /* Load i particle coords and add shift vector */
1003         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1004                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1005
1006         fix0             = _mm256_setzero_ps();
1007         fiy0             = _mm256_setzero_ps();
1008         fiz0             = _mm256_setzero_ps();
1009         fix1             = _mm256_setzero_ps();
1010         fiy1             = _mm256_setzero_ps();
1011         fiz1             = _mm256_setzero_ps();
1012         fix2             = _mm256_setzero_ps();
1013         fiy2             = _mm256_setzero_ps();
1014         fiz2             = _mm256_setzero_ps();
1015         fix3             = _mm256_setzero_ps();
1016         fiy3             = _mm256_setzero_ps();
1017         fiz3             = _mm256_setzero_ps();
1018
1019         /* Start inner kernel loop */
1020         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
1021         {
1022
1023             /* Get j neighbor index, and coordinate index */
1024             jnrA             = jjnr[jidx];
1025             jnrB             = jjnr[jidx+1];
1026             jnrC             = jjnr[jidx+2];
1027             jnrD             = jjnr[jidx+3];
1028             jnrE             = jjnr[jidx+4];
1029             jnrF             = jjnr[jidx+5];
1030             jnrG             = jjnr[jidx+6];
1031             jnrH             = jjnr[jidx+7];
1032             j_coord_offsetA  = DIM*jnrA;
1033             j_coord_offsetB  = DIM*jnrB;
1034             j_coord_offsetC  = DIM*jnrC;
1035             j_coord_offsetD  = DIM*jnrD;
1036             j_coord_offsetE  = DIM*jnrE;
1037             j_coord_offsetF  = DIM*jnrF;
1038             j_coord_offsetG  = DIM*jnrG;
1039             j_coord_offsetH  = DIM*jnrH;
1040
1041             /* load j atom coordinates */
1042             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1043                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1044                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1045                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1046                                                  &jx0,&jy0,&jz0);
1047
1048             /* Calculate displacement vector */
1049             dx00             = _mm256_sub_ps(ix0,jx0);
1050             dy00             = _mm256_sub_ps(iy0,jy0);
1051             dz00             = _mm256_sub_ps(iz0,jz0);
1052             dx10             = _mm256_sub_ps(ix1,jx0);
1053             dy10             = _mm256_sub_ps(iy1,jy0);
1054             dz10             = _mm256_sub_ps(iz1,jz0);
1055             dx20             = _mm256_sub_ps(ix2,jx0);
1056             dy20             = _mm256_sub_ps(iy2,jy0);
1057             dz20             = _mm256_sub_ps(iz2,jz0);
1058             dx30             = _mm256_sub_ps(ix3,jx0);
1059             dy30             = _mm256_sub_ps(iy3,jy0);
1060             dz30             = _mm256_sub_ps(iz3,jz0);
1061
1062             /* Calculate squared distance and things based on it */
1063             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1064             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1065             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1066             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1067
1068             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1069             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1070             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1071             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1072
1073             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1074             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1075             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1076
1077             /* Load parameters for j particles */
1078             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1079                                                                  charge+jnrC+0,charge+jnrD+0,
1080                                                                  charge+jnrE+0,charge+jnrF+0,
1081                                                                  charge+jnrG+0,charge+jnrH+0);
1082             vdwjidx0A        = 2*vdwtype[jnrA+0];
1083             vdwjidx0B        = 2*vdwtype[jnrB+0];
1084             vdwjidx0C        = 2*vdwtype[jnrC+0];
1085             vdwjidx0D        = 2*vdwtype[jnrD+0];
1086             vdwjidx0E        = 2*vdwtype[jnrE+0];
1087             vdwjidx0F        = 2*vdwtype[jnrF+0];
1088             vdwjidx0G        = 2*vdwtype[jnrG+0];
1089             vdwjidx0H        = 2*vdwtype[jnrH+0];
1090
1091             fjx0             = _mm256_setzero_ps();
1092             fjy0             = _mm256_setzero_ps();
1093             fjz0             = _mm256_setzero_ps();
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r00              = _mm256_mul_ps(rsq00,rinv00);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1103                                             vdwioffsetptr0+vdwjidx0B,
1104                                             vdwioffsetptr0+vdwjidx0C,
1105                                             vdwioffsetptr0+vdwjidx0D,
1106                                             vdwioffsetptr0+vdwjidx0E,
1107                                             vdwioffsetptr0+vdwjidx0F,
1108                                             vdwioffsetptr0+vdwjidx0G,
1109                                             vdwioffsetptr0+vdwjidx0H,
1110                                             &c6_00,&c12_00);
1111
1112             /* Calculate table index by multiplying r with table scale and truncate to integer */
1113             rt               = _mm256_mul_ps(r00,vftabscale);
1114             vfitab           = _mm256_cvttps_epi32(rt);
1115             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1116             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1117             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1118             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1119             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1120             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1121
1122             /* CUBIC SPLINE TABLE DISPERSION */
1123             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1124                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1125             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1126                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1127             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1128                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1129             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1130                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1131             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1132             Heps             = _mm256_mul_ps(vfeps,H);
1133             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1134             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1135             fvdw6            = _mm256_mul_ps(c6_00,FF);
1136
1137             /* CUBIC SPLINE TABLE REPULSION */
1138             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1139             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1140             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1141                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1142             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1143                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1144             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1145                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1146             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1147                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1148             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1149             Heps             = _mm256_mul_ps(vfeps,H);
1150             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1151             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1152             fvdw12           = _mm256_mul_ps(c12_00,FF);
1153             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1154
1155             fscal            = fvdw;
1156
1157             /* Calculate temporary vectorial force */
1158             tx               = _mm256_mul_ps(fscal,dx00);
1159             ty               = _mm256_mul_ps(fscal,dy00);
1160             tz               = _mm256_mul_ps(fscal,dz00);
1161
1162             /* Update vectorial force */
1163             fix0             = _mm256_add_ps(fix0,tx);
1164             fiy0             = _mm256_add_ps(fiy0,ty);
1165             fiz0             = _mm256_add_ps(fiz0,tz);
1166
1167             fjx0             = _mm256_add_ps(fjx0,tx);
1168             fjy0             = _mm256_add_ps(fjy0,ty);
1169             fjz0             = _mm256_add_ps(fjz0,tz);
1170
1171             /**************************
1172              * CALCULATE INTERACTIONS *
1173              **************************/
1174
1175             r10              = _mm256_mul_ps(rsq10,rinv10);
1176
1177             /* Compute parameters for interactions between i and j atoms */
1178             qq10             = _mm256_mul_ps(iq1,jq0);
1179
1180             /* EWALD ELECTROSTATICS */
1181             
1182             /* Analytical PME correction */
1183             zeta2            = _mm256_mul_ps(beta2,rsq10);
1184             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1185             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1186             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1187             felec            = _mm256_mul_ps(qq10,felec);
1188             
1189             fscal            = felec;
1190
1191             /* Calculate temporary vectorial force */
1192             tx               = _mm256_mul_ps(fscal,dx10);
1193             ty               = _mm256_mul_ps(fscal,dy10);
1194             tz               = _mm256_mul_ps(fscal,dz10);
1195
1196             /* Update vectorial force */
1197             fix1             = _mm256_add_ps(fix1,tx);
1198             fiy1             = _mm256_add_ps(fiy1,ty);
1199             fiz1             = _mm256_add_ps(fiz1,tz);
1200
1201             fjx0             = _mm256_add_ps(fjx0,tx);
1202             fjy0             = _mm256_add_ps(fjy0,ty);
1203             fjz0             = _mm256_add_ps(fjz0,tz);
1204
1205             /**************************
1206              * CALCULATE INTERACTIONS *
1207              **************************/
1208
1209             r20              = _mm256_mul_ps(rsq20,rinv20);
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             qq20             = _mm256_mul_ps(iq2,jq0);
1213
1214             /* EWALD ELECTROSTATICS */
1215             
1216             /* Analytical PME correction */
1217             zeta2            = _mm256_mul_ps(beta2,rsq20);
1218             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1219             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1220             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1221             felec            = _mm256_mul_ps(qq20,felec);
1222             
1223             fscal            = felec;
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm256_mul_ps(fscal,dx20);
1227             ty               = _mm256_mul_ps(fscal,dy20);
1228             tz               = _mm256_mul_ps(fscal,dz20);
1229
1230             /* Update vectorial force */
1231             fix2             = _mm256_add_ps(fix2,tx);
1232             fiy2             = _mm256_add_ps(fiy2,ty);
1233             fiz2             = _mm256_add_ps(fiz2,tz);
1234
1235             fjx0             = _mm256_add_ps(fjx0,tx);
1236             fjy0             = _mm256_add_ps(fjy0,ty);
1237             fjz0             = _mm256_add_ps(fjz0,tz);
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             r30              = _mm256_mul_ps(rsq30,rinv30);
1244
1245             /* Compute parameters for interactions between i and j atoms */
1246             qq30             = _mm256_mul_ps(iq3,jq0);
1247
1248             /* EWALD ELECTROSTATICS */
1249             
1250             /* Analytical PME correction */
1251             zeta2            = _mm256_mul_ps(beta2,rsq30);
1252             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1253             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1254             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1255             felec            = _mm256_mul_ps(qq30,felec);
1256             
1257             fscal            = felec;
1258
1259             /* Calculate temporary vectorial force */
1260             tx               = _mm256_mul_ps(fscal,dx30);
1261             ty               = _mm256_mul_ps(fscal,dy30);
1262             tz               = _mm256_mul_ps(fscal,dz30);
1263
1264             /* Update vectorial force */
1265             fix3             = _mm256_add_ps(fix3,tx);
1266             fiy3             = _mm256_add_ps(fiy3,ty);
1267             fiz3             = _mm256_add_ps(fiz3,tz);
1268
1269             fjx0             = _mm256_add_ps(fjx0,tx);
1270             fjy0             = _mm256_add_ps(fjy0,ty);
1271             fjz0             = _mm256_add_ps(fjz0,tz);
1272
1273             fjptrA             = f+j_coord_offsetA;
1274             fjptrB             = f+j_coord_offsetB;
1275             fjptrC             = f+j_coord_offsetC;
1276             fjptrD             = f+j_coord_offsetD;
1277             fjptrE             = f+j_coord_offsetE;
1278             fjptrF             = f+j_coord_offsetF;
1279             fjptrG             = f+j_coord_offsetG;
1280             fjptrH             = f+j_coord_offsetH;
1281
1282             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1283
1284             /* Inner loop uses 219 flops */
1285         }
1286
1287         if(jidx<j_index_end)
1288         {
1289
1290             /* Get j neighbor index, and coordinate index */
1291             jnrlistA         = jjnr[jidx];
1292             jnrlistB         = jjnr[jidx+1];
1293             jnrlistC         = jjnr[jidx+2];
1294             jnrlistD         = jjnr[jidx+3];
1295             jnrlistE         = jjnr[jidx+4];
1296             jnrlistF         = jjnr[jidx+5];
1297             jnrlistG         = jjnr[jidx+6];
1298             jnrlistH         = jjnr[jidx+7];
1299             /* Sign of each element will be negative for non-real atoms.
1300              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1301              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1302              */
1303             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1304                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1305                                             
1306             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1307             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1308             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1309             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1310             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1311             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1312             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1313             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1314             j_coord_offsetA  = DIM*jnrA;
1315             j_coord_offsetB  = DIM*jnrB;
1316             j_coord_offsetC  = DIM*jnrC;
1317             j_coord_offsetD  = DIM*jnrD;
1318             j_coord_offsetE  = DIM*jnrE;
1319             j_coord_offsetF  = DIM*jnrF;
1320             j_coord_offsetG  = DIM*jnrG;
1321             j_coord_offsetH  = DIM*jnrH;
1322
1323             /* load j atom coordinates */
1324             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1325                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1326                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1327                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1328                                                  &jx0,&jy0,&jz0);
1329
1330             /* Calculate displacement vector */
1331             dx00             = _mm256_sub_ps(ix0,jx0);
1332             dy00             = _mm256_sub_ps(iy0,jy0);
1333             dz00             = _mm256_sub_ps(iz0,jz0);
1334             dx10             = _mm256_sub_ps(ix1,jx0);
1335             dy10             = _mm256_sub_ps(iy1,jy0);
1336             dz10             = _mm256_sub_ps(iz1,jz0);
1337             dx20             = _mm256_sub_ps(ix2,jx0);
1338             dy20             = _mm256_sub_ps(iy2,jy0);
1339             dz20             = _mm256_sub_ps(iz2,jz0);
1340             dx30             = _mm256_sub_ps(ix3,jx0);
1341             dy30             = _mm256_sub_ps(iy3,jy0);
1342             dz30             = _mm256_sub_ps(iz3,jz0);
1343
1344             /* Calculate squared distance and things based on it */
1345             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1346             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1347             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1348             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1349
1350             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1351             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1352             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1353             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1354
1355             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1356             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1357             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1358
1359             /* Load parameters for j particles */
1360             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1361                                                                  charge+jnrC+0,charge+jnrD+0,
1362                                                                  charge+jnrE+0,charge+jnrF+0,
1363                                                                  charge+jnrG+0,charge+jnrH+0);
1364             vdwjidx0A        = 2*vdwtype[jnrA+0];
1365             vdwjidx0B        = 2*vdwtype[jnrB+0];
1366             vdwjidx0C        = 2*vdwtype[jnrC+0];
1367             vdwjidx0D        = 2*vdwtype[jnrD+0];
1368             vdwjidx0E        = 2*vdwtype[jnrE+0];
1369             vdwjidx0F        = 2*vdwtype[jnrF+0];
1370             vdwjidx0G        = 2*vdwtype[jnrG+0];
1371             vdwjidx0H        = 2*vdwtype[jnrH+0];
1372
1373             fjx0             = _mm256_setzero_ps();
1374             fjy0             = _mm256_setzero_ps();
1375             fjz0             = _mm256_setzero_ps();
1376
1377             /**************************
1378              * CALCULATE INTERACTIONS *
1379              **************************/
1380
1381             r00              = _mm256_mul_ps(rsq00,rinv00);
1382             r00              = _mm256_andnot_ps(dummy_mask,r00);
1383
1384             /* Compute parameters for interactions between i and j atoms */
1385             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1386                                             vdwioffsetptr0+vdwjidx0B,
1387                                             vdwioffsetptr0+vdwjidx0C,
1388                                             vdwioffsetptr0+vdwjidx0D,
1389                                             vdwioffsetptr0+vdwjidx0E,
1390                                             vdwioffsetptr0+vdwjidx0F,
1391                                             vdwioffsetptr0+vdwjidx0G,
1392                                             vdwioffsetptr0+vdwjidx0H,
1393                                             &c6_00,&c12_00);
1394
1395             /* Calculate table index by multiplying r with table scale and truncate to integer */
1396             rt               = _mm256_mul_ps(r00,vftabscale);
1397             vfitab           = _mm256_cvttps_epi32(rt);
1398             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1399             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1400             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1401             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1402             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1403             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1404
1405             /* CUBIC SPLINE TABLE DISPERSION */
1406             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1407                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1408             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1409                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1410             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1411                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1412             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1413                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1414             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1415             Heps             = _mm256_mul_ps(vfeps,H);
1416             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1417             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1418             fvdw6            = _mm256_mul_ps(c6_00,FF);
1419
1420             /* CUBIC SPLINE TABLE REPULSION */
1421             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1422             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1423             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1424                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1425             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1426                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1427             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1428                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1429             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1430                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1431             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1432             Heps             = _mm256_mul_ps(vfeps,H);
1433             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1434             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1435             fvdw12           = _mm256_mul_ps(c12_00,FF);
1436             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1437
1438             fscal            = fvdw;
1439
1440             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1441
1442             /* Calculate temporary vectorial force */
1443             tx               = _mm256_mul_ps(fscal,dx00);
1444             ty               = _mm256_mul_ps(fscal,dy00);
1445             tz               = _mm256_mul_ps(fscal,dz00);
1446
1447             /* Update vectorial force */
1448             fix0             = _mm256_add_ps(fix0,tx);
1449             fiy0             = _mm256_add_ps(fiy0,ty);
1450             fiz0             = _mm256_add_ps(fiz0,tz);
1451
1452             fjx0             = _mm256_add_ps(fjx0,tx);
1453             fjy0             = _mm256_add_ps(fjy0,ty);
1454             fjz0             = _mm256_add_ps(fjz0,tz);
1455
1456             /**************************
1457              * CALCULATE INTERACTIONS *
1458              **************************/
1459
1460             r10              = _mm256_mul_ps(rsq10,rinv10);
1461             r10              = _mm256_andnot_ps(dummy_mask,r10);
1462
1463             /* Compute parameters for interactions between i and j atoms */
1464             qq10             = _mm256_mul_ps(iq1,jq0);
1465
1466             /* EWALD ELECTROSTATICS */
1467             
1468             /* Analytical PME correction */
1469             zeta2            = _mm256_mul_ps(beta2,rsq10);
1470             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1471             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1472             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1473             felec            = _mm256_mul_ps(qq10,felec);
1474             
1475             fscal            = felec;
1476
1477             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1478
1479             /* Calculate temporary vectorial force */
1480             tx               = _mm256_mul_ps(fscal,dx10);
1481             ty               = _mm256_mul_ps(fscal,dy10);
1482             tz               = _mm256_mul_ps(fscal,dz10);
1483
1484             /* Update vectorial force */
1485             fix1             = _mm256_add_ps(fix1,tx);
1486             fiy1             = _mm256_add_ps(fiy1,ty);
1487             fiz1             = _mm256_add_ps(fiz1,tz);
1488
1489             fjx0             = _mm256_add_ps(fjx0,tx);
1490             fjy0             = _mm256_add_ps(fjy0,ty);
1491             fjz0             = _mm256_add_ps(fjz0,tz);
1492
1493             /**************************
1494              * CALCULATE INTERACTIONS *
1495              **************************/
1496
1497             r20              = _mm256_mul_ps(rsq20,rinv20);
1498             r20              = _mm256_andnot_ps(dummy_mask,r20);
1499
1500             /* Compute parameters for interactions between i and j atoms */
1501             qq20             = _mm256_mul_ps(iq2,jq0);
1502
1503             /* EWALD ELECTROSTATICS */
1504             
1505             /* Analytical PME correction */
1506             zeta2            = _mm256_mul_ps(beta2,rsq20);
1507             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1508             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1509             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1510             felec            = _mm256_mul_ps(qq20,felec);
1511             
1512             fscal            = felec;
1513
1514             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1515
1516             /* Calculate temporary vectorial force */
1517             tx               = _mm256_mul_ps(fscal,dx20);
1518             ty               = _mm256_mul_ps(fscal,dy20);
1519             tz               = _mm256_mul_ps(fscal,dz20);
1520
1521             /* Update vectorial force */
1522             fix2             = _mm256_add_ps(fix2,tx);
1523             fiy2             = _mm256_add_ps(fiy2,ty);
1524             fiz2             = _mm256_add_ps(fiz2,tz);
1525
1526             fjx0             = _mm256_add_ps(fjx0,tx);
1527             fjy0             = _mm256_add_ps(fjy0,ty);
1528             fjz0             = _mm256_add_ps(fjz0,tz);
1529
1530             /**************************
1531              * CALCULATE INTERACTIONS *
1532              **************************/
1533
1534             r30              = _mm256_mul_ps(rsq30,rinv30);
1535             r30              = _mm256_andnot_ps(dummy_mask,r30);
1536
1537             /* Compute parameters for interactions between i and j atoms */
1538             qq30             = _mm256_mul_ps(iq3,jq0);
1539
1540             /* EWALD ELECTROSTATICS */
1541             
1542             /* Analytical PME correction */
1543             zeta2            = _mm256_mul_ps(beta2,rsq30);
1544             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1545             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1546             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1547             felec            = _mm256_mul_ps(qq30,felec);
1548             
1549             fscal            = felec;
1550
1551             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1552
1553             /* Calculate temporary vectorial force */
1554             tx               = _mm256_mul_ps(fscal,dx30);
1555             ty               = _mm256_mul_ps(fscal,dy30);
1556             tz               = _mm256_mul_ps(fscal,dz30);
1557
1558             /* Update vectorial force */
1559             fix3             = _mm256_add_ps(fix3,tx);
1560             fiy3             = _mm256_add_ps(fiy3,ty);
1561             fiz3             = _mm256_add_ps(fiz3,tz);
1562
1563             fjx0             = _mm256_add_ps(fjx0,tx);
1564             fjy0             = _mm256_add_ps(fjy0,ty);
1565             fjz0             = _mm256_add_ps(fjz0,tz);
1566
1567             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1568             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1569             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1570             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1571             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1572             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1573             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1574             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1575
1576             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1577
1578             /* Inner loop uses 223 flops */
1579         }
1580
1581         /* End of innermost loop */
1582
1583         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1584                                                  f+i_coord_offset,fshift+i_shift_offset);
1585
1586         /* Increment number of inner iterations */
1587         inneriter                  += j_index_end - j_index_start;
1588
1589         /* Outer loop uses 24 flops */
1590     }
1591
1592     /* Increment number of outer iterations */
1593     outeriter        += nri;
1594
1595     /* Update outer/inner flops */
1596
1597     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*223);
1598 }