c400e3c6f39e39fad1468dbcdb887061407600e1
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
104     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
105     __m256i          vfitab;
106     __m128i          vfitab_lo,vfitab_hi;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m256i          ewitab;
111     __m128i          ewitab_lo,ewitab_hi;
112     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
114     real             *ewtab;
115     __m256           dummy_mask,cutoff_mask;
116     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
117     __m256           one     = _mm256_set1_ps(1.0);
118     __m256           two     = _mm256_set1_ps(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm256_set1_ps(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135
136     vftab            = kernel_data->table_vdw->data;
137     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
138
139     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
140     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
141     beta2            = _mm256_mul_ps(beta,beta);
142     beta3            = _mm256_mul_ps(beta,beta2);
143
144     ewtab            = fr->ic->tabq_coul_FDV0;
145     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
146     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
147
148     /* Setup water-specific parameters */
149     inr              = nlist->iinr[0];
150     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
151     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
152     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
153     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159     j_coord_offsetC = 0;
160     j_coord_offsetD = 0;
161     j_coord_offsetE = 0;
162     j_coord_offsetF = 0;
163     j_coord_offsetG = 0;
164     j_coord_offsetH = 0;
165
166     outeriter        = 0;
167     inneriter        = 0;
168
169     for(iidx=0;iidx<4*DIM;iidx++)
170     {
171         scratch[iidx] = 0.0;
172     }
173
174     /* Start outer loop over neighborlists */
175     for(iidx=0; iidx<nri; iidx++)
176     {
177         /* Load shift vector for this list */
178         i_shift_offset   = DIM*shiftidx[iidx];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
190                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
191
192         fix0             = _mm256_setzero_ps();
193         fiy0             = _mm256_setzero_ps();
194         fiz0             = _mm256_setzero_ps();
195         fix1             = _mm256_setzero_ps();
196         fiy1             = _mm256_setzero_ps();
197         fiz1             = _mm256_setzero_ps();
198         fix2             = _mm256_setzero_ps();
199         fiy2             = _mm256_setzero_ps();
200         fiz2             = _mm256_setzero_ps();
201
202         /* Reset potential sums */
203         velecsum         = _mm256_setzero_ps();
204         vvdwsum          = _mm256_setzero_ps();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             jnrE             = jjnr[jidx+4];
216             jnrF             = jjnr[jidx+5];
217             jnrG             = jjnr[jidx+6];
218             jnrH             = jjnr[jidx+7];
219             j_coord_offsetA  = DIM*jnrA;
220             j_coord_offsetB  = DIM*jnrB;
221             j_coord_offsetC  = DIM*jnrC;
222             j_coord_offsetD  = DIM*jnrD;
223             j_coord_offsetE  = DIM*jnrE;
224             j_coord_offsetF  = DIM*jnrF;
225             j_coord_offsetG  = DIM*jnrG;
226             j_coord_offsetH  = DIM*jnrH;
227
228             /* load j atom coordinates */
229             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
230                                                  x+j_coord_offsetC,x+j_coord_offsetD,
231                                                  x+j_coord_offsetE,x+j_coord_offsetF,
232                                                  x+j_coord_offsetG,x+j_coord_offsetH,
233                                                  &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm256_sub_ps(ix0,jx0);
237             dy00             = _mm256_sub_ps(iy0,jy0);
238             dz00             = _mm256_sub_ps(iz0,jz0);
239             dx10             = _mm256_sub_ps(ix1,jx0);
240             dy10             = _mm256_sub_ps(iy1,jy0);
241             dz10             = _mm256_sub_ps(iz1,jz0);
242             dx20             = _mm256_sub_ps(ix2,jx0);
243             dy20             = _mm256_sub_ps(iy2,jy0);
244             dz20             = _mm256_sub_ps(iz2,jz0);
245
246             /* Calculate squared distance and things based on it */
247             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
248             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
249             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
250
251             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
252             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
253             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
254
255             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
256             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
257             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
258
259             /* Load parameters for j particles */
260             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
261                                                                  charge+jnrC+0,charge+jnrD+0,
262                                                                  charge+jnrE+0,charge+jnrF+0,
263                                                                  charge+jnrG+0,charge+jnrH+0);
264             vdwjidx0A        = 2*vdwtype[jnrA+0];
265             vdwjidx0B        = 2*vdwtype[jnrB+0];
266             vdwjidx0C        = 2*vdwtype[jnrC+0];
267             vdwjidx0D        = 2*vdwtype[jnrD+0];
268             vdwjidx0E        = 2*vdwtype[jnrE+0];
269             vdwjidx0F        = 2*vdwtype[jnrF+0];
270             vdwjidx0G        = 2*vdwtype[jnrG+0];
271             vdwjidx0H        = 2*vdwtype[jnrH+0];
272
273             fjx0             = _mm256_setzero_ps();
274             fjy0             = _mm256_setzero_ps();
275             fjz0             = _mm256_setzero_ps();
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r00              = _mm256_mul_ps(rsq00,rinv00);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq00             = _mm256_mul_ps(iq0,jq0);
285             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
286                                             vdwioffsetptr0+vdwjidx0B,
287                                             vdwioffsetptr0+vdwjidx0C,
288                                             vdwioffsetptr0+vdwjidx0D,
289                                             vdwioffsetptr0+vdwjidx0E,
290                                             vdwioffsetptr0+vdwjidx0F,
291                                             vdwioffsetptr0+vdwjidx0G,
292                                             vdwioffsetptr0+vdwjidx0H,
293                                             &c6_00,&c12_00);
294
295             /* Calculate table index by multiplying r with table scale and truncate to integer */
296             rt               = _mm256_mul_ps(r00,vftabscale);
297             vfitab           = _mm256_cvttps_epi32(rt);
298             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
299             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
300             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
301             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
302             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
303             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
304
305             /* EWALD ELECTROSTATICS */
306             
307             /* Analytical PME correction */
308             zeta2            = _mm256_mul_ps(beta2,rsq00);
309             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
310             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
311             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
312             felec            = _mm256_mul_ps(qq00,felec);
313             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
314             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
315             velec            = _mm256_sub_ps(rinv00,pmecorrV);
316             velec            = _mm256_mul_ps(qq00,velec);
317             
318             /* CUBIC SPLINE TABLE DISPERSION */
319             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
320                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
321             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
322                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
323             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
324                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
325             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
326                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
327             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
328             Heps             = _mm256_mul_ps(vfeps,H);
329             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
330             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
331             vvdw6            = _mm256_mul_ps(c6_00,VV);
332             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
333             fvdw6            = _mm256_mul_ps(c6_00,FF);
334
335             /* CUBIC SPLINE TABLE REPULSION */
336             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
337             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
338             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
339                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
340             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
341                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
342             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
343                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
344             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
345                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
346             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
347             Heps             = _mm256_mul_ps(vfeps,H);
348             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
349             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
350             vvdw12           = _mm256_mul_ps(c12_00,VV);
351             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
352             fvdw12           = _mm256_mul_ps(c12_00,FF);
353             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
354             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm256_add_ps(velecsum,velec);
358             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
359
360             fscal            = _mm256_add_ps(felec,fvdw);
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm256_mul_ps(fscal,dx00);
364             ty               = _mm256_mul_ps(fscal,dy00);
365             tz               = _mm256_mul_ps(fscal,dz00);
366
367             /* Update vectorial force */
368             fix0             = _mm256_add_ps(fix0,tx);
369             fiy0             = _mm256_add_ps(fiy0,ty);
370             fiz0             = _mm256_add_ps(fiz0,tz);
371
372             fjx0             = _mm256_add_ps(fjx0,tx);
373             fjy0             = _mm256_add_ps(fjy0,ty);
374             fjz0             = _mm256_add_ps(fjz0,tz);
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             r10              = _mm256_mul_ps(rsq10,rinv10);
381
382             /* Compute parameters for interactions between i and j atoms */
383             qq10             = _mm256_mul_ps(iq1,jq0);
384
385             /* EWALD ELECTROSTATICS */
386             
387             /* Analytical PME correction */
388             zeta2            = _mm256_mul_ps(beta2,rsq10);
389             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
390             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
391             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
392             felec            = _mm256_mul_ps(qq10,felec);
393             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
394             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
395             velec            = _mm256_sub_ps(rinv10,pmecorrV);
396             velec            = _mm256_mul_ps(qq10,velec);
397             
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velecsum         = _mm256_add_ps(velecsum,velec);
400
401             fscal            = felec;
402
403             /* Calculate temporary vectorial force */
404             tx               = _mm256_mul_ps(fscal,dx10);
405             ty               = _mm256_mul_ps(fscal,dy10);
406             tz               = _mm256_mul_ps(fscal,dz10);
407
408             /* Update vectorial force */
409             fix1             = _mm256_add_ps(fix1,tx);
410             fiy1             = _mm256_add_ps(fiy1,ty);
411             fiz1             = _mm256_add_ps(fiz1,tz);
412
413             fjx0             = _mm256_add_ps(fjx0,tx);
414             fjy0             = _mm256_add_ps(fjy0,ty);
415             fjz0             = _mm256_add_ps(fjz0,tz);
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             r20              = _mm256_mul_ps(rsq20,rinv20);
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq20             = _mm256_mul_ps(iq2,jq0);
425
426             /* EWALD ELECTROSTATICS */
427             
428             /* Analytical PME correction */
429             zeta2            = _mm256_mul_ps(beta2,rsq20);
430             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
431             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
432             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
433             felec            = _mm256_mul_ps(qq20,felec);
434             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
435             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
436             velec            = _mm256_sub_ps(rinv20,pmecorrV);
437             velec            = _mm256_mul_ps(qq20,velec);
438             
439             /* Update potential sum for this i atom from the interaction with this j atom. */
440             velecsum         = _mm256_add_ps(velecsum,velec);
441
442             fscal            = felec;
443
444             /* Calculate temporary vectorial force */
445             tx               = _mm256_mul_ps(fscal,dx20);
446             ty               = _mm256_mul_ps(fscal,dy20);
447             tz               = _mm256_mul_ps(fscal,dz20);
448
449             /* Update vectorial force */
450             fix2             = _mm256_add_ps(fix2,tx);
451             fiy2             = _mm256_add_ps(fiy2,ty);
452             fiz2             = _mm256_add_ps(fiz2,tz);
453
454             fjx0             = _mm256_add_ps(fjx0,tx);
455             fjy0             = _mm256_add_ps(fjy0,ty);
456             fjz0             = _mm256_add_ps(fjz0,tz);
457
458             fjptrA             = f+j_coord_offsetA;
459             fjptrB             = f+j_coord_offsetB;
460             fjptrC             = f+j_coord_offsetC;
461             fjptrD             = f+j_coord_offsetD;
462             fjptrE             = f+j_coord_offsetE;
463             fjptrF             = f+j_coord_offsetF;
464             fjptrG             = f+j_coord_offsetG;
465             fjptrH             = f+j_coord_offsetH;
466
467             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
468
469             /* Inner loop uses 289 flops */
470         }
471
472         if(jidx<j_index_end)
473         {
474
475             /* Get j neighbor index, and coordinate index */
476             jnrlistA         = jjnr[jidx];
477             jnrlistB         = jjnr[jidx+1];
478             jnrlistC         = jjnr[jidx+2];
479             jnrlistD         = jjnr[jidx+3];
480             jnrlistE         = jjnr[jidx+4];
481             jnrlistF         = jjnr[jidx+5];
482             jnrlistG         = jjnr[jidx+6];
483             jnrlistH         = jjnr[jidx+7];
484             /* Sign of each element will be negative for non-real atoms.
485              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
486              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
487              */
488             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
489                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
490                                             
491             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
492             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
493             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
494             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
495             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
496             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
497             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
498             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
499             j_coord_offsetA  = DIM*jnrA;
500             j_coord_offsetB  = DIM*jnrB;
501             j_coord_offsetC  = DIM*jnrC;
502             j_coord_offsetD  = DIM*jnrD;
503             j_coord_offsetE  = DIM*jnrE;
504             j_coord_offsetF  = DIM*jnrF;
505             j_coord_offsetG  = DIM*jnrG;
506             j_coord_offsetH  = DIM*jnrH;
507
508             /* load j atom coordinates */
509             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
510                                                  x+j_coord_offsetC,x+j_coord_offsetD,
511                                                  x+j_coord_offsetE,x+j_coord_offsetF,
512                                                  x+j_coord_offsetG,x+j_coord_offsetH,
513                                                  &jx0,&jy0,&jz0);
514
515             /* Calculate displacement vector */
516             dx00             = _mm256_sub_ps(ix0,jx0);
517             dy00             = _mm256_sub_ps(iy0,jy0);
518             dz00             = _mm256_sub_ps(iz0,jz0);
519             dx10             = _mm256_sub_ps(ix1,jx0);
520             dy10             = _mm256_sub_ps(iy1,jy0);
521             dz10             = _mm256_sub_ps(iz1,jz0);
522             dx20             = _mm256_sub_ps(ix2,jx0);
523             dy20             = _mm256_sub_ps(iy2,jy0);
524             dz20             = _mm256_sub_ps(iz2,jz0);
525
526             /* Calculate squared distance and things based on it */
527             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
528             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
529             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
530
531             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
532             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
533             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
534
535             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
536             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
537             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
538
539             /* Load parameters for j particles */
540             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
541                                                                  charge+jnrC+0,charge+jnrD+0,
542                                                                  charge+jnrE+0,charge+jnrF+0,
543                                                                  charge+jnrG+0,charge+jnrH+0);
544             vdwjidx0A        = 2*vdwtype[jnrA+0];
545             vdwjidx0B        = 2*vdwtype[jnrB+0];
546             vdwjidx0C        = 2*vdwtype[jnrC+0];
547             vdwjidx0D        = 2*vdwtype[jnrD+0];
548             vdwjidx0E        = 2*vdwtype[jnrE+0];
549             vdwjidx0F        = 2*vdwtype[jnrF+0];
550             vdwjidx0G        = 2*vdwtype[jnrG+0];
551             vdwjidx0H        = 2*vdwtype[jnrH+0];
552
553             fjx0             = _mm256_setzero_ps();
554             fjy0             = _mm256_setzero_ps();
555             fjz0             = _mm256_setzero_ps();
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             r00              = _mm256_mul_ps(rsq00,rinv00);
562             r00              = _mm256_andnot_ps(dummy_mask,r00);
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq00             = _mm256_mul_ps(iq0,jq0);
566             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
567                                             vdwioffsetptr0+vdwjidx0B,
568                                             vdwioffsetptr0+vdwjidx0C,
569                                             vdwioffsetptr0+vdwjidx0D,
570                                             vdwioffsetptr0+vdwjidx0E,
571                                             vdwioffsetptr0+vdwjidx0F,
572                                             vdwioffsetptr0+vdwjidx0G,
573                                             vdwioffsetptr0+vdwjidx0H,
574                                             &c6_00,&c12_00);
575
576             /* Calculate table index by multiplying r with table scale and truncate to integer */
577             rt               = _mm256_mul_ps(r00,vftabscale);
578             vfitab           = _mm256_cvttps_epi32(rt);
579             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
580             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
581             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
582             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
583             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
584             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
585
586             /* EWALD ELECTROSTATICS */
587             
588             /* Analytical PME correction */
589             zeta2            = _mm256_mul_ps(beta2,rsq00);
590             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
591             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
592             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
593             felec            = _mm256_mul_ps(qq00,felec);
594             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
595             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
596             velec            = _mm256_sub_ps(rinv00,pmecorrV);
597             velec            = _mm256_mul_ps(qq00,velec);
598             
599             /* CUBIC SPLINE TABLE DISPERSION */
600             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
601                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
602             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
603                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
604             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
605                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
606             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
607                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
608             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
609             Heps             = _mm256_mul_ps(vfeps,H);
610             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
611             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
612             vvdw6            = _mm256_mul_ps(c6_00,VV);
613             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
614             fvdw6            = _mm256_mul_ps(c6_00,FF);
615
616             /* CUBIC SPLINE TABLE REPULSION */
617             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
618             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
619             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
620                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
621             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
622                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
623             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
624                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
625             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
626                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
627             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
628             Heps             = _mm256_mul_ps(vfeps,H);
629             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
630             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
631             vvdw12           = _mm256_mul_ps(c12_00,VV);
632             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
633             fvdw12           = _mm256_mul_ps(c12_00,FF);
634             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
635             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
636
637             /* Update potential sum for this i atom from the interaction with this j atom. */
638             velec            = _mm256_andnot_ps(dummy_mask,velec);
639             velecsum         = _mm256_add_ps(velecsum,velec);
640             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
641             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
642
643             fscal            = _mm256_add_ps(felec,fvdw);
644
645             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
646
647             /* Calculate temporary vectorial force */
648             tx               = _mm256_mul_ps(fscal,dx00);
649             ty               = _mm256_mul_ps(fscal,dy00);
650             tz               = _mm256_mul_ps(fscal,dz00);
651
652             /* Update vectorial force */
653             fix0             = _mm256_add_ps(fix0,tx);
654             fiy0             = _mm256_add_ps(fiy0,ty);
655             fiz0             = _mm256_add_ps(fiz0,tz);
656
657             fjx0             = _mm256_add_ps(fjx0,tx);
658             fjy0             = _mm256_add_ps(fjy0,ty);
659             fjz0             = _mm256_add_ps(fjz0,tz);
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             r10              = _mm256_mul_ps(rsq10,rinv10);
666             r10              = _mm256_andnot_ps(dummy_mask,r10);
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq10             = _mm256_mul_ps(iq1,jq0);
670
671             /* EWALD ELECTROSTATICS */
672             
673             /* Analytical PME correction */
674             zeta2            = _mm256_mul_ps(beta2,rsq10);
675             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
676             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
677             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
678             felec            = _mm256_mul_ps(qq10,felec);
679             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
680             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
681             velec            = _mm256_sub_ps(rinv10,pmecorrV);
682             velec            = _mm256_mul_ps(qq10,velec);
683             
684             /* Update potential sum for this i atom from the interaction with this j atom. */
685             velec            = _mm256_andnot_ps(dummy_mask,velec);
686             velecsum         = _mm256_add_ps(velecsum,velec);
687
688             fscal            = felec;
689
690             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
691
692             /* Calculate temporary vectorial force */
693             tx               = _mm256_mul_ps(fscal,dx10);
694             ty               = _mm256_mul_ps(fscal,dy10);
695             tz               = _mm256_mul_ps(fscal,dz10);
696
697             /* Update vectorial force */
698             fix1             = _mm256_add_ps(fix1,tx);
699             fiy1             = _mm256_add_ps(fiy1,ty);
700             fiz1             = _mm256_add_ps(fiz1,tz);
701
702             fjx0             = _mm256_add_ps(fjx0,tx);
703             fjy0             = _mm256_add_ps(fjy0,ty);
704             fjz0             = _mm256_add_ps(fjz0,tz);
705
706             /**************************
707              * CALCULATE INTERACTIONS *
708              **************************/
709
710             r20              = _mm256_mul_ps(rsq20,rinv20);
711             r20              = _mm256_andnot_ps(dummy_mask,r20);
712
713             /* Compute parameters for interactions between i and j atoms */
714             qq20             = _mm256_mul_ps(iq2,jq0);
715
716             /* EWALD ELECTROSTATICS */
717             
718             /* Analytical PME correction */
719             zeta2            = _mm256_mul_ps(beta2,rsq20);
720             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
721             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
722             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
723             felec            = _mm256_mul_ps(qq20,felec);
724             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
725             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
726             velec            = _mm256_sub_ps(rinv20,pmecorrV);
727             velec            = _mm256_mul_ps(qq20,velec);
728             
729             /* Update potential sum for this i atom from the interaction with this j atom. */
730             velec            = _mm256_andnot_ps(dummy_mask,velec);
731             velecsum         = _mm256_add_ps(velecsum,velec);
732
733             fscal            = felec;
734
735             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
736
737             /* Calculate temporary vectorial force */
738             tx               = _mm256_mul_ps(fscal,dx20);
739             ty               = _mm256_mul_ps(fscal,dy20);
740             tz               = _mm256_mul_ps(fscal,dz20);
741
742             /* Update vectorial force */
743             fix2             = _mm256_add_ps(fix2,tx);
744             fiy2             = _mm256_add_ps(fiy2,ty);
745             fiz2             = _mm256_add_ps(fiz2,tz);
746
747             fjx0             = _mm256_add_ps(fjx0,tx);
748             fjy0             = _mm256_add_ps(fjy0,ty);
749             fjz0             = _mm256_add_ps(fjz0,tz);
750
751             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
752             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
753             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
754             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
755             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
756             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
757             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
758             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
759
760             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
761
762             /* Inner loop uses 292 flops */
763         }
764
765         /* End of innermost loop */
766
767         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
768                                                  f+i_coord_offset,fshift+i_shift_offset);
769
770         ggid                        = gid[iidx];
771         /* Update potential energies */
772         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
773         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
774
775         /* Increment number of inner iterations */
776         inneriter                  += j_index_end - j_index_start;
777
778         /* Outer loop uses 20 flops */
779     }
780
781     /* Increment number of outer iterations */
782     outeriter        += nri;
783
784     /* Update outer/inner flops */
785
786     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*292);
787 }
788 /*
789  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_single
790  * Electrostatics interaction: Ewald
791  * VdW interaction:            CubicSplineTable
792  * Geometry:                   Water3-Particle
793  * Calculate force/pot:        Force
794  */
795 void
796 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_single
797                     (t_nblist                    * gmx_restrict       nlist,
798                      rvec                        * gmx_restrict          xx,
799                      rvec                        * gmx_restrict          ff,
800                      t_forcerec                  * gmx_restrict          fr,
801                      t_mdatoms                   * gmx_restrict     mdatoms,
802                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
803                      t_nrnb                      * gmx_restrict        nrnb)
804 {
805     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
806      * just 0 for non-waters.
807      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
808      * jnr indices corresponding to data put in the four positions in the SIMD register.
809      */
810     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
811     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
812     int              jnrA,jnrB,jnrC,jnrD;
813     int              jnrE,jnrF,jnrG,jnrH;
814     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
815     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
816     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
817     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
818     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
819     real             rcutoff_scalar;
820     real             *shiftvec,*fshift,*x,*f;
821     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
822     real             scratch[4*DIM];
823     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
824     real *           vdwioffsetptr0;
825     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
826     real *           vdwioffsetptr1;
827     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
828     real *           vdwioffsetptr2;
829     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
830     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
831     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
832     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
833     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
834     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
835     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
836     real             *charge;
837     int              nvdwtype;
838     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
839     int              *vdwtype;
840     real             *vdwparam;
841     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
842     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
843     __m256i          vfitab;
844     __m128i          vfitab_lo,vfitab_hi;
845     __m128i          ifour       = _mm_set1_epi32(4);
846     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
847     real             *vftab;
848     __m256i          ewitab;
849     __m128i          ewitab_lo,ewitab_hi;
850     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
851     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
852     real             *ewtab;
853     __m256           dummy_mask,cutoff_mask;
854     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
855     __m256           one     = _mm256_set1_ps(1.0);
856     __m256           two     = _mm256_set1_ps(2.0);
857     x                = xx[0];
858     f                = ff[0];
859
860     nri              = nlist->nri;
861     iinr             = nlist->iinr;
862     jindex           = nlist->jindex;
863     jjnr             = nlist->jjnr;
864     shiftidx         = nlist->shift;
865     gid              = nlist->gid;
866     shiftvec         = fr->shift_vec[0];
867     fshift           = fr->fshift[0];
868     facel            = _mm256_set1_ps(fr->epsfac);
869     charge           = mdatoms->chargeA;
870     nvdwtype         = fr->ntype;
871     vdwparam         = fr->nbfp;
872     vdwtype          = mdatoms->typeA;
873
874     vftab            = kernel_data->table_vdw->data;
875     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
876
877     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
878     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
879     beta2            = _mm256_mul_ps(beta,beta);
880     beta3            = _mm256_mul_ps(beta,beta2);
881
882     ewtab            = fr->ic->tabq_coul_F;
883     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
884     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
885
886     /* Setup water-specific parameters */
887     inr              = nlist->iinr[0];
888     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
889     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
890     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
891     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
892
893     /* Avoid stupid compiler warnings */
894     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
895     j_coord_offsetA = 0;
896     j_coord_offsetB = 0;
897     j_coord_offsetC = 0;
898     j_coord_offsetD = 0;
899     j_coord_offsetE = 0;
900     j_coord_offsetF = 0;
901     j_coord_offsetG = 0;
902     j_coord_offsetH = 0;
903
904     outeriter        = 0;
905     inneriter        = 0;
906
907     for(iidx=0;iidx<4*DIM;iidx++)
908     {
909         scratch[iidx] = 0.0;
910     }
911
912     /* Start outer loop over neighborlists */
913     for(iidx=0; iidx<nri; iidx++)
914     {
915         /* Load shift vector for this list */
916         i_shift_offset   = DIM*shiftidx[iidx];
917
918         /* Load limits for loop over neighbors */
919         j_index_start    = jindex[iidx];
920         j_index_end      = jindex[iidx+1];
921
922         /* Get outer coordinate index */
923         inr              = iinr[iidx];
924         i_coord_offset   = DIM*inr;
925
926         /* Load i particle coords and add shift vector */
927         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
928                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
929
930         fix0             = _mm256_setzero_ps();
931         fiy0             = _mm256_setzero_ps();
932         fiz0             = _mm256_setzero_ps();
933         fix1             = _mm256_setzero_ps();
934         fiy1             = _mm256_setzero_ps();
935         fiz1             = _mm256_setzero_ps();
936         fix2             = _mm256_setzero_ps();
937         fiy2             = _mm256_setzero_ps();
938         fiz2             = _mm256_setzero_ps();
939
940         /* Start inner kernel loop */
941         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
942         {
943
944             /* Get j neighbor index, and coordinate index */
945             jnrA             = jjnr[jidx];
946             jnrB             = jjnr[jidx+1];
947             jnrC             = jjnr[jidx+2];
948             jnrD             = jjnr[jidx+3];
949             jnrE             = jjnr[jidx+4];
950             jnrF             = jjnr[jidx+5];
951             jnrG             = jjnr[jidx+6];
952             jnrH             = jjnr[jidx+7];
953             j_coord_offsetA  = DIM*jnrA;
954             j_coord_offsetB  = DIM*jnrB;
955             j_coord_offsetC  = DIM*jnrC;
956             j_coord_offsetD  = DIM*jnrD;
957             j_coord_offsetE  = DIM*jnrE;
958             j_coord_offsetF  = DIM*jnrF;
959             j_coord_offsetG  = DIM*jnrG;
960             j_coord_offsetH  = DIM*jnrH;
961
962             /* load j atom coordinates */
963             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
964                                                  x+j_coord_offsetC,x+j_coord_offsetD,
965                                                  x+j_coord_offsetE,x+j_coord_offsetF,
966                                                  x+j_coord_offsetG,x+j_coord_offsetH,
967                                                  &jx0,&jy0,&jz0);
968
969             /* Calculate displacement vector */
970             dx00             = _mm256_sub_ps(ix0,jx0);
971             dy00             = _mm256_sub_ps(iy0,jy0);
972             dz00             = _mm256_sub_ps(iz0,jz0);
973             dx10             = _mm256_sub_ps(ix1,jx0);
974             dy10             = _mm256_sub_ps(iy1,jy0);
975             dz10             = _mm256_sub_ps(iz1,jz0);
976             dx20             = _mm256_sub_ps(ix2,jx0);
977             dy20             = _mm256_sub_ps(iy2,jy0);
978             dz20             = _mm256_sub_ps(iz2,jz0);
979
980             /* Calculate squared distance and things based on it */
981             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
982             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
983             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
984
985             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
986             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
987             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
988
989             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
990             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
991             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
992
993             /* Load parameters for j particles */
994             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
995                                                                  charge+jnrC+0,charge+jnrD+0,
996                                                                  charge+jnrE+0,charge+jnrF+0,
997                                                                  charge+jnrG+0,charge+jnrH+0);
998             vdwjidx0A        = 2*vdwtype[jnrA+0];
999             vdwjidx0B        = 2*vdwtype[jnrB+0];
1000             vdwjidx0C        = 2*vdwtype[jnrC+0];
1001             vdwjidx0D        = 2*vdwtype[jnrD+0];
1002             vdwjidx0E        = 2*vdwtype[jnrE+0];
1003             vdwjidx0F        = 2*vdwtype[jnrF+0];
1004             vdwjidx0G        = 2*vdwtype[jnrG+0];
1005             vdwjidx0H        = 2*vdwtype[jnrH+0];
1006
1007             fjx0             = _mm256_setzero_ps();
1008             fjy0             = _mm256_setzero_ps();
1009             fjz0             = _mm256_setzero_ps();
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             r00              = _mm256_mul_ps(rsq00,rinv00);
1016
1017             /* Compute parameters for interactions between i and j atoms */
1018             qq00             = _mm256_mul_ps(iq0,jq0);
1019             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1020                                             vdwioffsetptr0+vdwjidx0B,
1021                                             vdwioffsetptr0+vdwjidx0C,
1022                                             vdwioffsetptr0+vdwjidx0D,
1023                                             vdwioffsetptr0+vdwjidx0E,
1024                                             vdwioffsetptr0+vdwjidx0F,
1025                                             vdwioffsetptr0+vdwjidx0G,
1026                                             vdwioffsetptr0+vdwjidx0H,
1027                                             &c6_00,&c12_00);
1028
1029             /* Calculate table index by multiplying r with table scale and truncate to integer */
1030             rt               = _mm256_mul_ps(r00,vftabscale);
1031             vfitab           = _mm256_cvttps_epi32(rt);
1032             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1033             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1034             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1035             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1036             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1037             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1038
1039             /* EWALD ELECTROSTATICS */
1040             
1041             /* Analytical PME correction */
1042             zeta2            = _mm256_mul_ps(beta2,rsq00);
1043             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1044             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1045             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1046             felec            = _mm256_mul_ps(qq00,felec);
1047             
1048             /* CUBIC SPLINE TABLE DISPERSION */
1049             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1050                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1051             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1052                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1053             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1054                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1055             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1056                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1057             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1058             Heps             = _mm256_mul_ps(vfeps,H);
1059             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1060             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1061             fvdw6            = _mm256_mul_ps(c6_00,FF);
1062
1063             /* CUBIC SPLINE TABLE REPULSION */
1064             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1065             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1066             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1067                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1068             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1069                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1070             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1071                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1072             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1073                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1074             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1075             Heps             = _mm256_mul_ps(vfeps,H);
1076             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1077             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1078             fvdw12           = _mm256_mul_ps(c12_00,FF);
1079             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1080
1081             fscal            = _mm256_add_ps(felec,fvdw);
1082
1083             /* Calculate temporary vectorial force */
1084             tx               = _mm256_mul_ps(fscal,dx00);
1085             ty               = _mm256_mul_ps(fscal,dy00);
1086             tz               = _mm256_mul_ps(fscal,dz00);
1087
1088             /* Update vectorial force */
1089             fix0             = _mm256_add_ps(fix0,tx);
1090             fiy0             = _mm256_add_ps(fiy0,ty);
1091             fiz0             = _mm256_add_ps(fiz0,tz);
1092
1093             fjx0             = _mm256_add_ps(fjx0,tx);
1094             fjy0             = _mm256_add_ps(fjy0,ty);
1095             fjz0             = _mm256_add_ps(fjz0,tz);
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r10              = _mm256_mul_ps(rsq10,rinv10);
1102
1103             /* Compute parameters for interactions between i and j atoms */
1104             qq10             = _mm256_mul_ps(iq1,jq0);
1105
1106             /* EWALD ELECTROSTATICS */
1107             
1108             /* Analytical PME correction */
1109             zeta2            = _mm256_mul_ps(beta2,rsq10);
1110             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1111             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1112             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1113             felec            = _mm256_mul_ps(qq10,felec);
1114             
1115             fscal            = felec;
1116
1117             /* Calculate temporary vectorial force */
1118             tx               = _mm256_mul_ps(fscal,dx10);
1119             ty               = _mm256_mul_ps(fscal,dy10);
1120             tz               = _mm256_mul_ps(fscal,dz10);
1121
1122             /* Update vectorial force */
1123             fix1             = _mm256_add_ps(fix1,tx);
1124             fiy1             = _mm256_add_ps(fiy1,ty);
1125             fiz1             = _mm256_add_ps(fiz1,tz);
1126
1127             fjx0             = _mm256_add_ps(fjx0,tx);
1128             fjy0             = _mm256_add_ps(fjy0,ty);
1129             fjz0             = _mm256_add_ps(fjz0,tz);
1130
1131             /**************************
1132              * CALCULATE INTERACTIONS *
1133              **************************/
1134
1135             r20              = _mm256_mul_ps(rsq20,rinv20);
1136
1137             /* Compute parameters for interactions between i and j atoms */
1138             qq20             = _mm256_mul_ps(iq2,jq0);
1139
1140             /* EWALD ELECTROSTATICS */
1141             
1142             /* Analytical PME correction */
1143             zeta2            = _mm256_mul_ps(beta2,rsq20);
1144             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1145             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1146             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1147             felec            = _mm256_mul_ps(qq20,felec);
1148             
1149             fscal            = felec;
1150
1151             /* Calculate temporary vectorial force */
1152             tx               = _mm256_mul_ps(fscal,dx20);
1153             ty               = _mm256_mul_ps(fscal,dy20);
1154             tz               = _mm256_mul_ps(fscal,dz20);
1155
1156             /* Update vectorial force */
1157             fix2             = _mm256_add_ps(fix2,tx);
1158             fiy2             = _mm256_add_ps(fiy2,ty);
1159             fiz2             = _mm256_add_ps(fiz2,tz);
1160
1161             fjx0             = _mm256_add_ps(fjx0,tx);
1162             fjy0             = _mm256_add_ps(fjy0,ty);
1163             fjz0             = _mm256_add_ps(fjz0,tz);
1164
1165             fjptrA             = f+j_coord_offsetA;
1166             fjptrB             = f+j_coord_offsetB;
1167             fjptrC             = f+j_coord_offsetC;
1168             fjptrD             = f+j_coord_offsetD;
1169             fjptrE             = f+j_coord_offsetE;
1170             fjptrF             = f+j_coord_offsetF;
1171             fjptrG             = f+j_coord_offsetG;
1172             fjptrH             = f+j_coord_offsetH;
1173
1174             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1175
1176             /* Inner loop uses 197 flops */
1177         }
1178
1179         if(jidx<j_index_end)
1180         {
1181
1182             /* Get j neighbor index, and coordinate index */
1183             jnrlistA         = jjnr[jidx];
1184             jnrlistB         = jjnr[jidx+1];
1185             jnrlistC         = jjnr[jidx+2];
1186             jnrlistD         = jjnr[jidx+3];
1187             jnrlistE         = jjnr[jidx+4];
1188             jnrlistF         = jjnr[jidx+5];
1189             jnrlistG         = jjnr[jidx+6];
1190             jnrlistH         = jjnr[jidx+7];
1191             /* Sign of each element will be negative for non-real atoms.
1192              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1193              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1194              */
1195             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1196                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1197                                             
1198             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1199             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1200             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1201             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1202             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1203             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1204             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1205             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1206             j_coord_offsetA  = DIM*jnrA;
1207             j_coord_offsetB  = DIM*jnrB;
1208             j_coord_offsetC  = DIM*jnrC;
1209             j_coord_offsetD  = DIM*jnrD;
1210             j_coord_offsetE  = DIM*jnrE;
1211             j_coord_offsetF  = DIM*jnrF;
1212             j_coord_offsetG  = DIM*jnrG;
1213             j_coord_offsetH  = DIM*jnrH;
1214
1215             /* load j atom coordinates */
1216             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1217                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1218                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1219                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1220                                                  &jx0,&jy0,&jz0);
1221
1222             /* Calculate displacement vector */
1223             dx00             = _mm256_sub_ps(ix0,jx0);
1224             dy00             = _mm256_sub_ps(iy0,jy0);
1225             dz00             = _mm256_sub_ps(iz0,jz0);
1226             dx10             = _mm256_sub_ps(ix1,jx0);
1227             dy10             = _mm256_sub_ps(iy1,jy0);
1228             dz10             = _mm256_sub_ps(iz1,jz0);
1229             dx20             = _mm256_sub_ps(ix2,jx0);
1230             dy20             = _mm256_sub_ps(iy2,jy0);
1231             dz20             = _mm256_sub_ps(iz2,jz0);
1232
1233             /* Calculate squared distance and things based on it */
1234             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1235             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1236             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1237
1238             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1239             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1240             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1241
1242             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1243             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1244             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1245
1246             /* Load parameters for j particles */
1247             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1248                                                                  charge+jnrC+0,charge+jnrD+0,
1249                                                                  charge+jnrE+0,charge+jnrF+0,
1250                                                                  charge+jnrG+0,charge+jnrH+0);
1251             vdwjidx0A        = 2*vdwtype[jnrA+0];
1252             vdwjidx0B        = 2*vdwtype[jnrB+0];
1253             vdwjidx0C        = 2*vdwtype[jnrC+0];
1254             vdwjidx0D        = 2*vdwtype[jnrD+0];
1255             vdwjidx0E        = 2*vdwtype[jnrE+0];
1256             vdwjidx0F        = 2*vdwtype[jnrF+0];
1257             vdwjidx0G        = 2*vdwtype[jnrG+0];
1258             vdwjidx0H        = 2*vdwtype[jnrH+0];
1259
1260             fjx0             = _mm256_setzero_ps();
1261             fjy0             = _mm256_setzero_ps();
1262             fjz0             = _mm256_setzero_ps();
1263
1264             /**************************
1265              * CALCULATE INTERACTIONS *
1266              **************************/
1267
1268             r00              = _mm256_mul_ps(rsq00,rinv00);
1269             r00              = _mm256_andnot_ps(dummy_mask,r00);
1270
1271             /* Compute parameters for interactions between i and j atoms */
1272             qq00             = _mm256_mul_ps(iq0,jq0);
1273             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1274                                             vdwioffsetptr0+vdwjidx0B,
1275                                             vdwioffsetptr0+vdwjidx0C,
1276                                             vdwioffsetptr0+vdwjidx0D,
1277                                             vdwioffsetptr0+vdwjidx0E,
1278                                             vdwioffsetptr0+vdwjidx0F,
1279                                             vdwioffsetptr0+vdwjidx0G,
1280                                             vdwioffsetptr0+vdwjidx0H,
1281                                             &c6_00,&c12_00);
1282
1283             /* Calculate table index by multiplying r with table scale and truncate to integer */
1284             rt               = _mm256_mul_ps(r00,vftabscale);
1285             vfitab           = _mm256_cvttps_epi32(rt);
1286             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1287             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1288             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1289             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1290             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1291             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1292
1293             /* EWALD ELECTROSTATICS */
1294             
1295             /* Analytical PME correction */
1296             zeta2            = _mm256_mul_ps(beta2,rsq00);
1297             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1298             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1299             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1300             felec            = _mm256_mul_ps(qq00,felec);
1301             
1302             /* CUBIC SPLINE TABLE DISPERSION */
1303             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1304                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1305             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1307             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1309             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1311             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1312             Heps             = _mm256_mul_ps(vfeps,H);
1313             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1314             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1315             fvdw6            = _mm256_mul_ps(c6_00,FF);
1316
1317             /* CUBIC SPLINE TABLE REPULSION */
1318             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1319             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1320             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1321                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1322             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1323                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1324             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1326             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1327                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1328             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1329             Heps             = _mm256_mul_ps(vfeps,H);
1330             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1331             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1332             fvdw12           = _mm256_mul_ps(c12_00,FF);
1333             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1334
1335             fscal            = _mm256_add_ps(felec,fvdw);
1336
1337             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1338
1339             /* Calculate temporary vectorial force */
1340             tx               = _mm256_mul_ps(fscal,dx00);
1341             ty               = _mm256_mul_ps(fscal,dy00);
1342             tz               = _mm256_mul_ps(fscal,dz00);
1343
1344             /* Update vectorial force */
1345             fix0             = _mm256_add_ps(fix0,tx);
1346             fiy0             = _mm256_add_ps(fiy0,ty);
1347             fiz0             = _mm256_add_ps(fiz0,tz);
1348
1349             fjx0             = _mm256_add_ps(fjx0,tx);
1350             fjy0             = _mm256_add_ps(fjy0,ty);
1351             fjz0             = _mm256_add_ps(fjz0,tz);
1352
1353             /**************************
1354              * CALCULATE INTERACTIONS *
1355              **************************/
1356
1357             r10              = _mm256_mul_ps(rsq10,rinv10);
1358             r10              = _mm256_andnot_ps(dummy_mask,r10);
1359
1360             /* Compute parameters for interactions between i and j atoms */
1361             qq10             = _mm256_mul_ps(iq1,jq0);
1362
1363             /* EWALD ELECTROSTATICS */
1364             
1365             /* Analytical PME correction */
1366             zeta2            = _mm256_mul_ps(beta2,rsq10);
1367             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1368             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1369             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1370             felec            = _mm256_mul_ps(qq10,felec);
1371             
1372             fscal            = felec;
1373
1374             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1375
1376             /* Calculate temporary vectorial force */
1377             tx               = _mm256_mul_ps(fscal,dx10);
1378             ty               = _mm256_mul_ps(fscal,dy10);
1379             tz               = _mm256_mul_ps(fscal,dz10);
1380
1381             /* Update vectorial force */
1382             fix1             = _mm256_add_ps(fix1,tx);
1383             fiy1             = _mm256_add_ps(fiy1,ty);
1384             fiz1             = _mm256_add_ps(fiz1,tz);
1385
1386             fjx0             = _mm256_add_ps(fjx0,tx);
1387             fjy0             = _mm256_add_ps(fjy0,ty);
1388             fjz0             = _mm256_add_ps(fjz0,tz);
1389
1390             /**************************
1391              * CALCULATE INTERACTIONS *
1392              **************************/
1393
1394             r20              = _mm256_mul_ps(rsq20,rinv20);
1395             r20              = _mm256_andnot_ps(dummy_mask,r20);
1396
1397             /* Compute parameters for interactions between i and j atoms */
1398             qq20             = _mm256_mul_ps(iq2,jq0);
1399
1400             /* EWALD ELECTROSTATICS */
1401             
1402             /* Analytical PME correction */
1403             zeta2            = _mm256_mul_ps(beta2,rsq20);
1404             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1405             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1406             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1407             felec            = _mm256_mul_ps(qq20,felec);
1408             
1409             fscal            = felec;
1410
1411             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1412
1413             /* Calculate temporary vectorial force */
1414             tx               = _mm256_mul_ps(fscal,dx20);
1415             ty               = _mm256_mul_ps(fscal,dy20);
1416             tz               = _mm256_mul_ps(fscal,dz20);
1417
1418             /* Update vectorial force */
1419             fix2             = _mm256_add_ps(fix2,tx);
1420             fiy2             = _mm256_add_ps(fiy2,ty);
1421             fiz2             = _mm256_add_ps(fiz2,tz);
1422
1423             fjx0             = _mm256_add_ps(fjx0,tx);
1424             fjy0             = _mm256_add_ps(fjy0,ty);
1425             fjz0             = _mm256_add_ps(fjz0,tz);
1426
1427             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1428             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1429             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1430             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1431             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1432             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1433             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1434             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1435
1436             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1437
1438             /* Inner loop uses 200 flops */
1439         }
1440
1441         /* End of innermost loop */
1442
1443         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1444                                                  f+i_coord_offset,fshift+i_shift_offset);
1445
1446         /* Increment number of inner iterations */
1447         inneriter                  += j_index_end - j_index_start;
1448
1449         /* Outer loop uses 18 flops */
1450     }
1451
1452     /* Increment number of outer iterations */
1453     outeriter        += nri;
1454
1455     /* Update outer/inner flops */
1456
1457     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*200);
1458 }