Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256i          vfitab;
108     __m128i          vfitab_lo,vfitab_hi;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256i          ewitab;
113     __m128i          ewitab_lo,ewitab_hi;
114     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
116     real             *ewtab;
117     __m256           dummy_mask,cutoff_mask;
118     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
119     __m256           one     = _mm256_set1_ps(1.0);
120     __m256           two     = _mm256_set1_ps(2.0);
121     x                = xx[0];
122     f                = ff[0];
123
124     nri              = nlist->nri;
125     iinr             = nlist->iinr;
126     jindex           = nlist->jindex;
127     jjnr             = nlist->jjnr;
128     shiftidx         = nlist->shift;
129     gid              = nlist->gid;
130     shiftvec         = fr->shift_vec[0];
131     fshift           = fr->fshift[0];
132     facel            = _mm256_set1_ps(fr->epsfac);
133     charge           = mdatoms->chargeA;
134     nvdwtype         = fr->ntype;
135     vdwparam         = fr->nbfp;
136     vdwtype          = mdatoms->typeA;
137
138     vftab            = kernel_data->table_vdw->data;
139     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
140
141     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
142     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
143     beta2            = _mm256_mul_ps(beta,beta);
144     beta3            = _mm256_mul_ps(beta,beta2);
145
146     ewtab            = fr->ic->tabq_coul_FDV0;
147     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
148     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
149
150     /* Setup water-specific parameters */
151     inr              = nlist->iinr[0];
152     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
153     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
154     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
155     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163     j_coord_offsetE = 0;
164     j_coord_offsetF = 0;
165     j_coord_offsetG = 0;
166     j_coord_offsetH = 0;
167
168     outeriter        = 0;
169     inneriter        = 0;
170
171     for(iidx=0;iidx<4*DIM;iidx++)
172     {
173         scratch[iidx] = 0.0;
174     }
175
176     /* Start outer loop over neighborlists */
177     for(iidx=0; iidx<nri; iidx++)
178     {
179         /* Load shift vector for this list */
180         i_shift_offset   = DIM*shiftidx[iidx];
181
182         /* Load limits for loop over neighbors */
183         j_index_start    = jindex[iidx];
184         j_index_end      = jindex[iidx+1];
185
186         /* Get outer coordinate index */
187         inr              = iinr[iidx];
188         i_coord_offset   = DIM*inr;
189
190         /* Load i particle coords and add shift vector */
191         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
192                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
193
194         fix0             = _mm256_setzero_ps();
195         fiy0             = _mm256_setzero_ps();
196         fiz0             = _mm256_setzero_ps();
197         fix1             = _mm256_setzero_ps();
198         fiy1             = _mm256_setzero_ps();
199         fiz1             = _mm256_setzero_ps();
200         fix2             = _mm256_setzero_ps();
201         fiy2             = _mm256_setzero_ps();
202         fiz2             = _mm256_setzero_ps();
203
204         /* Reset potential sums */
205         velecsum         = _mm256_setzero_ps();
206         vvdwsum          = _mm256_setzero_ps();
207
208         /* Start inner kernel loop */
209         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
210         {
211
212             /* Get j neighbor index, and coordinate index */
213             jnrA             = jjnr[jidx];
214             jnrB             = jjnr[jidx+1];
215             jnrC             = jjnr[jidx+2];
216             jnrD             = jjnr[jidx+3];
217             jnrE             = jjnr[jidx+4];
218             jnrF             = jjnr[jidx+5];
219             jnrG             = jjnr[jidx+6];
220             jnrH             = jjnr[jidx+7];
221             j_coord_offsetA  = DIM*jnrA;
222             j_coord_offsetB  = DIM*jnrB;
223             j_coord_offsetC  = DIM*jnrC;
224             j_coord_offsetD  = DIM*jnrD;
225             j_coord_offsetE  = DIM*jnrE;
226             j_coord_offsetF  = DIM*jnrF;
227             j_coord_offsetG  = DIM*jnrG;
228             j_coord_offsetH  = DIM*jnrH;
229
230             /* load j atom coordinates */
231             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
232                                                  x+j_coord_offsetC,x+j_coord_offsetD,
233                                                  x+j_coord_offsetE,x+j_coord_offsetF,
234                                                  x+j_coord_offsetG,x+j_coord_offsetH,
235                                                  &jx0,&jy0,&jz0);
236
237             /* Calculate displacement vector */
238             dx00             = _mm256_sub_ps(ix0,jx0);
239             dy00             = _mm256_sub_ps(iy0,jy0);
240             dz00             = _mm256_sub_ps(iz0,jz0);
241             dx10             = _mm256_sub_ps(ix1,jx0);
242             dy10             = _mm256_sub_ps(iy1,jy0);
243             dz10             = _mm256_sub_ps(iz1,jz0);
244             dx20             = _mm256_sub_ps(ix2,jx0);
245             dy20             = _mm256_sub_ps(iy2,jy0);
246             dz20             = _mm256_sub_ps(iz2,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
250             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
251             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
252
253             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
254             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
255             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
256
257             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
258             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
259             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
260
261             /* Load parameters for j particles */
262             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
263                                                                  charge+jnrC+0,charge+jnrD+0,
264                                                                  charge+jnrE+0,charge+jnrF+0,
265                                                                  charge+jnrG+0,charge+jnrH+0);
266             vdwjidx0A        = 2*vdwtype[jnrA+0];
267             vdwjidx0B        = 2*vdwtype[jnrB+0];
268             vdwjidx0C        = 2*vdwtype[jnrC+0];
269             vdwjidx0D        = 2*vdwtype[jnrD+0];
270             vdwjidx0E        = 2*vdwtype[jnrE+0];
271             vdwjidx0F        = 2*vdwtype[jnrF+0];
272             vdwjidx0G        = 2*vdwtype[jnrG+0];
273             vdwjidx0H        = 2*vdwtype[jnrH+0];
274
275             fjx0             = _mm256_setzero_ps();
276             fjy0             = _mm256_setzero_ps();
277             fjz0             = _mm256_setzero_ps();
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r00              = _mm256_mul_ps(rsq00,rinv00);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq00             = _mm256_mul_ps(iq0,jq0);
287             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
288                                             vdwioffsetptr0+vdwjidx0B,
289                                             vdwioffsetptr0+vdwjidx0C,
290                                             vdwioffsetptr0+vdwjidx0D,
291                                             vdwioffsetptr0+vdwjidx0E,
292                                             vdwioffsetptr0+vdwjidx0F,
293                                             vdwioffsetptr0+vdwjidx0G,
294                                             vdwioffsetptr0+vdwjidx0H,
295                                             &c6_00,&c12_00);
296
297             /* Calculate table index by multiplying r with table scale and truncate to integer */
298             rt               = _mm256_mul_ps(r00,vftabscale);
299             vfitab           = _mm256_cvttps_epi32(rt);
300             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
301             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
302             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
303             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
304             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
305             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
306
307             /* EWALD ELECTROSTATICS */
308             
309             /* Analytical PME correction */
310             zeta2            = _mm256_mul_ps(beta2,rsq00);
311             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
312             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
313             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
314             felec            = _mm256_mul_ps(qq00,felec);
315             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
316             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
317             velec            = _mm256_sub_ps(rinv00,pmecorrV);
318             velec            = _mm256_mul_ps(qq00,velec);
319             
320             /* CUBIC SPLINE TABLE DISPERSION */
321             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
322                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
323             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
324                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
325             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
326                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
327             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
328                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
329             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
330             Heps             = _mm256_mul_ps(vfeps,H);
331             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
332             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
333             vvdw6            = _mm256_mul_ps(c6_00,VV);
334             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
335             fvdw6            = _mm256_mul_ps(c6_00,FF);
336
337             /* CUBIC SPLINE TABLE REPULSION */
338             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
339             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
340             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
341                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
342             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
343                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
344             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
345                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
346             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
347                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
348             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
349             Heps             = _mm256_mul_ps(vfeps,H);
350             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
351             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
352             vvdw12           = _mm256_mul_ps(c12_00,VV);
353             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
354             fvdw12           = _mm256_mul_ps(c12_00,FF);
355             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
356             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velecsum         = _mm256_add_ps(velecsum,velec);
360             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
361
362             fscal            = _mm256_add_ps(felec,fvdw);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm256_mul_ps(fscal,dx00);
366             ty               = _mm256_mul_ps(fscal,dy00);
367             tz               = _mm256_mul_ps(fscal,dz00);
368
369             /* Update vectorial force */
370             fix0             = _mm256_add_ps(fix0,tx);
371             fiy0             = _mm256_add_ps(fiy0,ty);
372             fiz0             = _mm256_add_ps(fiz0,tz);
373
374             fjx0             = _mm256_add_ps(fjx0,tx);
375             fjy0             = _mm256_add_ps(fjy0,ty);
376             fjz0             = _mm256_add_ps(fjz0,tz);
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             r10              = _mm256_mul_ps(rsq10,rinv10);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq10             = _mm256_mul_ps(iq1,jq0);
386
387             /* EWALD ELECTROSTATICS */
388             
389             /* Analytical PME correction */
390             zeta2            = _mm256_mul_ps(beta2,rsq10);
391             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
392             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
393             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
394             felec            = _mm256_mul_ps(qq10,felec);
395             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
396             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
397             velec            = _mm256_sub_ps(rinv10,pmecorrV);
398             velec            = _mm256_mul_ps(qq10,velec);
399             
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velecsum         = _mm256_add_ps(velecsum,velec);
402
403             fscal            = felec;
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm256_mul_ps(fscal,dx10);
407             ty               = _mm256_mul_ps(fscal,dy10);
408             tz               = _mm256_mul_ps(fscal,dz10);
409
410             /* Update vectorial force */
411             fix1             = _mm256_add_ps(fix1,tx);
412             fiy1             = _mm256_add_ps(fiy1,ty);
413             fiz1             = _mm256_add_ps(fiz1,tz);
414
415             fjx0             = _mm256_add_ps(fjx0,tx);
416             fjy0             = _mm256_add_ps(fjy0,ty);
417             fjz0             = _mm256_add_ps(fjz0,tz);
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             r20              = _mm256_mul_ps(rsq20,rinv20);
424
425             /* Compute parameters for interactions between i and j atoms */
426             qq20             = _mm256_mul_ps(iq2,jq0);
427
428             /* EWALD ELECTROSTATICS */
429             
430             /* Analytical PME correction */
431             zeta2            = _mm256_mul_ps(beta2,rsq20);
432             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
433             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
434             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
435             felec            = _mm256_mul_ps(qq20,felec);
436             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
437             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
438             velec            = _mm256_sub_ps(rinv20,pmecorrV);
439             velec            = _mm256_mul_ps(qq20,velec);
440             
441             /* Update potential sum for this i atom from the interaction with this j atom. */
442             velecsum         = _mm256_add_ps(velecsum,velec);
443
444             fscal            = felec;
445
446             /* Calculate temporary vectorial force */
447             tx               = _mm256_mul_ps(fscal,dx20);
448             ty               = _mm256_mul_ps(fscal,dy20);
449             tz               = _mm256_mul_ps(fscal,dz20);
450
451             /* Update vectorial force */
452             fix2             = _mm256_add_ps(fix2,tx);
453             fiy2             = _mm256_add_ps(fiy2,ty);
454             fiz2             = _mm256_add_ps(fiz2,tz);
455
456             fjx0             = _mm256_add_ps(fjx0,tx);
457             fjy0             = _mm256_add_ps(fjy0,ty);
458             fjz0             = _mm256_add_ps(fjz0,tz);
459
460             fjptrA             = f+j_coord_offsetA;
461             fjptrB             = f+j_coord_offsetB;
462             fjptrC             = f+j_coord_offsetC;
463             fjptrD             = f+j_coord_offsetD;
464             fjptrE             = f+j_coord_offsetE;
465             fjptrF             = f+j_coord_offsetF;
466             fjptrG             = f+j_coord_offsetG;
467             fjptrH             = f+j_coord_offsetH;
468
469             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
470
471             /* Inner loop uses 289 flops */
472         }
473
474         if(jidx<j_index_end)
475         {
476
477             /* Get j neighbor index, and coordinate index */
478             jnrlistA         = jjnr[jidx];
479             jnrlistB         = jjnr[jidx+1];
480             jnrlistC         = jjnr[jidx+2];
481             jnrlistD         = jjnr[jidx+3];
482             jnrlistE         = jjnr[jidx+4];
483             jnrlistF         = jjnr[jidx+5];
484             jnrlistG         = jjnr[jidx+6];
485             jnrlistH         = jjnr[jidx+7];
486             /* Sign of each element will be negative for non-real atoms.
487              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
488              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
489              */
490             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
491                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
492                                             
493             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
494             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
495             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
496             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
497             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
498             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
499             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
500             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
501             j_coord_offsetA  = DIM*jnrA;
502             j_coord_offsetB  = DIM*jnrB;
503             j_coord_offsetC  = DIM*jnrC;
504             j_coord_offsetD  = DIM*jnrD;
505             j_coord_offsetE  = DIM*jnrE;
506             j_coord_offsetF  = DIM*jnrF;
507             j_coord_offsetG  = DIM*jnrG;
508             j_coord_offsetH  = DIM*jnrH;
509
510             /* load j atom coordinates */
511             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
512                                                  x+j_coord_offsetC,x+j_coord_offsetD,
513                                                  x+j_coord_offsetE,x+j_coord_offsetF,
514                                                  x+j_coord_offsetG,x+j_coord_offsetH,
515                                                  &jx0,&jy0,&jz0);
516
517             /* Calculate displacement vector */
518             dx00             = _mm256_sub_ps(ix0,jx0);
519             dy00             = _mm256_sub_ps(iy0,jy0);
520             dz00             = _mm256_sub_ps(iz0,jz0);
521             dx10             = _mm256_sub_ps(ix1,jx0);
522             dy10             = _mm256_sub_ps(iy1,jy0);
523             dz10             = _mm256_sub_ps(iz1,jz0);
524             dx20             = _mm256_sub_ps(ix2,jx0);
525             dy20             = _mm256_sub_ps(iy2,jy0);
526             dz20             = _mm256_sub_ps(iz2,jz0);
527
528             /* Calculate squared distance and things based on it */
529             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
530             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
531             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
532
533             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
534             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
535             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
536
537             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
538             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
539             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
540
541             /* Load parameters for j particles */
542             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
543                                                                  charge+jnrC+0,charge+jnrD+0,
544                                                                  charge+jnrE+0,charge+jnrF+0,
545                                                                  charge+jnrG+0,charge+jnrH+0);
546             vdwjidx0A        = 2*vdwtype[jnrA+0];
547             vdwjidx0B        = 2*vdwtype[jnrB+0];
548             vdwjidx0C        = 2*vdwtype[jnrC+0];
549             vdwjidx0D        = 2*vdwtype[jnrD+0];
550             vdwjidx0E        = 2*vdwtype[jnrE+0];
551             vdwjidx0F        = 2*vdwtype[jnrF+0];
552             vdwjidx0G        = 2*vdwtype[jnrG+0];
553             vdwjidx0H        = 2*vdwtype[jnrH+0];
554
555             fjx0             = _mm256_setzero_ps();
556             fjy0             = _mm256_setzero_ps();
557             fjz0             = _mm256_setzero_ps();
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r00              = _mm256_mul_ps(rsq00,rinv00);
564             r00              = _mm256_andnot_ps(dummy_mask,r00);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq00             = _mm256_mul_ps(iq0,jq0);
568             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
569                                             vdwioffsetptr0+vdwjidx0B,
570                                             vdwioffsetptr0+vdwjidx0C,
571                                             vdwioffsetptr0+vdwjidx0D,
572                                             vdwioffsetptr0+vdwjidx0E,
573                                             vdwioffsetptr0+vdwjidx0F,
574                                             vdwioffsetptr0+vdwjidx0G,
575                                             vdwioffsetptr0+vdwjidx0H,
576                                             &c6_00,&c12_00);
577
578             /* Calculate table index by multiplying r with table scale and truncate to integer */
579             rt               = _mm256_mul_ps(r00,vftabscale);
580             vfitab           = _mm256_cvttps_epi32(rt);
581             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
582             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
583             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
584             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
585             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
586             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
587
588             /* EWALD ELECTROSTATICS */
589             
590             /* Analytical PME correction */
591             zeta2            = _mm256_mul_ps(beta2,rsq00);
592             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
593             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
594             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
595             felec            = _mm256_mul_ps(qq00,felec);
596             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
597             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
598             velec            = _mm256_sub_ps(rinv00,pmecorrV);
599             velec            = _mm256_mul_ps(qq00,velec);
600             
601             /* CUBIC SPLINE TABLE DISPERSION */
602             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
603                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
604             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
605                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
606             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
607                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
608             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
609                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
610             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
611             Heps             = _mm256_mul_ps(vfeps,H);
612             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
613             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
614             vvdw6            = _mm256_mul_ps(c6_00,VV);
615             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
616             fvdw6            = _mm256_mul_ps(c6_00,FF);
617
618             /* CUBIC SPLINE TABLE REPULSION */
619             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
620             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
621             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
622                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
623             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
624                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
625             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
626                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
627             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
628                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
629             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
630             Heps             = _mm256_mul_ps(vfeps,H);
631             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
632             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
633             vvdw12           = _mm256_mul_ps(c12_00,VV);
634             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
635             fvdw12           = _mm256_mul_ps(c12_00,FF);
636             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
637             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm256_andnot_ps(dummy_mask,velec);
641             velecsum         = _mm256_add_ps(velecsum,velec);
642             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
643             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
644
645             fscal            = _mm256_add_ps(felec,fvdw);
646
647             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
648
649             /* Calculate temporary vectorial force */
650             tx               = _mm256_mul_ps(fscal,dx00);
651             ty               = _mm256_mul_ps(fscal,dy00);
652             tz               = _mm256_mul_ps(fscal,dz00);
653
654             /* Update vectorial force */
655             fix0             = _mm256_add_ps(fix0,tx);
656             fiy0             = _mm256_add_ps(fiy0,ty);
657             fiz0             = _mm256_add_ps(fiz0,tz);
658
659             fjx0             = _mm256_add_ps(fjx0,tx);
660             fjy0             = _mm256_add_ps(fjy0,ty);
661             fjz0             = _mm256_add_ps(fjz0,tz);
662
663             /**************************
664              * CALCULATE INTERACTIONS *
665              **************************/
666
667             r10              = _mm256_mul_ps(rsq10,rinv10);
668             r10              = _mm256_andnot_ps(dummy_mask,r10);
669
670             /* Compute parameters for interactions between i and j atoms */
671             qq10             = _mm256_mul_ps(iq1,jq0);
672
673             /* EWALD ELECTROSTATICS */
674             
675             /* Analytical PME correction */
676             zeta2            = _mm256_mul_ps(beta2,rsq10);
677             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
678             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
679             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
680             felec            = _mm256_mul_ps(qq10,felec);
681             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
682             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
683             velec            = _mm256_sub_ps(rinv10,pmecorrV);
684             velec            = _mm256_mul_ps(qq10,velec);
685             
686             /* Update potential sum for this i atom from the interaction with this j atom. */
687             velec            = _mm256_andnot_ps(dummy_mask,velec);
688             velecsum         = _mm256_add_ps(velecsum,velec);
689
690             fscal            = felec;
691
692             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm256_mul_ps(fscal,dx10);
696             ty               = _mm256_mul_ps(fscal,dy10);
697             tz               = _mm256_mul_ps(fscal,dz10);
698
699             /* Update vectorial force */
700             fix1             = _mm256_add_ps(fix1,tx);
701             fiy1             = _mm256_add_ps(fiy1,ty);
702             fiz1             = _mm256_add_ps(fiz1,tz);
703
704             fjx0             = _mm256_add_ps(fjx0,tx);
705             fjy0             = _mm256_add_ps(fjy0,ty);
706             fjz0             = _mm256_add_ps(fjz0,tz);
707
708             /**************************
709              * CALCULATE INTERACTIONS *
710              **************************/
711
712             r20              = _mm256_mul_ps(rsq20,rinv20);
713             r20              = _mm256_andnot_ps(dummy_mask,r20);
714
715             /* Compute parameters for interactions between i and j atoms */
716             qq20             = _mm256_mul_ps(iq2,jq0);
717
718             /* EWALD ELECTROSTATICS */
719             
720             /* Analytical PME correction */
721             zeta2            = _mm256_mul_ps(beta2,rsq20);
722             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
723             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
724             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
725             felec            = _mm256_mul_ps(qq20,felec);
726             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
727             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
728             velec            = _mm256_sub_ps(rinv20,pmecorrV);
729             velec            = _mm256_mul_ps(qq20,velec);
730             
731             /* Update potential sum for this i atom from the interaction with this j atom. */
732             velec            = _mm256_andnot_ps(dummy_mask,velec);
733             velecsum         = _mm256_add_ps(velecsum,velec);
734
735             fscal            = felec;
736
737             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
738
739             /* Calculate temporary vectorial force */
740             tx               = _mm256_mul_ps(fscal,dx20);
741             ty               = _mm256_mul_ps(fscal,dy20);
742             tz               = _mm256_mul_ps(fscal,dz20);
743
744             /* Update vectorial force */
745             fix2             = _mm256_add_ps(fix2,tx);
746             fiy2             = _mm256_add_ps(fiy2,ty);
747             fiz2             = _mm256_add_ps(fiz2,tz);
748
749             fjx0             = _mm256_add_ps(fjx0,tx);
750             fjy0             = _mm256_add_ps(fjy0,ty);
751             fjz0             = _mm256_add_ps(fjz0,tz);
752
753             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
754             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
755             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
756             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
757             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
758             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
759             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
760             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
761
762             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
763
764             /* Inner loop uses 292 flops */
765         }
766
767         /* End of innermost loop */
768
769         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
770                                                  f+i_coord_offset,fshift+i_shift_offset);
771
772         ggid                        = gid[iidx];
773         /* Update potential energies */
774         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
775         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
776
777         /* Increment number of inner iterations */
778         inneriter                  += j_index_end - j_index_start;
779
780         /* Outer loop uses 20 flops */
781     }
782
783     /* Increment number of outer iterations */
784     outeriter        += nri;
785
786     /* Update outer/inner flops */
787
788     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*292);
789 }
790 /*
791  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_single
792  * Electrostatics interaction: Ewald
793  * VdW interaction:            CubicSplineTable
794  * Geometry:                   Water3-Particle
795  * Calculate force/pot:        Force
796  */
797 void
798 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_single
799                     (t_nblist                    * gmx_restrict       nlist,
800                      rvec                        * gmx_restrict          xx,
801                      rvec                        * gmx_restrict          ff,
802                      t_forcerec                  * gmx_restrict          fr,
803                      t_mdatoms                   * gmx_restrict     mdatoms,
804                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
805                      t_nrnb                      * gmx_restrict        nrnb)
806 {
807     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
808      * just 0 for non-waters.
809      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
810      * jnr indices corresponding to data put in the four positions in the SIMD register.
811      */
812     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
813     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
814     int              jnrA,jnrB,jnrC,jnrD;
815     int              jnrE,jnrF,jnrG,jnrH;
816     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
817     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
818     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
819     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
820     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
821     real             rcutoff_scalar;
822     real             *shiftvec,*fshift,*x,*f;
823     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
824     real             scratch[4*DIM];
825     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
826     real *           vdwioffsetptr0;
827     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
828     real *           vdwioffsetptr1;
829     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
830     real *           vdwioffsetptr2;
831     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
832     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
833     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
834     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
835     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
836     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
837     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
838     real             *charge;
839     int              nvdwtype;
840     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
841     int              *vdwtype;
842     real             *vdwparam;
843     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
844     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
845     __m256i          vfitab;
846     __m128i          vfitab_lo,vfitab_hi;
847     __m128i          ifour       = _mm_set1_epi32(4);
848     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
849     real             *vftab;
850     __m256i          ewitab;
851     __m128i          ewitab_lo,ewitab_hi;
852     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
853     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
854     real             *ewtab;
855     __m256           dummy_mask,cutoff_mask;
856     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
857     __m256           one     = _mm256_set1_ps(1.0);
858     __m256           two     = _mm256_set1_ps(2.0);
859     x                = xx[0];
860     f                = ff[0];
861
862     nri              = nlist->nri;
863     iinr             = nlist->iinr;
864     jindex           = nlist->jindex;
865     jjnr             = nlist->jjnr;
866     shiftidx         = nlist->shift;
867     gid              = nlist->gid;
868     shiftvec         = fr->shift_vec[0];
869     fshift           = fr->fshift[0];
870     facel            = _mm256_set1_ps(fr->epsfac);
871     charge           = mdatoms->chargeA;
872     nvdwtype         = fr->ntype;
873     vdwparam         = fr->nbfp;
874     vdwtype          = mdatoms->typeA;
875
876     vftab            = kernel_data->table_vdw->data;
877     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
878
879     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
880     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
881     beta2            = _mm256_mul_ps(beta,beta);
882     beta3            = _mm256_mul_ps(beta,beta2);
883
884     ewtab            = fr->ic->tabq_coul_F;
885     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
886     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
887
888     /* Setup water-specific parameters */
889     inr              = nlist->iinr[0];
890     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
891     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
892     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
893     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
894
895     /* Avoid stupid compiler warnings */
896     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
897     j_coord_offsetA = 0;
898     j_coord_offsetB = 0;
899     j_coord_offsetC = 0;
900     j_coord_offsetD = 0;
901     j_coord_offsetE = 0;
902     j_coord_offsetF = 0;
903     j_coord_offsetG = 0;
904     j_coord_offsetH = 0;
905
906     outeriter        = 0;
907     inneriter        = 0;
908
909     for(iidx=0;iidx<4*DIM;iidx++)
910     {
911         scratch[iidx] = 0.0;
912     }
913
914     /* Start outer loop over neighborlists */
915     for(iidx=0; iidx<nri; iidx++)
916     {
917         /* Load shift vector for this list */
918         i_shift_offset   = DIM*shiftidx[iidx];
919
920         /* Load limits for loop over neighbors */
921         j_index_start    = jindex[iidx];
922         j_index_end      = jindex[iidx+1];
923
924         /* Get outer coordinate index */
925         inr              = iinr[iidx];
926         i_coord_offset   = DIM*inr;
927
928         /* Load i particle coords and add shift vector */
929         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
930                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
931
932         fix0             = _mm256_setzero_ps();
933         fiy0             = _mm256_setzero_ps();
934         fiz0             = _mm256_setzero_ps();
935         fix1             = _mm256_setzero_ps();
936         fiy1             = _mm256_setzero_ps();
937         fiz1             = _mm256_setzero_ps();
938         fix2             = _mm256_setzero_ps();
939         fiy2             = _mm256_setzero_ps();
940         fiz2             = _mm256_setzero_ps();
941
942         /* Start inner kernel loop */
943         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
944         {
945
946             /* Get j neighbor index, and coordinate index */
947             jnrA             = jjnr[jidx];
948             jnrB             = jjnr[jidx+1];
949             jnrC             = jjnr[jidx+2];
950             jnrD             = jjnr[jidx+3];
951             jnrE             = jjnr[jidx+4];
952             jnrF             = jjnr[jidx+5];
953             jnrG             = jjnr[jidx+6];
954             jnrH             = jjnr[jidx+7];
955             j_coord_offsetA  = DIM*jnrA;
956             j_coord_offsetB  = DIM*jnrB;
957             j_coord_offsetC  = DIM*jnrC;
958             j_coord_offsetD  = DIM*jnrD;
959             j_coord_offsetE  = DIM*jnrE;
960             j_coord_offsetF  = DIM*jnrF;
961             j_coord_offsetG  = DIM*jnrG;
962             j_coord_offsetH  = DIM*jnrH;
963
964             /* load j atom coordinates */
965             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
966                                                  x+j_coord_offsetC,x+j_coord_offsetD,
967                                                  x+j_coord_offsetE,x+j_coord_offsetF,
968                                                  x+j_coord_offsetG,x+j_coord_offsetH,
969                                                  &jx0,&jy0,&jz0);
970
971             /* Calculate displacement vector */
972             dx00             = _mm256_sub_ps(ix0,jx0);
973             dy00             = _mm256_sub_ps(iy0,jy0);
974             dz00             = _mm256_sub_ps(iz0,jz0);
975             dx10             = _mm256_sub_ps(ix1,jx0);
976             dy10             = _mm256_sub_ps(iy1,jy0);
977             dz10             = _mm256_sub_ps(iz1,jz0);
978             dx20             = _mm256_sub_ps(ix2,jx0);
979             dy20             = _mm256_sub_ps(iy2,jy0);
980             dz20             = _mm256_sub_ps(iz2,jz0);
981
982             /* Calculate squared distance and things based on it */
983             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
984             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
985             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
986
987             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
988             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
989             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
990
991             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
992             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
993             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
994
995             /* Load parameters for j particles */
996             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
997                                                                  charge+jnrC+0,charge+jnrD+0,
998                                                                  charge+jnrE+0,charge+jnrF+0,
999                                                                  charge+jnrG+0,charge+jnrH+0);
1000             vdwjidx0A        = 2*vdwtype[jnrA+0];
1001             vdwjidx0B        = 2*vdwtype[jnrB+0];
1002             vdwjidx0C        = 2*vdwtype[jnrC+0];
1003             vdwjidx0D        = 2*vdwtype[jnrD+0];
1004             vdwjidx0E        = 2*vdwtype[jnrE+0];
1005             vdwjidx0F        = 2*vdwtype[jnrF+0];
1006             vdwjidx0G        = 2*vdwtype[jnrG+0];
1007             vdwjidx0H        = 2*vdwtype[jnrH+0];
1008
1009             fjx0             = _mm256_setzero_ps();
1010             fjy0             = _mm256_setzero_ps();
1011             fjz0             = _mm256_setzero_ps();
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             r00              = _mm256_mul_ps(rsq00,rinv00);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq00             = _mm256_mul_ps(iq0,jq0);
1021             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1022                                             vdwioffsetptr0+vdwjidx0B,
1023                                             vdwioffsetptr0+vdwjidx0C,
1024                                             vdwioffsetptr0+vdwjidx0D,
1025                                             vdwioffsetptr0+vdwjidx0E,
1026                                             vdwioffsetptr0+vdwjidx0F,
1027                                             vdwioffsetptr0+vdwjidx0G,
1028                                             vdwioffsetptr0+vdwjidx0H,
1029                                             &c6_00,&c12_00);
1030
1031             /* Calculate table index by multiplying r with table scale and truncate to integer */
1032             rt               = _mm256_mul_ps(r00,vftabscale);
1033             vfitab           = _mm256_cvttps_epi32(rt);
1034             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1035             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1036             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1037             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1038             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1039             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1040
1041             /* EWALD ELECTROSTATICS */
1042             
1043             /* Analytical PME correction */
1044             zeta2            = _mm256_mul_ps(beta2,rsq00);
1045             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1046             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1047             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1048             felec            = _mm256_mul_ps(qq00,felec);
1049             
1050             /* CUBIC SPLINE TABLE DISPERSION */
1051             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1052                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1053             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1054                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1055             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1056                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1057             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1058                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1059             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1060             Heps             = _mm256_mul_ps(vfeps,H);
1061             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1062             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1063             fvdw6            = _mm256_mul_ps(c6_00,FF);
1064
1065             /* CUBIC SPLINE TABLE REPULSION */
1066             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1067             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1068             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1069                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1070             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1071                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1072             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1073                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1074             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1075                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1076             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1077             Heps             = _mm256_mul_ps(vfeps,H);
1078             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1079             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1080             fvdw12           = _mm256_mul_ps(c12_00,FF);
1081             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1082
1083             fscal            = _mm256_add_ps(felec,fvdw);
1084
1085             /* Calculate temporary vectorial force */
1086             tx               = _mm256_mul_ps(fscal,dx00);
1087             ty               = _mm256_mul_ps(fscal,dy00);
1088             tz               = _mm256_mul_ps(fscal,dz00);
1089
1090             /* Update vectorial force */
1091             fix0             = _mm256_add_ps(fix0,tx);
1092             fiy0             = _mm256_add_ps(fiy0,ty);
1093             fiz0             = _mm256_add_ps(fiz0,tz);
1094
1095             fjx0             = _mm256_add_ps(fjx0,tx);
1096             fjy0             = _mm256_add_ps(fjy0,ty);
1097             fjz0             = _mm256_add_ps(fjz0,tz);
1098
1099             /**************************
1100              * CALCULATE INTERACTIONS *
1101              **************************/
1102
1103             r10              = _mm256_mul_ps(rsq10,rinv10);
1104
1105             /* Compute parameters for interactions between i and j atoms */
1106             qq10             = _mm256_mul_ps(iq1,jq0);
1107
1108             /* EWALD ELECTROSTATICS */
1109             
1110             /* Analytical PME correction */
1111             zeta2            = _mm256_mul_ps(beta2,rsq10);
1112             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1113             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1114             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1115             felec            = _mm256_mul_ps(qq10,felec);
1116             
1117             fscal            = felec;
1118
1119             /* Calculate temporary vectorial force */
1120             tx               = _mm256_mul_ps(fscal,dx10);
1121             ty               = _mm256_mul_ps(fscal,dy10);
1122             tz               = _mm256_mul_ps(fscal,dz10);
1123
1124             /* Update vectorial force */
1125             fix1             = _mm256_add_ps(fix1,tx);
1126             fiy1             = _mm256_add_ps(fiy1,ty);
1127             fiz1             = _mm256_add_ps(fiz1,tz);
1128
1129             fjx0             = _mm256_add_ps(fjx0,tx);
1130             fjy0             = _mm256_add_ps(fjy0,ty);
1131             fjz0             = _mm256_add_ps(fjz0,tz);
1132
1133             /**************************
1134              * CALCULATE INTERACTIONS *
1135              **************************/
1136
1137             r20              = _mm256_mul_ps(rsq20,rinv20);
1138
1139             /* Compute parameters for interactions between i and j atoms */
1140             qq20             = _mm256_mul_ps(iq2,jq0);
1141
1142             /* EWALD ELECTROSTATICS */
1143             
1144             /* Analytical PME correction */
1145             zeta2            = _mm256_mul_ps(beta2,rsq20);
1146             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1147             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1148             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1149             felec            = _mm256_mul_ps(qq20,felec);
1150             
1151             fscal            = felec;
1152
1153             /* Calculate temporary vectorial force */
1154             tx               = _mm256_mul_ps(fscal,dx20);
1155             ty               = _mm256_mul_ps(fscal,dy20);
1156             tz               = _mm256_mul_ps(fscal,dz20);
1157
1158             /* Update vectorial force */
1159             fix2             = _mm256_add_ps(fix2,tx);
1160             fiy2             = _mm256_add_ps(fiy2,ty);
1161             fiz2             = _mm256_add_ps(fiz2,tz);
1162
1163             fjx0             = _mm256_add_ps(fjx0,tx);
1164             fjy0             = _mm256_add_ps(fjy0,ty);
1165             fjz0             = _mm256_add_ps(fjz0,tz);
1166
1167             fjptrA             = f+j_coord_offsetA;
1168             fjptrB             = f+j_coord_offsetB;
1169             fjptrC             = f+j_coord_offsetC;
1170             fjptrD             = f+j_coord_offsetD;
1171             fjptrE             = f+j_coord_offsetE;
1172             fjptrF             = f+j_coord_offsetF;
1173             fjptrG             = f+j_coord_offsetG;
1174             fjptrH             = f+j_coord_offsetH;
1175
1176             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1177
1178             /* Inner loop uses 197 flops */
1179         }
1180
1181         if(jidx<j_index_end)
1182         {
1183
1184             /* Get j neighbor index, and coordinate index */
1185             jnrlistA         = jjnr[jidx];
1186             jnrlistB         = jjnr[jidx+1];
1187             jnrlistC         = jjnr[jidx+2];
1188             jnrlistD         = jjnr[jidx+3];
1189             jnrlistE         = jjnr[jidx+4];
1190             jnrlistF         = jjnr[jidx+5];
1191             jnrlistG         = jjnr[jidx+6];
1192             jnrlistH         = jjnr[jidx+7];
1193             /* Sign of each element will be negative for non-real atoms.
1194              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1195              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1196              */
1197             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1198                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1199                                             
1200             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1201             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1202             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1203             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1204             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1205             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1206             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1207             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1208             j_coord_offsetA  = DIM*jnrA;
1209             j_coord_offsetB  = DIM*jnrB;
1210             j_coord_offsetC  = DIM*jnrC;
1211             j_coord_offsetD  = DIM*jnrD;
1212             j_coord_offsetE  = DIM*jnrE;
1213             j_coord_offsetF  = DIM*jnrF;
1214             j_coord_offsetG  = DIM*jnrG;
1215             j_coord_offsetH  = DIM*jnrH;
1216
1217             /* load j atom coordinates */
1218             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1219                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1220                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1221                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1222                                                  &jx0,&jy0,&jz0);
1223
1224             /* Calculate displacement vector */
1225             dx00             = _mm256_sub_ps(ix0,jx0);
1226             dy00             = _mm256_sub_ps(iy0,jy0);
1227             dz00             = _mm256_sub_ps(iz0,jz0);
1228             dx10             = _mm256_sub_ps(ix1,jx0);
1229             dy10             = _mm256_sub_ps(iy1,jy0);
1230             dz10             = _mm256_sub_ps(iz1,jz0);
1231             dx20             = _mm256_sub_ps(ix2,jx0);
1232             dy20             = _mm256_sub_ps(iy2,jy0);
1233             dz20             = _mm256_sub_ps(iz2,jz0);
1234
1235             /* Calculate squared distance and things based on it */
1236             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1237             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1238             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1239
1240             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1241             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1242             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1243
1244             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1245             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1246             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1247
1248             /* Load parameters for j particles */
1249             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1250                                                                  charge+jnrC+0,charge+jnrD+0,
1251                                                                  charge+jnrE+0,charge+jnrF+0,
1252                                                                  charge+jnrG+0,charge+jnrH+0);
1253             vdwjidx0A        = 2*vdwtype[jnrA+0];
1254             vdwjidx0B        = 2*vdwtype[jnrB+0];
1255             vdwjidx0C        = 2*vdwtype[jnrC+0];
1256             vdwjidx0D        = 2*vdwtype[jnrD+0];
1257             vdwjidx0E        = 2*vdwtype[jnrE+0];
1258             vdwjidx0F        = 2*vdwtype[jnrF+0];
1259             vdwjidx0G        = 2*vdwtype[jnrG+0];
1260             vdwjidx0H        = 2*vdwtype[jnrH+0];
1261
1262             fjx0             = _mm256_setzero_ps();
1263             fjy0             = _mm256_setzero_ps();
1264             fjz0             = _mm256_setzero_ps();
1265
1266             /**************************
1267              * CALCULATE INTERACTIONS *
1268              **************************/
1269
1270             r00              = _mm256_mul_ps(rsq00,rinv00);
1271             r00              = _mm256_andnot_ps(dummy_mask,r00);
1272
1273             /* Compute parameters for interactions between i and j atoms */
1274             qq00             = _mm256_mul_ps(iq0,jq0);
1275             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1276                                             vdwioffsetptr0+vdwjidx0B,
1277                                             vdwioffsetptr0+vdwjidx0C,
1278                                             vdwioffsetptr0+vdwjidx0D,
1279                                             vdwioffsetptr0+vdwjidx0E,
1280                                             vdwioffsetptr0+vdwjidx0F,
1281                                             vdwioffsetptr0+vdwjidx0G,
1282                                             vdwioffsetptr0+vdwjidx0H,
1283                                             &c6_00,&c12_00);
1284
1285             /* Calculate table index by multiplying r with table scale and truncate to integer */
1286             rt               = _mm256_mul_ps(r00,vftabscale);
1287             vfitab           = _mm256_cvttps_epi32(rt);
1288             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1289             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1290             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1291             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1292             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1293             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1294
1295             /* EWALD ELECTROSTATICS */
1296             
1297             /* Analytical PME correction */
1298             zeta2            = _mm256_mul_ps(beta2,rsq00);
1299             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1300             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1301             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1302             felec            = _mm256_mul_ps(qq00,felec);
1303             
1304             /* CUBIC SPLINE TABLE DISPERSION */
1305             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1307             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1309             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1311             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1313             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1314             Heps             = _mm256_mul_ps(vfeps,H);
1315             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1316             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1317             fvdw6            = _mm256_mul_ps(c6_00,FF);
1318
1319             /* CUBIC SPLINE TABLE REPULSION */
1320             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1321             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1322             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1323                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1324             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1326             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1327                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1328             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1329                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1330             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1331             Heps             = _mm256_mul_ps(vfeps,H);
1332             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1333             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1334             fvdw12           = _mm256_mul_ps(c12_00,FF);
1335             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1336
1337             fscal            = _mm256_add_ps(felec,fvdw);
1338
1339             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1340
1341             /* Calculate temporary vectorial force */
1342             tx               = _mm256_mul_ps(fscal,dx00);
1343             ty               = _mm256_mul_ps(fscal,dy00);
1344             tz               = _mm256_mul_ps(fscal,dz00);
1345
1346             /* Update vectorial force */
1347             fix0             = _mm256_add_ps(fix0,tx);
1348             fiy0             = _mm256_add_ps(fiy0,ty);
1349             fiz0             = _mm256_add_ps(fiz0,tz);
1350
1351             fjx0             = _mm256_add_ps(fjx0,tx);
1352             fjy0             = _mm256_add_ps(fjy0,ty);
1353             fjz0             = _mm256_add_ps(fjz0,tz);
1354
1355             /**************************
1356              * CALCULATE INTERACTIONS *
1357              **************************/
1358
1359             r10              = _mm256_mul_ps(rsq10,rinv10);
1360             r10              = _mm256_andnot_ps(dummy_mask,r10);
1361
1362             /* Compute parameters for interactions between i and j atoms */
1363             qq10             = _mm256_mul_ps(iq1,jq0);
1364
1365             /* EWALD ELECTROSTATICS */
1366             
1367             /* Analytical PME correction */
1368             zeta2            = _mm256_mul_ps(beta2,rsq10);
1369             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1370             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1371             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1372             felec            = _mm256_mul_ps(qq10,felec);
1373             
1374             fscal            = felec;
1375
1376             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1377
1378             /* Calculate temporary vectorial force */
1379             tx               = _mm256_mul_ps(fscal,dx10);
1380             ty               = _mm256_mul_ps(fscal,dy10);
1381             tz               = _mm256_mul_ps(fscal,dz10);
1382
1383             /* Update vectorial force */
1384             fix1             = _mm256_add_ps(fix1,tx);
1385             fiy1             = _mm256_add_ps(fiy1,ty);
1386             fiz1             = _mm256_add_ps(fiz1,tz);
1387
1388             fjx0             = _mm256_add_ps(fjx0,tx);
1389             fjy0             = _mm256_add_ps(fjy0,ty);
1390             fjz0             = _mm256_add_ps(fjz0,tz);
1391
1392             /**************************
1393              * CALCULATE INTERACTIONS *
1394              **************************/
1395
1396             r20              = _mm256_mul_ps(rsq20,rinv20);
1397             r20              = _mm256_andnot_ps(dummy_mask,r20);
1398
1399             /* Compute parameters for interactions between i and j atoms */
1400             qq20             = _mm256_mul_ps(iq2,jq0);
1401
1402             /* EWALD ELECTROSTATICS */
1403             
1404             /* Analytical PME correction */
1405             zeta2            = _mm256_mul_ps(beta2,rsq20);
1406             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1407             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1408             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1409             felec            = _mm256_mul_ps(qq20,felec);
1410             
1411             fscal            = felec;
1412
1413             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1414
1415             /* Calculate temporary vectorial force */
1416             tx               = _mm256_mul_ps(fscal,dx20);
1417             ty               = _mm256_mul_ps(fscal,dy20);
1418             tz               = _mm256_mul_ps(fscal,dz20);
1419
1420             /* Update vectorial force */
1421             fix2             = _mm256_add_ps(fix2,tx);
1422             fiy2             = _mm256_add_ps(fiy2,ty);
1423             fiz2             = _mm256_add_ps(fiz2,tz);
1424
1425             fjx0             = _mm256_add_ps(fjx0,tx);
1426             fjy0             = _mm256_add_ps(fjy0,ty);
1427             fjz0             = _mm256_add_ps(fjz0,tz);
1428
1429             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1430             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1431             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1432             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1433             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1434             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1435             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1436             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1437
1438             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1439
1440             /* Inner loop uses 200 flops */
1441         }
1442
1443         /* End of innermost loop */
1444
1445         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1446                                                  f+i_coord_offset,fshift+i_shift_offset);
1447
1448         /* Increment number of inner iterations */
1449         inneriter                  += j_index_end - j_index_start;
1450
1451         /* Outer loop uses 18 flops */
1452     }
1453
1454     /* Increment number of outer iterations */
1455     outeriter        += nri;
1456
1457     /* Update outer/inner flops */
1458
1459     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*200);
1460 }