Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256i          vfitab;
100     __m128i          vfitab_lo,vfitab_hi;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
103     real             *vftab;
104     __m256i          ewitab;
105     __m128i          ewitab_lo,ewitab_hi;
106     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m256           dummy_mask,cutoff_mask;
110     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
111     __m256           one     = _mm256_set1_ps(1.0);
112     __m256           two     = _mm256_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
132
133     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
134     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
135     beta2            = _mm256_mul_ps(beta,beta);
136     beta3            = _mm256_mul_ps(beta,beta2);
137
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148     j_coord_offsetE = 0;
149     j_coord_offsetF = 0;
150     j_coord_offsetG = 0;
151     j_coord_offsetH = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
177
178         fix0             = _mm256_setzero_ps();
179         fiy0             = _mm256_setzero_ps();
180         fiz0             = _mm256_setzero_ps();
181
182         /* Load parameters for i particles */
183         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
184         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_ps();
188         vvdwsum          = _mm256_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             jnrE             = jjnr[jidx+4];
200             jnrF             = jjnr[jidx+5];
201             jnrG             = jjnr[jidx+6];
202             jnrH             = jjnr[jidx+7];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207             j_coord_offsetE  = DIM*jnrE;
208             j_coord_offsetF  = DIM*jnrF;
209             j_coord_offsetG  = DIM*jnrG;
210             j_coord_offsetH  = DIM*jnrH;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  x+j_coord_offsetE,x+j_coord_offsetF,
216                                                  x+j_coord_offsetG,x+j_coord_offsetH,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_ps(ix0,jx0);
221             dy00             = _mm256_sub_ps(iy0,jy0);
222             dz00             = _mm256_sub_ps(iz0,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
226
227             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
228
229             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                                  charge+jnrC+0,charge+jnrD+0,
234                                                                  charge+jnrE+0,charge+jnrF+0,
235                                                                  charge+jnrG+0,charge+jnrH+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240             vdwjidx0E        = 2*vdwtype[jnrE+0];
241             vdwjidx0F        = 2*vdwtype[jnrF+0];
242             vdwjidx0G        = 2*vdwtype[jnrG+0];
243             vdwjidx0H        = 2*vdwtype[jnrH+0];
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             r00              = _mm256_mul_ps(rsq00,rinv00);
250
251             /* Compute parameters for interactions between i and j atoms */
252             qq00             = _mm256_mul_ps(iq0,jq0);
253             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
254                                             vdwioffsetptr0+vdwjidx0B,
255                                             vdwioffsetptr0+vdwjidx0C,
256                                             vdwioffsetptr0+vdwjidx0D,
257                                             vdwioffsetptr0+vdwjidx0E,
258                                             vdwioffsetptr0+vdwjidx0F,
259                                             vdwioffsetptr0+vdwjidx0G,
260                                             vdwioffsetptr0+vdwjidx0H,
261                                             &c6_00,&c12_00);
262
263             /* Calculate table index by multiplying r with table scale and truncate to integer */
264             rt               = _mm256_mul_ps(r00,vftabscale);
265             vfitab           = _mm256_cvttps_epi32(rt);
266             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
267             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
268             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
269             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
270             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
271             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
272
273             /* EWALD ELECTROSTATICS */
274             
275             /* Analytical PME correction */
276             zeta2            = _mm256_mul_ps(beta2,rsq00);
277             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
278             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
279             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
280             felec            = _mm256_mul_ps(qq00,felec);
281             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
282             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
283             velec            = _mm256_sub_ps(rinv00,pmecorrV);
284             velec            = _mm256_mul_ps(qq00,velec);
285             
286             /* CUBIC SPLINE TABLE DISPERSION */
287             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
288                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
289             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
290                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
291             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
292                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
293             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
294                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
295             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
296             Heps             = _mm256_mul_ps(vfeps,H);
297             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
298             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
299             vvdw6            = _mm256_mul_ps(c6_00,VV);
300             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
301             fvdw6            = _mm256_mul_ps(c6_00,FF);
302
303             /* CUBIC SPLINE TABLE REPULSION */
304             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
305             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
306             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
307                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
308             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
309                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
310             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
311                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
312             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
313                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
314             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
315             Heps             = _mm256_mul_ps(vfeps,H);
316             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
317             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
318             vvdw12           = _mm256_mul_ps(c12_00,VV);
319             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
320             fvdw12           = _mm256_mul_ps(c12_00,FF);
321             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
322             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velecsum         = _mm256_add_ps(velecsum,velec);
326             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
327
328             fscal            = _mm256_add_ps(felec,fvdw);
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm256_mul_ps(fscal,dx00);
332             ty               = _mm256_mul_ps(fscal,dy00);
333             tz               = _mm256_mul_ps(fscal,dz00);
334
335             /* Update vectorial force */
336             fix0             = _mm256_add_ps(fix0,tx);
337             fiy0             = _mm256_add_ps(fiy0,ty);
338             fiz0             = _mm256_add_ps(fiz0,tz);
339
340             fjptrA             = f+j_coord_offsetA;
341             fjptrB             = f+j_coord_offsetB;
342             fjptrC             = f+j_coord_offsetC;
343             fjptrD             = f+j_coord_offsetD;
344             fjptrE             = f+j_coord_offsetE;
345             fjptrF             = f+j_coord_offsetF;
346             fjptrG             = f+j_coord_offsetG;
347             fjptrH             = f+j_coord_offsetH;
348             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
349
350             /* Inner loop uses 118 flops */
351         }
352
353         if(jidx<j_index_end)
354         {
355
356             /* Get j neighbor index, and coordinate index */
357             jnrlistA         = jjnr[jidx];
358             jnrlistB         = jjnr[jidx+1];
359             jnrlistC         = jjnr[jidx+2];
360             jnrlistD         = jjnr[jidx+3];
361             jnrlistE         = jjnr[jidx+4];
362             jnrlistF         = jjnr[jidx+5];
363             jnrlistG         = jjnr[jidx+6];
364             jnrlistH         = jjnr[jidx+7];
365             /* Sign of each element will be negative for non-real atoms.
366              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
367              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
368              */
369             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
370                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
371                                             
372             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
373             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
374             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
375             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
376             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
377             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
378             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
379             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
380             j_coord_offsetA  = DIM*jnrA;
381             j_coord_offsetB  = DIM*jnrB;
382             j_coord_offsetC  = DIM*jnrC;
383             j_coord_offsetD  = DIM*jnrD;
384             j_coord_offsetE  = DIM*jnrE;
385             j_coord_offsetF  = DIM*jnrF;
386             j_coord_offsetG  = DIM*jnrG;
387             j_coord_offsetH  = DIM*jnrH;
388
389             /* load j atom coordinates */
390             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
391                                                  x+j_coord_offsetC,x+j_coord_offsetD,
392                                                  x+j_coord_offsetE,x+j_coord_offsetF,
393                                                  x+j_coord_offsetG,x+j_coord_offsetH,
394                                                  &jx0,&jy0,&jz0);
395
396             /* Calculate displacement vector */
397             dx00             = _mm256_sub_ps(ix0,jx0);
398             dy00             = _mm256_sub_ps(iy0,jy0);
399             dz00             = _mm256_sub_ps(iz0,jz0);
400
401             /* Calculate squared distance and things based on it */
402             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
403
404             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
405
406             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
407
408             /* Load parameters for j particles */
409             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
410                                                                  charge+jnrC+0,charge+jnrD+0,
411                                                                  charge+jnrE+0,charge+jnrF+0,
412                                                                  charge+jnrG+0,charge+jnrH+0);
413             vdwjidx0A        = 2*vdwtype[jnrA+0];
414             vdwjidx0B        = 2*vdwtype[jnrB+0];
415             vdwjidx0C        = 2*vdwtype[jnrC+0];
416             vdwjidx0D        = 2*vdwtype[jnrD+0];
417             vdwjidx0E        = 2*vdwtype[jnrE+0];
418             vdwjidx0F        = 2*vdwtype[jnrF+0];
419             vdwjidx0G        = 2*vdwtype[jnrG+0];
420             vdwjidx0H        = 2*vdwtype[jnrH+0];
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             r00              = _mm256_mul_ps(rsq00,rinv00);
427             r00              = _mm256_andnot_ps(dummy_mask,r00);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq00             = _mm256_mul_ps(iq0,jq0);
431             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
432                                             vdwioffsetptr0+vdwjidx0B,
433                                             vdwioffsetptr0+vdwjidx0C,
434                                             vdwioffsetptr0+vdwjidx0D,
435                                             vdwioffsetptr0+vdwjidx0E,
436                                             vdwioffsetptr0+vdwjidx0F,
437                                             vdwioffsetptr0+vdwjidx0G,
438                                             vdwioffsetptr0+vdwjidx0H,
439                                             &c6_00,&c12_00);
440
441             /* Calculate table index by multiplying r with table scale and truncate to integer */
442             rt               = _mm256_mul_ps(r00,vftabscale);
443             vfitab           = _mm256_cvttps_epi32(rt);
444             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
445             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
446             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
447             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
448             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
449             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
450
451             /* EWALD ELECTROSTATICS */
452             
453             /* Analytical PME correction */
454             zeta2            = _mm256_mul_ps(beta2,rsq00);
455             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
456             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
457             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
458             felec            = _mm256_mul_ps(qq00,felec);
459             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
460             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
461             velec            = _mm256_sub_ps(rinv00,pmecorrV);
462             velec            = _mm256_mul_ps(qq00,velec);
463             
464             /* CUBIC SPLINE TABLE DISPERSION */
465             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
466                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
467             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
468                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
469             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
470                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
471             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
472                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
473             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
474             Heps             = _mm256_mul_ps(vfeps,H);
475             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
476             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
477             vvdw6            = _mm256_mul_ps(c6_00,VV);
478             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
479             fvdw6            = _mm256_mul_ps(c6_00,FF);
480
481             /* CUBIC SPLINE TABLE REPULSION */
482             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
483             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
484             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
485                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
486             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
487                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
488             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
489                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
490             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
491                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
492             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
493             Heps             = _mm256_mul_ps(vfeps,H);
494             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
495             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
496             vvdw12           = _mm256_mul_ps(c12_00,VV);
497             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
498             fvdw12           = _mm256_mul_ps(c12_00,FF);
499             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
500             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
501
502             /* Update potential sum for this i atom from the interaction with this j atom. */
503             velec            = _mm256_andnot_ps(dummy_mask,velec);
504             velecsum         = _mm256_add_ps(velecsum,velec);
505             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
506             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
507
508             fscal            = _mm256_add_ps(felec,fvdw);
509
510             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm256_mul_ps(fscal,dx00);
514             ty               = _mm256_mul_ps(fscal,dy00);
515             tz               = _mm256_mul_ps(fscal,dz00);
516
517             /* Update vectorial force */
518             fix0             = _mm256_add_ps(fix0,tx);
519             fiy0             = _mm256_add_ps(fiy0,ty);
520             fiz0             = _mm256_add_ps(fiz0,tz);
521
522             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
523             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
524             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
525             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
526             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
527             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
528             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
529             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
530             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
531
532             /* Inner loop uses 119 flops */
533         }
534
535         /* End of innermost loop */
536
537         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
538                                                  f+i_coord_offset,fshift+i_shift_offset);
539
540         ggid                        = gid[iidx];
541         /* Update potential energies */
542         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
543         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
544
545         /* Increment number of inner iterations */
546         inneriter                  += j_index_end - j_index_start;
547
548         /* Outer loop uses 9 flops */
549     }
550
551     /* Increment number of outer iterations */
552     outeriter        += nri;
553
554     /* Update outer/inner flops */
555
556     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*119);
557 }
558 /*
559  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_single
560  * Electrostatics interaction: Ewald
561  * VdW interaction:            CubicSplineTable
562  * Geometry:                   Particle-Particle
563  * Calculate force/pot:        Force
564  */
565 void
566 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_single
567                     (t_nblist                    * gmx_restrict       nlist,
568                      rvec                        * gmx_restrict          xx,
569                      rvec                        * gmx_restrict          ff,
570                      t_forcerec                  * gmx_restrict          fr,
571                      t_mdatoms                   * gmx_restrict     mdatoms,
572                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
573                      t_nrnb                      * gmx_restrict        nrnb)
574 {
575     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
576      * just 0 for non-waters.
577      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
578      * jnr indices corresponding to data put in the four positions in the SIMD register.
579      */
580     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
581     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
582     int              jnrA,jnrB,jnrC,jnrD;
583     int              jnrE,jnrF,jnrG,jnrH;
584     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
585     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
586     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
587     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
588     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
589     real             rcutoff_scalar;
590     real             *shiftvec,*fshift,*x,*f;
591     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
592     real             scratch[4*DIM];
593     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
594     real *           vdwioffsetptr0;
595     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
596     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
597     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
598     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
599     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
600     real             *charge;
601     int              nvdwtype;
602     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
603     int              *vdwtype;
604     real             *vdwparam;
605     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
606     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
607     __m256i          vfitab;
608     __m128i          vfitab_lo,vfitab_hi;
609     __m128i          ifour       = _mm_set1_epi32(4);
610     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
611     real             *vftab;
612     __m256i          ewitab;
613     __m128i          ewitab_lo,ewitab_hi;
614     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
615     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
616     real             *ewtab;
617     __m256           dummy_mask,cutoff_mask;
618     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
619     __m256           one     = _mm256_set1_ps(1.0);
620     __m256           two     = _mm256_set1_ps(2.0);
621     x                = xx[0];
622     f                = ff[0];
623
624     nri              = nlist->nri;
625     iinr             = nlist->iinr;
626     jindex           = nlist->jindex;
627     jjnr             = nlist->jjnr;
628     shiftidx         = nlist->shift;
629     gid              = nlist->gid;
630     shiftvec         = fr->shift_vec[0];
631     fshift           = fr->fshift[0];
632     facel            = _mm256_set1_ps(fr->epsfac);
633     charge           = mdatoms->chargeA;
634     nvdwtype         = fr->ntype;
635     vdwparam         = fr->nbfp;
636     vdwtype          = mdatoms->typeA;
637
638     vftab            = kernel_data->table_vdw->data;
639     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
640
641     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
642     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
643     beta2            = _mm256_mul_ps(beta,beta);
644     beta3            = _mm256_mul_ps(beta,beta2);
645
646     ewtab            = fr->ic->tabq_coul_F;
647     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
648     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
649
650     /* Avoid stupid compiler warnings */
651     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
652     j_coord_offsetA = 0;
653     j_coord_offsetB = 0;
654     j_coord_offsetC = 0;
655     j_coord_offsetD = 0;
656     j_coord_offsetE = 0;
657     j_coord_offsetF = 0;
658     j_coord_offsetG = 0;
659     j_coord_offsetH = 0;
660
661     outeriter        = 0;
662     inneriter        = 0;
663
664     for(iidx=0;iidx<4*DIM;iidx++)
665     {
666         scratch[iidx] = 0.0;
667     }
668
669     /* Start outer loop over neighborlists */
670     for(iidx=0; iidx<nri; iidx++)
671     {
672         /* Load shift vector for this list */
673         i_shift_offset   = DIM*shiftidx[iidx];
674
675         /* Load limits for loop over neighbors */
676         j_index_start    = jindex[iidx];
677         j_index_end      = jindex[iidx+1];
678
679         /* Get outer coordinate index */
680         inr              = iinr[iidx];
681         i_coord_offset   = DIM*inr;
682
683         /* Load i particle coords and add shift vector */
684         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
685
686         fix0             = _mm256_setzero_ps();
687         fiy0             = _mm256_setzero_ps();
688         fiz0             = _mm256_setzero_ps();
689
690         /* Load parameters for i particles */
691         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
692         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
693
694         /* Start inner kernel loop */
695         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
696         {
697
698             /* Get j neighbor index, and coordinate index */
699             jnrA             = jjnr[jidx];
700             jnrB             = jjnr[jidx+1];
701             jnrC             = jjnr[jidx+2];
702             jnrD             = jjnr[jidx+3];
703             jnrE             = jjnr[jidx+4];
704             jnrF             = jjnr[jidx+5];
705             jnrG             = jjnr[jidx+6];
706             jnrH             = jjnr[jidx+7];
707             j_coord_offsetA  = DIM*jnrA;
708             j_coord_offsetB  = DIM*jnrB;
709             j_coord_offsetC  = DIM*jnrC;
710             j_coord_offsetD  = DIM*jnrD;
711             j_coord_offsetE  = DIM*jnrE;
712             j_coord_offsetF  = DIM*jnrF;
713             j_coord_offsetG  = DIM*jnrG;
714             j_coord_offsetH  = DIM*jnrH;
715
716             /* load j atom coordinates */
717             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
718                                                  x+j_coord_offsetC,x+j_coord_offsetD,
719                                                  x+j_coord_offsetE,x+j_coord_offsetF,
720                                                  x+j_coord_offsetG,x+j_coord_offsetH,
721                                                  &jx0,&jy0,&jz0);
722
723             /* Calculate displacement vector */
724             dx00             = _mm256_sub_ps(ix0,jx0);
725             dy00             = _mm256_sub_ps(iy0,jy0);
726             dz00             = _mm256_sub_ps(iz0,jz0);
727
728             /* Calculate squared distance and things based on it */
729             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
730
731             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
732
733             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
734
735             /* Load parameters for j particles */
736             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
737                                                                  charge+jnrC+0,charge+jnrD+0,
738                                                                  charge+jnrE+0,charge+jnrF+0,
739                                                                  charge+jnrG+0,charge+jnrH+0);
740             vdwjidx0A        = 2*vdwtype[jnrA+0];
741             vdwjidx0B        = 2*vdwtype[jnrB+0];
742             vdwjidx0C        = 2*vdwtype[jnrC+0];
743             vdwjidx0D        = 2*vdwtype[jnrD+0];
744             vdwjidx0E        = 2*vdwtype[jnrE+0];
745             vdwjidx0F        = 2*vdwtype[jnrF+0];
746             vdwjidx0G        = 2*vdwtype[jnrG+0];
747             vdwjidx0H        = 2*vdwtype[jnrH+0];
748
749             /**************************
750              * CALCULATE INTERACTIONS *
751              **************************/
752
753             r00              = _mm256_mul_ps(rsq00,rinv00);
754
755             /* Compute parameters for interactions between i and j atoms */
756             qq00             = _mm256_mul_ps(iq0,jq0);
757             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
758                                             vdwioffsetptr0+vdwjidx0B,
759                                             vdwioffsetptr0+vdwjidx0C,
760                                             vdwioffsetptr0+vdwjidx0D,
761                                             vdwioffsetptr0+vdwjidx0E,
762                                             vdwioffsetptr0+vdwjidx0F,
763                                             vdwioffsetptr0+vdwjidx0G,
764                                             vdwioffsetptr0+vdwjidx0H,
765                                             &c6_00,&c12_00);
766
767             /* Calculate table index by multiplying r with table scale and truncate to integer */
768             rt               = _mm256_mul_ps(r00,vftabscale);
769             vfitab           = _mm256_cvttps_epi32(rt);
770             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
771             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
772             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
773             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
774             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
775             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
776
777             /* EWALD ELECTROSTATICS */
778             
779             /* Analytical PME correction */
780             zeta2            = _mm256_mul_ps(beta2,rsq00);
781             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
782             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
783             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
784             felec            = _mm256_mul_ps(qq00,felec);
785             
786             /* CUBIC SPLINE TABLE DISPERSION */
787             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
788                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
789             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
790                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
791             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
792                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
793             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
794                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
795             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
796             Heps             = _mm256_mul_ps(vfeps,H);
797             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
798             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
799             fvdw6            = _mm256_mul_ps(c6_00,FF);
800
801             /* CUBIC SPLINE TABLE REPULSION */
802             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
803             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
804             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
805                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
806             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
807                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
808             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
809                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
810             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
811                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
812             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
813             Heps             = _mm256_mul_ps(vfeps,H);
814             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
815             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
816             fvdw12           = _mm256_mul_ps(c12_00,FF);
817             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
818
819             fscal            = _mm256_add_ps(felec,fvdw);
820
821             /* Calculate temporary vectorial force */
822             tx               = _mm256_mul_ps(fscal,dx00);
823             ty               = _mm256_mul_ps(fscal,dy00);
824             tz               = _mm256_mul_ps(fscal,dz00);
825
826             /* Update vectorial force */
827             fix0             = _mm256_add_ps(fix0,tx);
828             fiy0             = _mm256_add_ps(fiy0,ty);
829             fiz0             = _mm256_add_ps(fiz0,tz);
830
831             fjptrA             = f+j_coord_offsetA;
832             fjptrB             = f+j_coord_offsetB;
833             fjptrC             = f+j_coord_offsetC;
834             fjptrD             = f+j_coord_offsetD;
835             fjptrE             = f+j_coord_offsetE;
836             fjptrF             = f+j_coord_offsetF;
837             fjptrG             = f+j_coord_offsetG;
838             fjptrH             = f+j_coord_offsetH;
839             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
840
841             /* Inner loop uses 82 flops */
842         }
843
844         if(jidx<j_index_end)
845         {
846
847             /* Get j neighbor index, and coordinate index */
848             jnrlistA         = jjnr[jidx];
849             jnrlistB         = jjnr[jidx+1];
850             jnrlistC         = jjnr[jidx+2];
851             jnrlistD         = jjnr[jidx+3];
852             jnrlistE         = jjnr[jidx+4];
853             jnrlistF         = jjnr[jidx+5];
854             jnrlistG         = jjnr[jidx+6];
855             jnrlistH         = jjnr[jidx+7];
856             /* Sign of each element will be negative for non-real atoms.
857              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
858              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
859              */
860             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
861                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
862                                             
863             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
864             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
865             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
866             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
867             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
868             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
869             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
870             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
871             j_coord_offsetA  = DIM*jnrA;
872             j_coord_offsetB  = DIM*jnrB;
873             j_coord_offsetC  = DIM*jnrC;
874             j_coord_offsetD  = DIM*jnrD;
875             j_coord_offsetE  = DIM*jnrE;
876             j_coord_offsetF  = DIM*jnrF;
877             j_coord_offsetG  = DIM*jnrG;
878             j_coord_offsetH  = DIM*jnrH;
879
880             /* load j atom coordinates */
881             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
882                                                  x+j_coord_offsetC,x+j_coord_offsetD,
883                                                  x+j_coord_offsetE,x+j_coord_offsetF,
884                                                  x+j_coord_offsetG,x+j_coord_offsetH,
885                                                  &jx0,&jy0,&jz0);
886
887             /* Calculate displacement vector */
888             dx00             = _mm256_sub_ps(ix0,jx0);
889             dy00             = _mm256_sub_ps(iy0,jy0);
890             dz00             = _mm256_sub_ps(iz0,jz0);
891
892             /* Calculate squared distance and things based on it */
893             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
894
895             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
896
897             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
898
899             /* Load parameters for j particles */
900             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
901                                                                  charge+jnrC+0,charge+jnrD+0,
902                                                                  charge+jnrE+0,charge+jnrF+0,
903                                                                  charge+jnrG+0,charge+jnrH+0);
904             vdwjidx0A        = 2*vdwtype[jnrA+0];
905             vdwjidx0B        = 2*vdwtype[jnrB+0];
906             vdwjidx0C        = 2*vdwtype[jnrC+0];
907             vdwjidx0D        = 2*vdwtype[jnrD+0];
908             vdwjidx0E        = 2*vdwtype[jnrE+0];
909             vdwjidx0F        = 2*vdwtype[jnrF+0];
910             vdwjidx0G        = 2*vdwtype[jnrG+0];
911             vdwjidx0H        = 2*vdwtype[jnrH+0];
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r00              = _mm256_mul_ps(rsq00,rinv00);
918             r00              = _mm256_andnot_ps(dummy_mask,r00);
919
920             /* Compute parameters for interactions between i and j atoms */
921             qq00             = _mm256_mul_ps(iq0,jq0);
922             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
923                                             vdwioffsetptr0+vdwjidx0B,
924                                             vdwioffsetptr0+vdwjidx0C,
925                                             vdwioffsetptr0+vdwjidx0D,
926                                             vdwioffsetptr0+vdwjidx0E,
927                                             vdwioffsetptr0+vdwjidx0F,
928                                             vdwioffsetptr0+vdwjidx0G,
929                                             vdwioffsetptr0+vdwjidx0H,
930                                             &c6_00,&c12_00);
931
932             /* Calculate table index by multiplying r with table scale and truncate to integer */
933             rt               = _mm256_mul_ps(r00,vftabscale);
934             vfitab           = _mm256_cvttps_epi32(rt);
935             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
936             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
937             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
938             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
939             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
940             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
941
942             /* EWALD ELECTROSTATICS */
943             
944             /* Analytical PME correction */
945             zeta2            = _mm256_mul_ps(beta2,rsq00);
946             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
947             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
948             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
949             felec            = _mm256_mul_ps(qq00,felec);
950             
951             /* CUBIC SPLINE TABLE DISPERSION */
952             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
953                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
954             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
955                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
956             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
957                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
958             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
959                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
960             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
961             Heps             = _mm256_mul_ps(vfeps,H);
962             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
963             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
964             fvdw6            = _mm256_mul_ps(c6_00,FF);
965
966             /* CUBIC SPLINE TABLE REPULSION */
967             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
968             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
969             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
970                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
971             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
972                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
973             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
974                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
975             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
976                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
977             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
978             Heps             = _mm256_mul_ps(vfeps,H);
979             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
980             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
981             fvdw12           = _mm256_mul_ps(c12_00,FF);
982             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
983
984             fscal            = _mm256_add_ps(felec,fvdw);
985
986             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
987
988             /* Calculate temporary vectorial force */
989             tx               = _mm256_mul_ps(fscal,dx00);
990             ty               = _mm256_mul_ps(fscal,dy00);
991             tz               = _mm256_mul_ps(fscal,dz00);
992
993             /* Update vectorial force */
994             fix0             = _mm256_add_ps(fix0,tx);
995             fiy0             = _mm256_add_ps(fiy0,ty);
996             fiz0             = _mm256_add_ps(fiz0,tz);
997
998             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
999             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1000             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1001             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1002             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1003             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1004             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1005             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1006             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1007
1008             /* Inner loop uses 83 flops */
1009         }
1010
1011         /* End of innermost loop */
1012
1013         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1014                                                  f+i_coord_offset,fshift+i_shift_offset);
1015
1016         /* Increment number of inner iterations */
1017         inneriter                  += j_index_end - j_index_start;
1018
1019         /* Outer loop uses 7 flops */
1020     }
1021
1022     /* Increment number of outer iterations */
1023     outeriter        += nri;
1024
1025     /* Update outer/inner flops */
1026
1027     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
1028 }