Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
97     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
98     __m256i          vfitab;
99     __m128i          vfitab_lo,vfitab_hi;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m256i          ewitab;
104     __m128i          ewitab_lo,ewitab_hi;
105     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
107     real             *ewtab;
108     __m256           dummy_mask,cutoff_mask;
109     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
110     __m256           one     = _mm256_set1_ps(1.0);
111     __m256           two     = _mm256_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
131
132     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
133     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
134     beta2            = _mm256_mul_ps(beta,beta);
135     beta3            = _mm256_mul_ps(beta,beta2);
136
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147     j_coord_offsetE = 0;
148     j_coord_offsetF = 0;
149     j_coord_offsetG = 0;
150     j_coord_offsetH = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
176
177         fix0             = _mm256_setzero_ps();
178         fiy0             = _mm256_setzero_ps();
179         fiz0             = _mm256_setzero_ps();
180
181         /* Load parameters for i particles */
182         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
183         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
184
185         /* Reset potential sums */
186         velecsum         = _mm256_setzero_ps();
187         vvdwsum          = _mm256_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             jnrE             = jjnr[jidx+4];
199             jnrF             = jjnr[jidx+5];
200             jnrG             = jjnr[jidx+6];
201             jnrH             = jjnr[jidx+7];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206             j_coord_offsetE  = DIM*jnrE;
207             j_coord_offsetF  = DIM*jnrF;
208             j_coord_offsetG  = DIM*jnrG;
209             j_coord_offsetH  = DIM*jnrH;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  x+j_coord_offsetE,x+j_coord_offsetF,
215                                                  x+j_coord_offsetG,x+j_coord_offsetH,
216                                                  &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm256_sub_ps(ix0,jx0);
220             dy00             = _mm256_sub_ps(iy0,jy0);
221             dz00             = _mm256_sub_ps(iz0,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
225
226             rinv00           = avx256_invsqrt_f(rsq00);
227
228             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232                                                                  charge+jnrC+0,charge+jnrD+0,
233                                                                  charge+jnrE+0,charge+jnrF+0,
234                                                                  charge+jnrG+0,charge+jnrH+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239             vdwjidx0E        = 2*vdwtype[jnrE+0];
240             vdwjidx0F        = 2*vdwtype[jnrF+0];
241             vdwjidx0G        = 2*vdwtype[jnrG+0];
242             vdwjidx0H        = 2*vdwtype[jnrH+0];
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             r00              = _mm256_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm256_mul_ps(iq0,jq0);
252             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
253                                             vdwioffsetptr0+vdwjidx0B,
254                                             vdwioffsetptr0+vdwjidx0C,
255                                             vdwioffsetptr0+vdwjidx0D,
256                                             vdwioffsetptr0+vdwjidx0E,
257                                             vdwioffsetptr0+vdwjidx0F,
258                                             vdwioffsetptr0+vdwjidx0G,
259                                             vdwioffsetptr0+vdwjidx0H,
260                                             &c6_00,&c12_00);
261
262             /* Calculate table index by multiplying r with table scale and truncate to integer */
263             rt               = _mm256_mul_ps(r00,vftabscale);
264             vfitab           = _mm256_cvttps_epi32(rt);
265             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
266             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
267             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
268             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
269             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
270             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
271
272             /* EWALD ELECTROSTATICS */
273             
274             /* Analytical PME correction */
275             zeta2            = _mm256_mul_ps(beta2,rsq00);
276             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
277             pmecorrF         = avx256_pmecorrF_f(zeta2);
278             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
279             felec            = _mm256_mul_ps(qq00,felec);
280             pmecorrV         = avx256_pmecorrV_f(zeta2);
281             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
282             velec            = _mm256_sub_ps(rinv00,pmecorrV);
283             velec            = _mm256_mul_ps(qq00,velec);
284             
285             /* CUBIC SPLINE TABLE DISPERSION */
286             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
287                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
288             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
289                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
290             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
291                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
292             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
293                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
294             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
295             Heps             = _mm256_mul_ps(vfeps,H);
296             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
297             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
298             vvdw6            = _mm256_mul_ps(c6_00,VV);
299             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
300             fvdw6            = _mm256_mul_ps(c6_00,FF);
301
302             /* CUBIC SPLINE TABLE REPULSION */
303             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
304             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
305             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
307             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
309             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
311             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
313             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
314             Heps             = _mm256_mul_ps(vfeps,H);
315             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
316             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
317             vvdw12           = _mm256_mul_ps(c12_00,VV);
318             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
319             fvdw12           = _mm256_mul_ps(c12_00,FF);
320             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
321             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velecsum         = _mm256_add_ps(velecsum,velec);
325             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
326
327             fscal            = _mm256_add_ps(felec,fvdw);
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm256_mul_ps(fscal,dx00);
331             ty               = _mm256_mul_ps(fscal,dy00);
332             tz               = _mm256_mul_ps(fscal,dz00);
333
334             /* Update vectorial force */
335             fix0             = _mm256_add_ps(fix0,tx);
336             fiy0             = _mm256_add_ps(fiy0,ty);
337             fiz0             = _mm256_add_ps(fiz0,tz);
338
339             fjptrA             = f+j_coord_offsetA;
340             fjptrB             = f+j_coord_offsetB;
341             fjptrC             = f+j_coord_offsetC;
342             fjptrD             = f+j_coord_offsetD;
343             fjptrE             = f+j_coord_offsetE;
344             fjptrF             = f+j_coord_offsetF;
345             fjptrG             = f+j_coord_offsetG;
346             fjptrH             = f+j_coord_offsetH;
347             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
348
349             /* Inner loop uses 118 flops */
350         }
351
352         if(jidx<j_index_end)
353         {
354
355             /* Get j neighbor index, and coordinate index */
356             jnrlistA         = jjnr[jidx];
357             jnrlistB         = jjnr[jidx+1];
358             jnrlistC         = jjnr[jidx+2];
359             jnrlistD         = jjnr[jidx+3];
360             jnrlistE         = jjnr[jidx+4];
361             jnrlistF         = jjnr[jidx+5];
362             jnrlistG         = jjnr[jidx+6];
363             jnrlistH         = jjnr[jidx+7];
364             /* Sign of each element will be negative for non-real atoms.
365              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
366              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
367              */
368             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
369                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
370                                             
371             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
372             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
373             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
374             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
375             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
376             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
377             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
378             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
379             j_coord_offsetA  = DIM*jnrA;
380             j_coord_offsetB  = DIM*jnrB;
381             j_coord_offsetC  = DIM*jnrC;
382             j_coord_offsetD  = DIM*jnrD;
383             j_coord_offsetE  = DIM*jnrE;
384             j_coord_offsetF  = DIM*jnrF;
385             j_coord_offsetG  = DIM*jnrG;
386             j_coord_offsetH  = DIM*jnrH;
387
388             /* load j atom coordinates */
389             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
390                                                  x+j_coord_offsetC,x+j_coord_offsetD,
391                                                  x+j_coord_offsetE,x+j_coord_offsetF,
392                                                  x+j_coord_offsetG,x+j_coord_offsetH,
393                                                  &jx0,&jy0,&jz0);
394
395             /* Calculate displacement vector */
396             dx00             = _mm256_sub_ps(ix0,jx0);
397             dy00             = _mm256_sub_ps(iy0,jy0);
398             dz00             = _mm256_sub_ps(iz0,jz0);
399
400             /* Calculate squared distance and things based on it */
401             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
402
403             rinv00           = avx256_invsqrt_f(rsq00);
404
405             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
406
407             /* Load parameters for j particles */
408             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
409                                                                  charge+jnrC+0,charge+jnrD+0,
410                                                                  charge+jnrE+0,charge+jnrF+0,
411                                                                  charge+jnrG+0,charge+jnrH+0);
412             vdwjidx0A        = 2*vdwtype[jnrA+0];
413             vdwjidx0B        = 2*vdwtype[jnrB+0];
414             vdwjidx0C        = 2*vdwtype[jnrC+0];
415             vdwjidx0D        = 2*vdwtype[jnrD+0];
416             vdwjidx0E        = 2*vdwtype[jnrE+0];
417             vdwjidx0F        = 2*vdwtype[jnrF+0];
418             vdwjidx0G        = 2*vdwtype[jnrG+0];
419             vdwjidx0H        = 2*vdwtype[jnrH+0];
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             r00              = _mm256_mul_ps(rsq00,rinv00);
426             r00              = _mm256_andnot_ps(dummy_mask,r00);
427
428             /* Compute parameters for interactions between i and j atoms */
429             qq00             = _mm256_mul_ps(iq0,jq0);
430             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
431                                             vdwioffsetptr0+vdwjidx0B,
432                                             vdwioffsetptr0+vdwjidx0C,
433                                             vdwioffsetptr0+vdwjidx0D,
434                                             vdwioffsetptr0+vdwjidx0E,
435                                             vdwioffsetptr0+vdwjidx0F,
436                                             vdwioffsetptr0+vdwjidx0G,
437                                             vdwioffsetptr0+vdwjidx0H,
438                                             &c6_00,&c12_00);
439
440             /* Calculate table index by multiplying r with table scale and truncate to integer */
441             rt               = _mm256_mul_ps(r00,vftabscale);
442             vfitab           = _mm256_cvttps_epi32(rt);
443             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
444             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
445             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
446             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
447             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
448             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
449
450             /* EWALD ELECTROSTATICS */
451             
452             /* Analytical PME correction */
453             zeta2            = _mm256_mul_ps(beta2,rsq00);
454             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
455             pmecorrF         = avx256_pmecorrF_f(zeta2);
456             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
457             felec            = _mm256_mul_ps(qq00,felec);
458             pmecorrV         = avx256_pmecorrV_f(zeta2);
459             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
460             velec            = _mm256_sub_ps(rinv00,pmecorrV);
461             velec            = _mm256_mul_ps(qq00,velec);
462             
463             /* CUBIC SPLINE TABLE DISPERSION */
464             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
465                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
466             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
467                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
468             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
469                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
470             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
471                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
472             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
473             Heps             = _mm256_mul_ps(vfeps,H);
474             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
475             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
476             vvdw6            = _mm256_mul_ps(c6_00,VV);
477             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
478             fvdw6            = _mm256_mul_ps(c6_00,FF);
479
480             /* CUBIC SPLINE TABLE REPULSION */
481             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
482             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
483             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
484                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
485             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
486                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
487             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
488                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
489             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
490                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
491             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
492             Heps             = _mm256_mul_ps(vfeps,H);
493             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
494             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
495             vvdw12           = _mm256_mul_ps(c12_00,VV);
496             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
497             fvdw12           = _mm256_mul_ps(c12_00,FF);
498             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
499             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
500
501             /* Update potential sum for this i atom from the interaction with this j atom. */
502             velec            = _mm256_andnot_ps(dummy_mask,velec);
503             velecsum         = _mm256_add_ps(velecsum,velec);
504             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
505             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
506
507             fscal            = _mm256_add_ps(felec,fvdw);
508
509             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
510
511             /* Calculate temporary vectorial force */
512             tx               = _mm256_mul_ps(fscal,dx00);
513             ty               = _mm256_mul_ps(fscal,dy00);
514             tz               = _mm256_mul_ps(fscal,dz00);
515
516             /* Update vectorial force */
517             fix0             = _mm256_add_ps(fix0,tx);
518             fiy0             = _mm256_add_ps(fiy0,ty);
519             fiz0             = _mm256_add_ps(fiz0,tz);
520
521             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
522             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
523             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
524             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
525             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
526             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
527             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
528             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
529             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
530
531             /* Inner loop uses 119 flops */
532         }
533
534         /* End of innermost loop */
535
536         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
537                                                  f+i_coord_offset,fshift+i_shift_offset);
538
539         ggid                        = gid[iidx];
540         /* Update potential energies */
541         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
542         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
543
544         /* Increment number of inner iterations */
545         inneriter                  += j_index_end - j_index_start;
546
547         /* Outer loop uses 9 flops */
548     }
549
550     /* Increment number of outer iterations */
551     outeriter        += nri;
552
553     /* Update outer/inner flops */
554
555     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*119);
556 }
557 /*
558  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_single
559  * Electrostatics interaction: Ewald
560  * VdW interaction:            CubicSplineTable
561  * Geometry:                   Particle-Particle
562  * Calculate force/pot:        Force
563  */
564 void
565 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_single
566                     (t_nblist                    * gmx_restrict       nlist,
567                      rvec                        * gmx_restrict          xx,
568                      rvec                        * gmx_restrict          ff,
569                      struct t_forcerec           * gmx_restrict          fr,
570                      t_mdatoms                   * gmx_restrict     mdatoms,
571                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
572                      t_nrnb                      * gmx_restrict        nrnb)
573 {
574     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
575      * just 0 for non-waters.
576      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
577      * jnr indices corresponding to data put in the four positions in the SIMD register.
578      */
579     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
580     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
581     int              jnrA,jnrB,jnrC,jnrD;
582     int              jnrE,jnrF,jnrG,jnrH;
583     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
584     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
585     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
586     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
587     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
588     real             rcutoff_scalar;
589     real             *shiftvec,*fshift,*x,*f;
590     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
591     real             scratch[4*DIM];
592     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
593     real *           vdwioffsetptr0;
594     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
595     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
596     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
597     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
598     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
599     real             *charge;
600     int              nvdwtype;
601     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
602     int              *vdwtype;
603     real             *vdwparam;
604     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
605     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
606     __m256i          vfitab;
607     __m128i          vfitab_lo,vfitab_hi;
608     __m128i          ifour       = _mm_set1_epi32(4);
609     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
610     real             *vftab;
611     __m256i          ewitab;
612     __m128i          ewitab_lo,ewitab_hi;
613     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
614     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
615     real             *ewtab;
616     __m256           dummy_mask,cutoff_mask;
617     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
618     __m256           one     = _mm256_set1_ps(1.0);
619     __m256           two     = _mm256_set1_ps(2.0);
620     x                = xx[0];
621     f                = ff[0];
622
623     nri              = nlist->nri;
624     iinr             = nlist->iinr;
625     jindex           = nlist->jindex;
626     jjnr             = nlist->jjnr;
627     shiftidx         = nlist->shift;
628     gid              = nlist->gid;
629     shiftvec         = fr->shift_vec[0];
630     fshift           = fr->fshift[0];
631     facel            = _mm256_set1_ps(fr->ic->epsfac);
632     charge           = mdatoms->chargeA;
633     nvdwtype         = fr->ntype;
634     vdwparam         = fr->nbfp;
635     vdwtype          = mdatoms->typeA;
636
637     vftab            = kernel_data->table_vdw->data;
638     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
639
640     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
641     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
642     beta2            = _mm256_mul_ps(beta,beta);
643     beta3            = _mm256_mul_ps(beta,beta2);
644
645     ewtab            = fr->ic->tabq_coul_F;
646     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
647     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
648
649     /* Avoid stupid compiler warnings */
650     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
651     j_coord_offsetA = 0;
652     j_coord_offsetB = 0;
653     j_coord_offsetC = 0;
654     j_coord_offsetD = 0;
655     j_coord_offsetE = 0;
656     j_coord_offsetF = 0;
657     j_coord_offsetG = 0;
658     j_coord_offsetH = 0;
659
660     outeriter        = 0;
661     inneriter        = 0;
662
663     for(iidx=0;iidx<4*DIM;iidx++)
664     {
665         scratch[iidx] = 0.0;
666     }
667
668     /* Start outer loop over neighborlists */
669     for(iidx=0; iidx<nri; iidx++)
670     {
671         /* Load shift vector for this list */
672         i_shift_offset   = DIM*shiftidx[iidx];
673
674         /* Load limits for loop over neighbors */
675         j_index_start    = jindex[iidx];
676         j_index_end      = jindex[iidx+1];
677
678         /* Get outer coordinate index */
679         inr              = iinr[iidx];
680         i_coord_offset   = DIM*inr;
681
682         /* Load i particle coords and add shift vector */
683         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
684
685         fix0             = _mm256_setzero_ps();
686         fiy0             = _mm256_setzero_ps();
687         fiz0             = _mm256_setzero_ps();
688
689         /* Load parameters for i particles */
690         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
691         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
692
693         /* Start inner kernel loop */
694         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
695         {
696
697             /* Get j neighbor index, and coordinate index */
698             jnrA             = jjnr[jidx];
699             jnrB             = jjnr[jidx+1];
700             jnrC             = jjnr[jidx+2];
701             jnrD             = jjnr[jidx+3];
702             jnrE             = jjnr[jidx+4];
703             jnrF             = jjnr[jidx+5];
704             jnrG             = jjnr[jidx+6];
705             jnrH             = jjnr[jidx+7];
706             j_coord_offsetA  = DIM*jnrA;
707             j_coord_offsetB  = DIM*jnrB;
708             j_coord_offsetC  = DIM*jnrC;
709             j_coord_offsetD  = DIM*jnrD;
710             j_coord_offsetE  = DIM*jnrE;
711             j_coord_offsetF  = DIM*jnrF;
712             j_coord_offsetG  = DIM*jnrG;
713             j_coord_offsetH  = DIM*jnrH;
714
715             /* load j atom coordinates */
716             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
717                                                  x+j_coord_offsetC,x+j_coord_offsetD,
718                                                  x+j_coord_offsetE,x+j_coord_offsetF,
719                                                  x+j_coord_offsetG,x+j_coord_offsetH,
720                                                  &jx0,&jy0,&jz0);
721
722             /* Calculate displacement vector */
723             dx00             = _mm256_sub_ps(ix0,jx0);
724             dy00             = _mm256_sub_ps(iy0,jy0);
725             dz00             = _mm256_sub_ps(iz0,jz0);
726
727             /* Calculate squared distance and things based on it */
728             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
729
730             rinv00           = avx256_invsqrt_f(rsq00);
731
732             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
733
734             /* Load parameters for j particles */
735             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
736                                                                  charge+jnrC+0,charge+jnrD+0,
737                                                                  charge+jnrE+0,charge+jnrF+0,
738                                                                  charge+jnrG+0,charge+jnrH+0);
739             vdwjidx0A        = 2*vdwtype[jnrA+0];
740             vdwjidx0B        = 2*vdwtype[jnrB+0];
741             vdwjidx0C        = 2*vdwtype[jnrC+0];
742             vdwjidx0D        = 2*vdwtype[jnrD+0];
743             vdwjidx0E        = 2*vdwtype[jnrE+0];
744             vdwjidx0F        = 2*vdwtype[jnrF+0];
745             vdwjidx0G        = 2*vdwtype[jnrG+0];
746             vdwjidx0H        = 2*vdwtype[jnrH+0];
747
748             /**************************
749              * CALCULATE INTERACTIONS *
750              **************************/
751
752             r00              = _mm256_mul_ps(rsq00,rinv00);
753
754             /* Compute parameters for interactions between i and j atoms */
755             qq00             = _mm256_mul_ps(iq0,jq0);
756             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
757                                             vdwioffsetptr0+vdwjidx0B,
758                                             vdwioffsetptr0+vdwjidx0C,
759                                             vdwioffsetptr0+vdwjidx0D,
760                                             vdwioffsetptr0+vdwjidx0E,
761                                             vdwioffsetptr0+vdwjidx0F,
762                                             vdwioffsetptr0+vdwjidx0G,
763                                             vdwioffsetptr0+vdwjidx0H,
764                                             &c6_00,&c12_00);
765
766             /* Calculate table index by multiplying r with table scale and truncate to integer */
767             rt               = _mm256_mul_ps(r00,vftabscale);
768             vfitab           = _mm256_cvttps_epi32(rt);
769             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
770             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
771             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
772             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
773             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
774             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
775
776             /* EWALD ELECTROSTATICS */
777             
778             /* Analytical PME correction */
779             zeta2            = _mm256_mul_ps(beta2,rsq00);
780             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
781             pmecorrF         = avx256_pmecorrF_f(zeta2);
782             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
783             felec            = _mm256_mul_ps(qq00,felec);
784             
785             /* CUBIC SPLINE TABLE DISPERSION */
786             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
787                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
788             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
789                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
790             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
791                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
792             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
793                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
794             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
795             Heps             = _mm256_mul_ps(vfeps,H);
796             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
797             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
798             fvdw6            = _mm256_mul_ps(c6_00,FF);
799
800             /* CUBIC SPLINE TABLE REPULSION */
801             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
802             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
803             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
804                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
805             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
806                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
807             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
808                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
809             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
810                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
811             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
812             Heps             = _mm256_mul_ps(vfeps,H);
813             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
814             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
815             fvdw12           = _mm256_mul_ps(c12_00,FF);
816             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
817
818             fscal            = _mm256_add_ps(felec,fvdw);
819
820             /* Calculate temporary vectorial force */
821             tx               = _mm256_mul_ps(fscal,dx00);
822             ty               = _mm256_mul_ps(fscal,dy00);
823             tz               = _mm256_mul_ps(fscal,dz00);
824
825             /* Update vectorial force */
826             fix0             = _mm256_add_ps(fix0,tx);
827             fiy0             = _mm256_add_ps(fiy0,ty);
828             fiz0             = _mm256_add_ps(fiz0,tz);
829
830             fjptrA             = f+j_coord_offsetA;
831             fjptrB             = f+j_coord_offsetB;
832             fjptrC             = f+j_coord_offsetC;
833             fjptrD             = f+j_coord_offsetD;
834             fjptrE             = f+j_coord_offsetE;
835             fjptrF             = f+j_coord_offsetF;
836             fjptrG             = f+j_coord_offsetG;
837             fjptrH             = f+j_coord_offsetH;
838             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
839
840             /* Inner loop uses 82 flops */
841         }
842
843         if(jidx<j_index_end)
844         {
845
846             /* Get j neighbor index, and coordinate index */
847             jnrlistA         = jjnr[jidx];
848             jnrlistB         = jjnr[jidx+1];
849             jnrlistC         = jjnr[jidx+2];
850             jnrlistD         = jjnr[jidx+3];
851             jnrlistE         = jjnr[jidx+4];
852             jnrlistF         = jjnr[jidx+5];
853             jnrlistG         = jjnr[jidx+6];
854             jnrlistH         = jjnr[jidx+7];
855             /* Sign of each element will be negative for non-real atoms.
856              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
857              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
858              */
859             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
860                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
861                                             
862             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
863             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
864             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
865             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
866             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
867             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
868             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
869             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
870             j_coord_offsetA  = DIM*jnrA;
871             j_coord_offsetB  = DIM*jnrB;
872             j_coord_offsetC  = DIM*jnrC;
873             j_coord_offsetD  = DIM*jnrD;
874             j_coord_offsetE  = DIM*jnrE;
875             j_coord_offsetF  = DIM*jnrF;
876             j_coord_offsetG  = DIM*jnrG;
877             j_coord_offsetH  = DIM*jnrH;
878
879             /* load j atom coordinates */
880             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
881                                                  x+j_coord_offsetC,x+j_coord_offsetD,
882                                                  x+j_coord_offsetE,x+j_coord_offsetF,
883                                                  x+j_coord_offsetG,x+j_coord_offsetH,
884                                                  &jx0,&jy0,&jz0);
885
886             /* Calculate displacement vector */
887             dx00             = _mm256_sub_ps(ix0,jx0);
888             dy00             = _mm256_sub_ps(iy0,jy0);
889             dz00             = _mm256_sub_ps(iz0,jz0);
890
891             /* Calculate squared distance and things based on it */
892             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
893
894             rinv00           = avx256_invsqrt_f(rsq00);
895
896             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
897
898             /* Load parameters for j particles */
899             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
900                                                                  charge+jnrC+0,charge+jnrD+0,
901                                                                  charge+jnrE+0,charge+jnrF+0,
902                                                                  charge+jnrG+0,charge+jnrH+0);
903             vdwjidx0A        = 2*vdwtype[jnrA+0];
904             vdwjidx0B        = 2*vdwtype[jnrB+0];
905             vdwjidx0C        = 2*vdwtype[jnrC+0];
906             vdwjidx0D        = 2*vdwtype[jnrD+0];
907             vdwjidx0E        = 2*vdwtype[jnrE+0];
908             vdwjidx0F        = 2*vdwtype[jnrF+0];
909             vdwjidx0G        = 2*vdwtype[jnrG+0];
910             vdwjidx0H        = 2*vdwtype[jnrH+0];
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             r00              = _mm256_mul_ps(rsq00,rinv00);
917             r00              = _mm256_andnot_ps(dummy_mask,r00);
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq00             = _mm256_mul_ps(iq0,jq0);
921             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
922                                             vdwioffsetptr0+vdwjidx0B,
923                                             vdwioffsetptr0+vdwjidx0C,
924                                             vdwioffsetptr0+vdwjidx0D,
925                                             vdwioffsetptr0+vdwjidx0E,
926                                             vdwioffsetptr0+vdwjidx0F,
927                                             vdwioffsetptr0+vdwjidx0G,
928                                             vdwioffsetptr0+vdwjidx0H,
929                                             &c6_00,&c12_00);
930
931             /* Calculate table index by multiplying r with table scale and truncate to integer */
932             rt               = _mm256_mul_ps(r00,vftabscale);
933             vfitab           = _mm256_cvttps_epi32(rt);
934             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
935             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
936             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
937             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
938             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
939             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
940
941             /* EWALD ELECTROSTATICS */
942             
943             /* Analytical PME correction */
944             zeta2            = _mm256_mul_ps(beta2,rsq00);
945             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
946             pmecorrF         = avx256_pmecorrF_f(zeta2);
947             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
948             felec            = _mm256_mul_ps(qq00,felec);
949             
950             /* CUBIC SPLINE TABLE DISPERSION */
951             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
952                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
953             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
954                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
955             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
956                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
957             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
958                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
959             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
960             Heps             = _mm256_mul_ps(vfeps,H);
961             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
962             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
963             fvdw6            = _mm256_mul_ps(c6_00,FF);
964
965             /* CUBIC SPLINE TABLE REPULSION */
966             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
967             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
968             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
969                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
970             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
971                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
972             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
973                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
974             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
975                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
976             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
977             Heps             = _mm256_mul_ps(vfeps,H);
978             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
979             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
980             fvdw12           = _mm256_mul_ps(c12_00,FF);
981             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
982
983             fscal            = _mm256_add_ps(felec,fvdw);
984
985             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
986
987             /* Calculate temporary vectorial force */
988             tx               = _mm256_mul_ps(fscal,dx00);
989             ty               = _mm256_mul_ps(fscal,dy00);
990             tz               = _mm256_mul_ps(fscal,dz00);
991
992             /* Update vectorial force */
993             fix0             = _mm256_add_ps(fix0,tx);
994             fiy0             = _mm256_add_ps(fiy0,ty);
995             fiz0             = _mm256_add_ps(fiz0,tz);
996
997             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
998             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
999             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1000             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1001             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1002             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1003             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1004             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1005             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1006
1007             /* Inner loop uses 83 flops */
1008         }
1009
1010         /* End of innermost loop */
1011
1012         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1013                                                  f+i_coord_offset,fshift+i_shift_offset);
1014
1015         /* Increment number of inner iterations */
1016         inneriter                  += j_index_end - j_index_start;
1017
1018         /* Outer loop uses 7 flops */
1019     }
1020
1021     /* Increment number of outer iterations */
1022     outeriter        += nri;
1023
1024     /* Update outer/inner flops */
1025
1026     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
1027 }