Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     __m256i          ewitab;
102     __m128i          ewitab_lo,ewitab_hi;
103     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
107     real             rswitch_scalar,d_scalar;
108     __m256           dummy_mask,cutoff_mask;
109     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
110     __m256           one     = _mm256_set1_ps(1.0);
111     __m256           two     = _mm256_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125
126     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
127     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
128     beta2            = _mm256_mul_ps(beta,beta);
129     beta3            = _mm256_mul_ps(beta,beta2);
130
131     ewtab            = fr->ic->tabq_coul_FDV0;
132     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
133     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
138     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
139     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
140
141     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
142     rcutoff_scalar   = fr->rcoulomb;
143     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
144     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
145
146     rswitch_scalar   = fr->rcoulomb_switch;
147     rswitch          = _mm256_set1_ps(rswitch_scalar);
148     /* Setup switch parameters */
149     d_scalar         = rcutoff_scalar-rswitch_scalar;
150     d                = _mm256_set1_ps(d_scalar);
151     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
152     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
153     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
154     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
155     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
156     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
157
158     /* Avoid stupid compiler warnings */
159     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
160     j_coord_offsetA = 0;
161     j_coord_offsetB = 0;
162     j_coord_offsetC = 0;
163     j_coord_offsetD = 0;
164     j_coord_offsetE = 0;
165     j_coord_offsetF = 0;
166     j_coord_offsetG = 0;
167     j_coord_offsetH = 0;
168
169     outeriter        = 0;
170     inneriter        = 0;
171
172     for(iidx=0;iidx<4*DIM;iidx++)
173     {
174         scratch[iidx] = 0.0;
175     }
176
177     /* Start outer loop over neighborlists */
178     for(iidx=0; iidx<nri; iidx++)
179     {
180         /* Load shift vector for this list */
181         i_shift_offset   = DIM*shiftidx[iidx];
182
183         /* Load limits for loop over neighbors */
184         j_index_start    = jindex[iidx];
185         j_index_end      = jindex[iidx+1];
186
187         /* Get outer coordinate index */
188         inr              = iinr[iidx];
189         i_coord_offset   = DIM*inr;
190
191         /* Load i particle coords and add shift vector */
192         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
193                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
194
195         fix0             = _mm256_setzero_ps();
196         fiy0             = _mm256_setzero_ps();
197         fiz0             = _mm256_setzero_ps();
198         fix1             = _mm256_setzero_ps();
199         fiy1             = _mm256_setzero_ps();
200         fiz1             = _mm256_setzero_ps();
201         fix2             = _mm256_setzero_ps();
202         fiy2             = _mm256_setzero_ps();
203         fiz2             = _mm256_setzero_ps();
204
205         /* Reset potential sums */
206         velecsum         = _mm256_setzero_ps();
207
208         /* Start inner kernel loop */
209         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
210         {
211
212             /* Get j neighbor index, and coordinate index */
213             jnrA             = jjnr[jidx];
214             jnrB             = jjnr[jidx+1];
215             jnrC             = jjnr[jidx+2];
216             jnrD             = jjnr[jidx+3];
217             jnrE             = jjnr[jidx+4];
218             jnrF             = jjnr[jidx+5];
219             jnrG             = jjnr[jidx+6];
220             jnrH             = jjnr[jidx+7];
221             j_coord_offsetA  = DIM*jnrA;
222             j_coord_offsetB  = DIM*jnrB;
223             j_coord_offsetC  = DIM*jnrC;
224             j_coord_offsetD  = DIM*jnrD;
225             j_coord_offsetE  = DIM*jnrE;
226             j_coord_offsetF  = DIM*jnrF;
227             j_coord_offsetG  = DIM*jnrG;
228             j_coord_offsetH  = DIM*jnrH;
229
230             /* load j atom coordinates */
231             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
232                                                  x+j_coord_offsetC,x+j_coord_offsetD,
233                                                  x+j_coord_offsetE,x+j_coord_offsetF,
234                                                  x+j_coord_offsetG,x+j_coord_offsetH,
235                                                  &jx0,&jy0,&jz0);
236
237             /* Calculate displacement vector */
238             dx00             = _mm256_sub_ps(ix0,jx0);
239             dy00             = _mm256_sub_ps(iy0,jy0);
240             dz00             = _mm256_sub_ps(iz0,jz0);
241             dx10             = _mm256_sub_ps(ix1,jx0);
242             dy10             = _mm256_sub_ps(iy1,jy0);
243             dz10             = _mm256_sub_ps(iz1,jz0);
244             dx20             = _mm256_sub_ps(ix2,jx0);
245             dy20             = _mm256_sub_ps(iy2,jy0);
246             dz20             = _mm256_sub_ps(iz2,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
250             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
251             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
252
253             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
254             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
255             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
256
257             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
258             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
259             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
260
261             /* Load parameters for j particles */
262             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
263                                                                  charge+jnrC+0,charge+jnrD+0,
264                                                                  charge+jnrE+0,charge+jnrF+0,
265                                                                  charge+jnrG+0,charge+jnrH+0);
266
267             fjx0             = _mm256_setzero_ps();
268             fjy0             = _mm256_setzero_ps();
269             fjz0             = _mm256_setzero_ps();
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             if (gmx_mm256_any_lt(rsq00,rcutoff2))
276             {
277
278             r00              = _mm256_mul_ps(rsq00,rinv00);
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq00             = _mm256_mul_ps(iq0,jq0);
282
283             /* EWALD ELECTROSTATICS */
284             
285             /* Analytical PME correction */
286             zeta2            = _mm256_mul_ps(beta2,rsq00);
287             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
288             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
289             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
290             felec            = _mm256_mul_ps(qq00,felec);
291             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
292             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
293             velec            = _mm256_sub_ps(rinv00,pmecorrV);
294             velec            = _mm256_mul_ps(qq00,velec);
295             
296             d                = _mm256_sub_ps(r00,rswitch);
297             d                = _mm256_max_ps(d,_mm256_setzero_ps());
298             d2               = _mm256_mul_ps(d,d);
299             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
300
301             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
302
303             /* Evaluate switch function */
304             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
305             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
306             velec            = _mm256_mul_ps(velec,sw);
307             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velec            = _mm256_and_ps(velec,cutoff_mask);
311             velecsum         = _mm256_add_ps(velecsum,velec);
312
313             fscal            = felec;
314
315             fscal            = _mm256_and_ps(fscal,cutoff_mask);
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm256_mul_ps(fscal,dx00);
319             ty               = _mm256_mul_ps(fscal,dy00);
320             tz               = _mm256_mul_ps(fscal,dz00);
321
322             /* Update vectorial force */
323             fix0             = _mm256_add_ps(fix0,tx);
324             fiy0             = _mm256_add_ps(fiy0,ty);
325             fiz0             = _mm256_add_ps(fiz0,tz);
326
327             fjx0             = _mm256_add_ps(fjx0,tx);
328             fjy0             = _mm256_add_ps(fjy0,ty);
329             fjz0             = _mm256_add_ps(fjz0,tz);
330
331             }
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             if (gmx_mm256_any_lt(rsq10,rcutoff2))
338             {
339
340             r10              = _mm256_mul_ps(rsq10,rinv10);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq10             = _mm256_mul_ps(iq1,jq0);
344
345             /* EWALD ELECTROSTATICS */
346             
347             /* Analytical PME correction */
348             zeta2            = _mm256_mul_ps(beta2,rsq10);
349             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
350             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
351             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
352             felec            = _mm256_mul_ps(qq10,felec);
353             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
354             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
355             velec            = _mm256_sub_ps(rinv10,pmecorrV);
356             velec            = _mm256_mul_ps(qq10,velec);
357             
358             d                = _mm256_sub_ps(r10,rswitch);
359             d                = _mm256_max_ps(d,_mm256_setzero_ps());
360             d2               = _mm256_mul_ps(d,d);
361             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
362
363             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
364
365             /* Evaluate switch function */
366             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
367             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
368             velec            = _mm256_mul_ps(velec,sw);
369             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm256_and_ps(velec,cutoff_mask);
373             velecsum         = _mm256_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377             fscal            = _mm256_and_ps(fscal,cutoff_mask);
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm256_mul_ps(fscal,dx10);
381             ty               = _mm256_mul_ps(fscal,dy10);
382             tz               = _mm256_mul_ps(fscal,dz10);
383
384             /* Update vectorial force */
385             fix1             = _mm256_add_ps(fix1,tx);
386             fiy1             = _mm256_add_ps(fiy1,ty);
387             fiz1             = _mm256_add_ps(fiz1,tz);
388
389             fjx0             = _mm256_add_ps(fjx0,tx);
390             fjy0             = _mm256_add_ps(fjy0,ty);
391             fjz0             = _mm256_add_ps(fjz0,tz);
392
393             }
394
395             /**************************
396              * CALCULATE INTERACTIONS *
397              **************************/
398
399             if (gmx_mm256_any_lt(rsq20,rcutoff2))
400             {
401
402             r20              = _mm256_mul_ps(rsq20,rinv20);
403
404             /* Compute parameters for interactions between i and j atoms */
405             qq20             = _mm256_mul_ps(iq2,jq0);
406
407             /* EWALD ELECTROSTATICS */
408             
409             /* Analytical PME correction */
410             zeta2            = _mm256_mul_ps(beta2,rsq20);
411             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
412             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
413             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
414             felec            = _mm256_mul_ps(qq20,felec);
415             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
416             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
417             velec            = _mm256_sub_ps(rinv20,pmecorrV);
418             velec            = _mm256_mul_ps(qq20,velec);
419             
420             d                = _mm256_sub_ps(r20,rswitch);
421             d                = _mm256_max_ps(d,_mm256_setzero_ps());
422             d2               = _mm256_mul_ps(d,d);
423             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
424
425             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
426
427             /* Evaluate switch function */
428             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
429             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
430             velec            = _mm256_mul_ps(velec,sw);
431             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velec            = _mm256_and_ps(velec,cutoff_mask);
435             velecsum         = _mm256_add_ps(velecsum,velec);
436
437             fscal            = felec;
438
439             fscal            = _mm256_and_ps(fscal,cutoff_mask);
440
441             /* Calculate temporary vectorial force */
442             tx               = _mm256_mul_ps(fscal,dx20);
443             ty               = _mm256_mul_ps(fscal,dy20);
444             tz               = _mm256_mul_ps(fscal,dz20);
445
446             /* Update vectorial force */
447             fix2             = _mm256_add_ps(fix2,tx);
448             fiy2             = _mm256_add_ps(fiy2,ty);
449             fiz2             = _mm256_add_ps(fiz2,tz);
450
451             fjx0             = _mm256_add_ps(fjx0,tx);
452             fjy0             = _mm256_add_ps(fjy0,ty);
453             fjz0             = _mm256_add_ps(fjz0,tz);
454
455             }
456
457             fjptrA             = f+j_coord_offsetA;
458             fjptrB             = f+j_coord_offsetB;
459             fjptrC             = f+j_coord_offsetC;
460             fjptrD             = f+j_coord_offsetD;
461             fjptrE             = f+j_coord_offsetE;
462             fjptrF             = f+j_coord_offsetF;
463             fjptrG             = f+j_coord_offsetG;
464             fjptrH             = f+j_coord_offsetH;
465
466             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
467
468             /* Inner loop uses 327 flops */
469         }
470
471         if(jidx<j_index_end)
472         {
473
474             /* Get j neighbor index, and coordinate index */
475             jnrlistA         = jjnr[jidx];
476             jnrlistB         = jjnr[jidx+1];
477             jnrlistC         = jjnr[jidx+2];
478             jnrlistD         = jjnr[jidx+3];
479             jnrlistE         = jjnr[jidx+4];
480             jnrlistF         = jjnr[jidx+5];
481             jnrlistG         = jjnr[jidx+6];
482             jnrlistH         = jjnr[jidx+7];
483             /* Sign of each element will be negative for non-real atoms.
484              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
485              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
486              */
487             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
488                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
489                                             
490             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
491             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
492             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
493             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
494             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
495             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
496             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
497             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
498             j_coord_offsetA  = DIM*jnrA;
499             j_coord_offsetB  = DIM*jnrB;
500             j_coord_offsetC  = DIM*jnrC;
501             j_coord_offsetD  = DIM*jnrD;
502             j_coord_offsetE  = DIM*jnrE;
503             j_coord_offsetF  = DIM*jnrF;
504             j_coord_offsetG  = DIM*jnrG;
505             j_coord_offsetH  = DIM*jnrH;
506
507             /* load j atom coordinates */
508             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
509                                                  x+j_coord_offsetC,x+j_coord_offsetD,
510                                                  x+j_coord_offsetE,x+j_coord_offsetF,
511                                                  x+j_coord_offsetG,x+j_coord_offsetH,
512                                                  &jx0,&jy0,&jz0);
513
514             /* Calculate displacement vector */
515             dx00             = _mm256_sub_ps(ix0,jx0);
516             dy00             = _mm256_sub_ps(iy0,jy0);
517             dz00             = _mm256_sub_ps(iz0,jz0);
518             dx10             = _mm256_sub_ps(ix1,jx0);
519             dy10             = _mm256_sub_ps(iy1,jy0);
520             dz10             = _mm256_sub_ps(iz1,jz0);
521             dx20             = _mm256_sub_ps(ix2,jx0);
522             dy20             = _mm256_sub_ps(iy2,jy0);
523             dz20             = _mm256_sub_ps(iz2,jz0);
524
525             /* Calculate squared distance and things based on it */
526             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
527             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
528             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
529
530             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
531             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
532             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
533
534             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
535             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
536             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
537
538             /* Load parameters for j particles */
539             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
540                                                                  charge+jnrC+0,charge+jnrD+0,
541                                                                  charge+jnrE+0,charge+jnrF+0,
542                                                                  charge+jnrG+0,charge+jnrH+0);
543
544             fjx0             = _mm256_setzero_ps();
545             fjy0             = _mm256_setzero_ps();
546             fjz0             = _mm256_setzero_ps();
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             if (gmx_mm256_any_lt(rsq00,rcutoff2))
553             {
554
555             r00              = _mm256_mul_ps(rsq00,rinv00);
556             r00              = _mm256_andnot_ps(dummy_mask,r00);
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq00             = _mm256_mul_ps(iq0,jq0);
560
561             /* EWALD ELECTROSTATICS */
562             
563             /* Analytical PME correction */
564             zeta2            = _mm256_mul_ps(beta2,rsq00);
565             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
566             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
567             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
568             felec            = _mm256_mul_ps(qq00,felec);
569             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
570             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
571             velec            = _mm256_sub_ps(rinv00,pmecorrV);
572             velec            = _mm256_mul_ps(qq00,velec);
573             
574             d                = _mm256_sub_ps(r00,rswitch);
575             d                = _mm256_max_ps(d,_mm256_setzero_ps());
576             d2               = _mm256_mul_ps(d,d);
577             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
578
579             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
580
581             /* Evaluate switch function */
582             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
583             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
584             velec            = _mm256_mul_ps(velec,sw);
585             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             velec            = _mm256_and_ps(velec,cutoff_mask);
589             velec            = _mm256_andnot_ps(dummy_mask,velec);
590             velecsum         = _mm256_add_ps(velecsum,velec);
591
592             fscal            = felec;
593
594             fscal            = _mm256_and_ps(fscal,cutoff_mask);
595
596             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
597
598             /* Calculate temporary vectorial force */
599             tx               = _mm256_mul_ps(fscal,dx00);
600             ty               = _mm256_mul_ps(fscal,dy00);
601             tz               = _mm256_mul_ps(fscal,dz00);
602
603             /* Update vectorial force */
604             fix0             = _mm256_add_ps(fix0,tx);
605             fiy0             = _mm256_add_ps(fiy0,ty);
606             fiz0             = _mm256_add_ps(fiz0,tz);
607
608             fjx0             = _mm256_add_ps(fjx0,tx);
609             fjy0             = _mm256_add_ps(fjy0,ty);
610             fjz0             = _mm256_add_ps(fjz0,tz);
611
612             }
613
614             /**************************
615              * CALCULATE INTERACTIONS *
616              **************************/
617
618             if (gmx_mm256_any_lt(rsq10,rcutoff2))
619             {
620
621             r10              = _mm256_mul_ps(rsq10,rinv10);
622             r10              = _mm256_andnot_ps(dummy_mask,r10);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq10             = _mm256_mul_ps(iq1,jq0);
626
627             /* EWALD ELECTROSTATICS */
628             
629             /* Analytical PME correction */
630             zeta2            = _mm256_mul_ps(beta2,rsq10);
631             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
632             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
633             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
634             felec            = _mm256_mul_ps(qq10,felec);
635             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
636             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
637             velec            = _mm256_sub_ps(rinv10,pmecorrV);
638             velec            = _mm256_mul_ps(qq10,velec);
639             
640             d                = _mm256_sub_ps(r10,rswitch);
641             d                = _mm256_max_ps(d,_mm256_setzero_ps());
642             d2               = _mm256_mul_ps(d,d);
643             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
644
645             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
646
647             /* Evaluate switch function */
648             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
649             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
650             velec            = _mm256_mul_ps(velec,sw);
651             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velec            = _mm256_and_ps(velec,cutoff_mask);
655             velec            = _mm256_andnot_ps(dummy_mask,velec);
656             velecsum         = _mm256_add_ps(velecsum,velec);
657
658             fscal            = felec;
659
660             fscal            = _mm256_and_ps(fscal,cutoff_mask);
661
662             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm256_mul_ps(fscal,dx10);
666             ty               = _mm256_mul_ps(fscal,dy10);
667             tz               = _mm256_mul_ps(fscal,dz10);
668
669             /* Update vectorial force */
670             fix1             = _mm256_add_ps(fix1,tx);
671             fiy1             = _mm256_add_ps(fiy1,ty);
672             fiz1             = _mm256_add_ps(fiz1,tz);
673
674             fjx0             = _mm256_add_ps(fjx0,tx);
675             fjy0             = _mm256_add_ps(fjy0,ty);
676             fjz0             = _mm256_add_ps(fjz0,tz);
677
678             }
679
680             /**************************
681              * CALCULATE INTERACTIONS *
682              **************************/
683
684             if (gmx_mm256_any_lt(rsq20,rcutoff2))
685             {
686
687             r20              = _mm256_mul_ps(rsq20,rinv20);
688             r20              = _mm256_andnot_ps(dummy_mask,r20);
689
690             /* Compute parameters for interactions between i and j atoms */
691             qq20             = _mm256_mul_ps(iq2,jq0);
692
693             /* EWALD ELECTROSTATICS */
694             
695             /* Analytical PME correction */
696             zeta2            = _mm256_mul_ps(beta2,rsq20);
697             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
698             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
699             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
700             felec            = _mm256_mul_ps(qq20,felec);
701             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
702             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
703             velec            = _mm256_sub_ps(rinv20,pmecorrV);
704             velec            = _mm256_mul_ps(qq20,velec);
705             
706             d                = _mm256_sub_ps(r20,rswitch);
707             d                = _mm256_max_ps(d,_mm256_setzero_ps());
708             d2               = _mm256_mul_ps(d,d);
709             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
710
711             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
712
713             /* Evaluate switch function */
714             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
715             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
716             velec            = _mm256_mul_ps(velec,sw);
717             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
718
719             /* Update potential sum for this i atom from the interaction with this j atom. */
720             velec            = _mm256_and_ps(velec,cutoff_mask);
721             velec            = _mm256_andnot_ps(dummy_mask,velec);
722             velecsum         = _mm256_add_ps(velecsum,velec);
723
724             fscal            = felec;
725
726             fscal            = _mm256_and_ps(fscal,cutoff_mask);
727
728             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
729
730             /* Calculate temporary vectorial force */
731             tx               = _mm256_mul_ps(fscal,dx20);
732             ty               = _mm256_mul_ps(fscal,dy20);
733             tz               = _mm256_mul_ps(fscal,dz20);
734
735             /* Update vectorial force */
736             fix2             = _mm256_add_ps(fix2,tx);
737             fiy2             = _mm256_add_ps(fiy2,ty);
738             fiz2             = _mm256_add_ps(fiz2,tz);
739
740             fjx0             = _mm256_add_ps(fjx0,tx);
741             fjy0             = _mm256_add_ps(fjy0,ty);
742             fjz0             = _mm256_add_ps(fjz0,tz);
743
744             }
745
746             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
747             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
748             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
749             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
750             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
751             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
752             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
753             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
754
755             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
756
757             /* Inner loop uses 330 flops */
758         }
759
760         /* End of innermost loop */
761
762         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
763                                                  f+i_coord_offset,fshift+i_shift_offset);
764
765         ggid                        = gid[iidx];
766         /* Update potential energies */
767         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
768
769         /* Increment number of inner iterations */
770         inneriter                  += j_index_end - j_index_start;
771
772         /* Outer loop uses 19 flops */
773     }
774
775     /* Increment number of outer iterations */
776     outeriter        += nri;
777
778     /* Update outer/inner flops */
779
780     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*330);
781 }
782 /*
783  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_256_single
784  * Electrostatics interaction: Ewald
785  * VdW interaction:            None
786  * Geometry:                   Water3-Particle
787  * Calculate force/pot:        Force
788  */
789 void
790 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_256_single
791                     (t_nblist                    * gmx_restrict       nlist,
792                      rvec                        * gmx_restrict          xx,
793                      rvec                        * gmx_restrict          ff,
794                      t_forcerec                  * gmx_restrict          fr,
795                      t_mdatoms                   * gmx_restrict     mdatoms,
796                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
797                      t_nrnb                      * gmx_restrict        nrnb)
798 {
799     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
800      * just 0 for non-waters.
801      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
802      * jnr indices corresponding to data put in the four positions in the SIMD register.
803      */
804     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
805     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
806     int              jnrA,jnrB,jnrC,jnrD;
807     int              jnrE,jnrF,jnrG,jnrH;
808     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
809     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
810     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
811     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
812     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
813     real             rcutoff_scalar;
814     real             *shiftvec,*fshift,*x,*f;
815     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
816     real             scratch[4*DIM];
817     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
818     real *           vdwioffsetptr0;
819     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
820     real *           vdwioffsetptr1;
821     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
822     real *           vdwioffsetptr2;
823     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
824     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
825     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
826     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
827     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
828     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
829     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
830     real             *charge;
831     __m256i          ewitab;
832     __m128i          ewitab_lo,ewitab_hi;
833     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
834     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
835     real             *ewtab;
836     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
837     real             rswitch_scalar,d_scalar;
838     __m256           dummy_mask,cutoff_mask;
839     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
840     __m256           one     = _mm256_set1_ps(1.0);
841     __m256           two     = _mm256_set1_ps(2.0);
842     x                = xx[0];
843     f                = ff[0];
844
845     nri              = nlist->nri;
846     iinr             = nlist->iinr;
847     jindex           = nlist->jindex;
848     jjnr             = nlist->jjnr;
849     shiftidx         = nlist->shift;
850     gid              = nlist->gid;
851     shiftvec         = fr->shift_vec[0];
852     fshift           = fr->fshift[0];
853     facel            = _mm256_set1_ps(fr->epsfac);
854     charge           = mdatoms->chargeA;
855
856     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
857     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
858     beta2            = _mm256_mul_ps(beta,beta);
859     beta3            = _mm256_mul_ps(beta,beta2);
860
861     ewtab            = fr->ic->tabq_coul_FDV0;
862     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
863     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
864
865     /* Setup water-specific parameters */
866     inr              = nlist->iinr[0];
867     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
868     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
869     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
870
871     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
872     rcutoff_scalar   = fr->rcoulomb;
873     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
874     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
875
876     rswitch_scalar   = fr->rcoulomb_switch;
877     rswitch          = _mm256_set1_ps(rswitch_scalar);
878     /* Setup switch parameters */
879     d_scalar         = rcutoff_scalar-rswitch_scalar;
880     d                = _mm256_set1_ps(d_scalar);
881     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
882     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
883     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
884     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
885     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
886     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
887
888     /* Avoid stupid compiler warnings */
889     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
890     j_coord_offsetA = 0;
891     j_coord_offsetB = 0;
892     j_coord_offsetC = 0;
893     j_coord_offsetD = 0;
894     j_coord_offsetE = 0;
895     j_coord_offsetF = 0;
896     j_coord_offsetG = 0;
897     j_coord_offsetH = 0;
898
899     outeriter        = 0;
900     inneriter        = 0;
901
902     for(iidx=0;iidx<4*DIM;iidx++)
903     {
904         scratch[iidx] = 0.0;
905     }
906
907     /* Start outer loop over neighborlists */
908     for(iidx=0; iidx<nri; iidx++)
909     {
910         /* Load shift vector for this list */
911         i_shift_offset   = DIM*shiftidx[iidx];
912
913         /* Load limits for loop over neighbors */
914         j_index_start    = jindex[iidx];
915         j_index_end      = jindex[iidx+1];
916
917         /* Get outer coordinate index */
918         inr              = iinr[iidx];
919         i_coord_offset   = DIM*inr;
920
921         /* Load i particle coords and add shift vector */
922         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
923                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
924
925         fix0             = _mm256_setzero_ps();
926         fiy0             = _mm256_setzero_ps();
927         fiz0             = _mm256_setzero_ps();
928         fix1             = _mm256_setzero_ps();
929         fiy1             = _mm256_setzero_ps();
930         fiz1             = _mm256_setzero_ps();
931         fix2             = _mm256_setzero_ps();
932         fiy2             = _mm256_setzero_ps();
933         fiz2             = _mm256_setzero_ps();
934
935         /* Start inner kernel loop */
936         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
937         {
938
939             /* Get j neighbor index, and coordinate index */
940             jnrA             = jjnr[jidx];
941             jnrB             = jjnr[jidx+1];
942             jnrC             = jjnr[jidx+2];
943             jnrD             = jjnr[jidx+3];
944             jnrE             = jjnr[jidx+4];
945             jnrF             = jjnr[jidx+5];
946             jnrG             = jjnr[jidx+6];
947             jnrH             = jjnr[jidx+7];
948             j_coord_offsetA  = DIM*jnrA;
949             j_coord_offsetB  = DIM*jnrB;
950             j_coord_offsetC  = DIM*jnrC;
951             j_coord_offsetD  = DIM*jnrD;
952             j_coord_offsetE  = DIM*jnrE;
953             j_coord_offsetF  = DIM*jnrF;
954             j_coord_offsetG  = DIM*jnrG;
955             j_coord_offsetH  = DIM*jnrH;
956
957             /* load j atom coordinates */
958             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
959                                                  x+j_coord_offsetC,x+j_coord_offsetD,
960                                                  x+j_coord_offsetE,x+j_coord_offsetF,
961                                                  x+j_coord_offsetG,x+j_coord_offsetH,
962                                                  &jx0,&jy0,&jz0);
963
964             /* Calculate displacement vector */
965             dx00             = _mm256_sub_ps(ix0,jx0);
966             dy00             = _mm256_sub_ps(iy0,jy0);
967             dz00             = _mm256_sub_ps(iz0,jz0);
968             dx10             = _mm256_sub_ps(ix1,jx0);
969             dy10             = _mm256_sub_ps(iy1,jy0);
970             dz10             = _mm256_sub_ps(iz1,jz0);
971             dx20             = _mm256_sub_ps(ix2,jx0);
972             dy20             = _mm256_sub_ps(iy2,jy0);
973             dz20             = _mm256_sub_ps(iz2,jz0);
974
975             /* Calculate squared distance and things based on it */
976             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
977             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
978             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
979
980             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
981             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
982             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
983
984             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
985             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
986             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
987
988             /* Load parameters for j particles */
989             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
990                                                                  charge+jnrC+0,charge+jnrD+0,
991                                                                  charge+jnrE+0,charge+jnrF+0,
992                                                                  charge+jnrG+0,charge+jnrH+0);
993
994             fjx0             = _mm256_setzero_ps();
995             fjy0             = _mm256_setzero_ps();
996             fjz0             = _mm256_setzero_ps();
997
998             /**************************
999              * CALCULATE INTERACTIONS *
1000              **************************/
1001
1002             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1003             {
1004
1005             r00              = _mm256_mul_ps(rsq00,rinv00);
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq00             = _mm256_mul_ps(iq0,jq0);
1009
1010             /* EWALD ELECTROSTATICS */
1011             
1012             /* Analytical PME correction */
1013             zeta2            = _mm256_mul_ps(beta2,rsq00);
1014             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1015             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1016             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1017             felec            = _mm256_mul_ps(qq00,felec);
1018             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1019             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1020             velec            = _mm256_sub_ps(rinv00,pmecorrV);
1021             velec            = _mm256_mul_ps(qq00,velec);
1022             
1023             d                = _mm256_sub_ps(r00,rswitch);
1024             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1025             d2               = _mm256_mul_ps(d,d);
1026             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1027
1028             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1029
1030             /* Evaluate switch function */
1031             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1032             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
1033             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1034
1035             fscal            = felec;
1036
1037             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = _mm256_mul_ps(fscal,dx00);
1041             ty               = _mm256_mul_ps(fscal,dy00);
1042             tz               = _mm256_mul_ps(fscal,dz00);
1043
1044             /* Update vectorial force */
1045             fix0             = _mm256_add_ps(fix0,tx);
1046             fiy0             = _mm256_add_ps(fiy0,ty);
1047             fiz0             = _mm256_add_ps(fiz0,tz);
1048
1049             fjx0             = _mm256_add_ps(fjx0,tx);
1050             fjy0             = _mm256_add_ps(fjy0,ty);
1051             fjz0             = _mm256_add_ps(fjz0,tz);
1052
1053             }
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1060             {
1061
1062             r10              = _mm256_mul_ps(rsq10,rinv10);
1063
1064             /* Compute parameters for interactions between i and j atoms */
1065             qq10             = _mm256_mul_ps(iq1,jq0);
1066
1067             /* EWALD ELECTROSTATICS */
1068             
1069             /* Analytical PME correction */
1070             zeta2            = _mm256_mul_ps(beta2,rsq10);
1071             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1072             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1073             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1074             felec            = _mm256_mul_ps(qq10,felec);
1075             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1076             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1077             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1078             velec            = _mm256_mul_ps(qq10,velec);
1079             
1080             d                = _mm256_sub_ps(r10,rswitch);
1081             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1082             d2               = _mm256_mul_ps(d,d);
1083             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1084
1085             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1086
1087             /* Evaluate switch function */
1088             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1089             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1090             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1091
1092             fscal            = felec;
1093
1094             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1095
1096             /* Calculate temporary vectorial force */
1097             tx               = _mm256_mul_ps(fscal,dx10);
1098             ty               = _mm256_mul_ps(fscal,dy10);
1099             tz               = _mm256_mul_ps(fscal,dz10);
1100
1101             /* Update vectorial force */
1102             fix1             = _mm256_add_ps(fix1,tx);
1103             fiy1             = _mm256_add_ps(fiy1,ty);
1104             fiz1             = _mm256_add_ps(fiz1,tz);
1105
1106             fjx0             = _mm256_add_ps(fjx0,tx);
1107             fjy0             = _mm256_add_ps(fjy0,ty);
1108             fjz0             = _mm256_add_ps(fjz0,tz);
1109
1110             }
1111
1112             /**************************
1113              * CALCULATE INTERACTIONS *
1114              **************************/
1115
1116             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1117             {
1118
1119             r20              = _mm256_mul_ps(rsq20,rinv20);
1120
1121             /* Compute parameters for interactions between i and j atoms */
1122             qq20             = _mm256_mul_ps(iq2,jq0);
1123
1124             /* EWALD ELECTROSTATICS */
1125             
1126             /* Analytical PME correction */
1127             zeta2            = _mm256_mul_ps(beta2,rsq20);
1128             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1129             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1130             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1131             felec            = _mm256_mul_ps(qq20,felec);
1132             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1133             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1134             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1135             velec            = _mm256_mul_ps(qq20,velec);
1136             
1137             d                = _mm256_sub_ps(r20,rswitch);
1138             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1139             d2               = _mm256_mul_ps(d,d);
1140             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1141
1142             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1143
1144             /* Evaluate switch function */
1145             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1146             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1147             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1148
1149             fscal            = felec;
1150
1151             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1152
1153             /* Calculate temporary vectorial force */
1154             tx               = _mm256_mul_ps(fscal,dx20);
1155             ty               = _mm256_mul_ps(fscal,dy20);
1156             tz               = _mm256_mul_ps(fscal,dz20);
1157
1158             /* Update vectorial force */
1159             fix2             = _mm256_add_ps(fix2,tx);
1160             fiy2             = _mm256_add_ps(fiy2,ty);
1161             fiz2             = _mm256_add_ps(fiz2,tz);
1162
1163             fjx0             = _mm256_add_ps(fjx0,tx);
1164             fjy0             = _mm256_add_ps(fjy0,ty);
1165             fjz0             = _mm256_add_ps(fjz0,tz);
1166
1167             }
1168
1169             fjptrA             = f+j_coord_offsetA;
1170             fjptrB             = f+j_coord_offsetB;
1171             fjptrC             = f+j_coord_offsetC;
1172             fjptrD             = f+j_coord_offsetD;
1173             fjptrE             = f+j_coord_offsetE;
1174             fjptrF             = f+j_coord_offsetF;
1175             fjptrG             = f+j_coord_offsetG;
1176             fjptrH             = f+j_coord_offsetH;
1177
1178             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1179
1180             /* Inner loop uses 318 flops */
1181         }
1182
1183         if(jidx<j_index_end)
1184         {
1185
1186             /* Get j neighbor index, and coordinate index */
1187             jnrlistA         = jjnr[jidx];
1188             jnrlistB         = jjnr[jidx+1];
1189             jnrlistC         = jjnr[jidx+2];
1190             jnrlistD         = jjnr[jidx+3];
1191             jnrlistE         = jjnr[jidx+4];
1192             jnrlistF         = jjnr[jidx+5];
1193             jnrlistG         = jjnr[jidx+6];
1194             jnrlistH         = jjnr[jidx+7];
1195             /* Sign of each element will be negative for non-real atoms.
1196              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1197              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1198              */
1199             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1200                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1201                                             
1202             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1203             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1204             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1205             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1206             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1207             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1208             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1209             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1210             j_coord_offsetA  = DIM*jnrA;
1211             j_coord_offsetB  = DIM*jnrB;
1212             j_coord_offsetC  = DIM*jnrC;
1213             j_coord_offsetD  = DIM*jnrD;
1214             j_coord_offsetE  = DIM*jnrE;
1215             j_coord_offsetF  = DIM*jnrF;
1216             j_coord_offsetG  = DIM*jnrG;
1217             j_coord_offsetH  = DIM*jnrH;
1218
1219             /* load j atom coordinates */
1220             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1221                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1222                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1223                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1224                                                  &jx0,&jy0,&jz0);
1225
1226             /* Calculate displacement vector */
1227             dx00             = _mm256_sub_ps(ix0,jx0);
1228             dy00             = _mm256_sub_ps(iy0,jy0);
1229             dz00             = _mm256_sub_ps(iz0,jz0);
1230             dx10             = _mm256_sub_ps(ix1,jx0);
1231             dy10             = _mm256_sub_ps(iy1,jy0);
1232             dz10             = _mm256_sub_ps(iz1,jz0);
1233             dx20             = _mm256_sub_ps(ix2,jx0);
1234             dy20             = _mm256_sub_ps(iy2,jy0);
1235             dz20             = _mm256_sub_ps(iz2,jz0);
1236
1237             /* Calculate squared distance and things based on it */
1238             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1239             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1240             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1241
1242             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1243             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1244             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1245
1246             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1247             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1248             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1249
1250             /* Load parameters for j particles */
1251             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1252                                                                  charge+jnrC+0,charge+jnrD+0,
1253                                                                  charge+jnrE+0,charge+jnrF+0,
1254                                                                  charge+jnrG+0,charge+jnrH+0);
1255
1256             fjx0             = _mm256_setzero_ps();
1257             fjy0             = _mm256_setzero_ps();
1258             fjz0             = _mm256_setzero_ps();
1259
1260             /**************************
1261              * CALCULATE INTERACTIONS *
1262              **************************/
1263
1264             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1265             {
1266
1267             r00              = _mm256_mul_ps(rsq00,rinv00);
1268             r00              = _mm256_andnot_ps(dummy_mask,r00);
1269
1270             /* Compute parameters for interactions between i and j atoms */
1271             qq00             = _mm256_mul_ps(iq0,jq0);
1272
1273             /* EWALD ELECTROSTATICS */
1274             
1275             /* Analytical PME correction */
1276             zeta2            = _mm256_mul_ps(beta2,rsq00);
1277             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1278             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1279             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1280             felec            = _mm256_mul_ps(qq00,felec);
1281             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1282             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1283             velec            = _mm256_sub_ps(rinv00,pmecorrV);
1284             velec            = _mm256_mul_ps(qq00,velec);
1285             
1286             d                = _mm256_sub_ps(r00,rswitch);
1287             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1288             d2               = _mm256_mul_ps(d,d);
1289             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1290
1291             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1292
1293             /* Evaluate switch function */
1294             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1295             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
1296             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1297
1298             fscal            = felec;
1299
1300             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1301
1302             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1303
1304             /* Calculate temporary vectorial force */
1305             tx               = _mm256_mul_ps(fscal,dx00);
1306             ty               = _mm256_mul_ps(fscal,dy00);
1307             tz               = _mm256_mul_ps(fscal,dz00);
1308
1309             /* Update vectorial force */
1310             fix0             = _mm256_add_ps(fix0,tx);
1311             fiy0             = _mm256_add_ps(fiy0,ty);
1312             fiz0             = _mm256_add_ps(fiz0,tz);
1313
1314             fjx0             = _mm256_add_ps(fjx0,tx);
1315             fjy0             = _mm256_add_ps(fjy0,ty);
1316             fjz0             = _mm256_add_ps(fjz0,tz);
1317
1318             }
1319
1320             /**************************
1321              * CALCULATE INTERACTIONS *
1322              **************************/
1323
1324             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1325             {
1326
1327             r10              = _mm256_mul_ps(rsq10,rinv10);
1328             r10              = _mm256_andnot_ps(dummy_mask,r10);
1329
1330             /* Compute parameters for interactions between i and j atoms */
1331             qq10             = _mm256_mul_ps(iq1,jq0);
1332
1333             /* EWALD ELECTROSTATICS */
1334             
1335             /* Analytical PME correction */
1336             zeta2            = _mm256_mul_ps(beta2,rsq10);
1337             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1338             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1339             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1340             felec            = _mm256_mul_ps(qq10,felec);
1341             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1342             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1343             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1344             velec            = _mm256_mul_ps(qq10,velec);
1345             
1346             d                = _mm256_sub_ps(r10,rswitch);
1347             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1348             d2               = _mm256_mul_ps(d,d);
1349             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1350
1351             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1352
1353             /* Evaluate switch function */
1354             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1355             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1356             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1357
1358             fscal            = felec;
1359
1360             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1361
1362             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1363
1364             /* Calculate temporary vectorial force */
1365             tx               = _mm256_mul_ps(fscal,dx10);
1366             ty               = _mm256_mul_ps(fscal,dy10);
1367             tz               = _mm256_mul_ps(fscal,dz10);
1368
1369             /* Update vectorial force */
1370             fix1             = _mm256_add_ps(fix1,tx);
1371             fiy1             = _mm256_add_ps(fiy1,ty);
1372             fiz1             = _mm256_add_ps(fiz1,tz);
1373
1374             fjx0             = _mm256_add_ps(fjx0,tx);
1375             fjy0             = _mm256_add_ps(fjy0,ty);
1376             fjz0             = _mm256_add_ps(fjz0,tz);
1377
1378             }
1379
1380             /**************************
1381              * CALCULATE INTERACTIONS *
1382              **************************/
1383
1384             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1385             {
1386
1387             r20              = _mm256_mul_ps(rsq20,rinv20);
1388             r20              = _mm256_andnot_ps(dummy_mask,r20);
1389
1390             /* Compute parameters for interactions between i and j atoms */
1391             qq20             = _mm256_mul_ps(iq2,jq0);
1392
1393             /* EWALD ELECTROSTATICS */
1394             
1395             /* Analytical PME correction */
1396             zeta2            = _mm256_mul_ps(beta2,rsq20);
1397             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1398             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1399             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1400             felec            = _mm256_mul_ps(qq20,felec);
1401             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1402             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1403             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1404             velec            = _mm256_mul_ps(qq20,velec);
1405             
1406             d                = _mm256_sub_ps(r20,rswitch);
1407             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1408             d2               = _mm256_mul_ps(d,d);
1409             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1410
1411             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1412
1413             /* Evaluate switch function */
1414             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1415             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1416             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1417
1418             fscal            = felec;
1419
1420             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1421
1422             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1423
1424             /* Calculate temporary vectorial force */
1425             tx               = _mm256_mul_ps(fscal,dx20);
1426             ty               = _mm256_mul_ps(fscal,dy20);
1427             tz               = _mm256_mul_ps(fscal,dz20);
1428
1429             /* Update vectorial force */
1430             fix2             = _mm256_add_ps(fix2,tx);
1431             fiy2             = _mm256_add_ps(fiy2,ty);
1432             fiz2             = _mm256_add_ps(fiz2,tz);
1433
1434             fjx0             = _mm256_add_ps(fjx0,tx);
1435             fjy0             = _mm256_add_ps(fjy0,ty);
1436             fjz0             = _mm256_add_ps(fjz0,tz);
1437
1438             }
1439
1440             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1441             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1442             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1443             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1444             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1445             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1446             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1447             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1448
1449             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1450
1451             /* Inner loop uses 321 flops */
1452         }
1453
1454         /* End of innermost loop */
1455
1456         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1457                                                  f+i_coord_offset,fshift+i_shift_offset);
1458
1459         /* Increment number of inner iterations */
1460         inneriter                  += j_index_end - j_index_start;
1461
1462         /* Outer loop uses 18 flops */
1463     }
1464
1465     /* Increment number of outer iterations */
1466     outeriter        += nri;
1467
1468     /* Update outer/inner flops */
1469
1470     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*321);
1471 }