Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     __m256i          ewitab;
86     __m128i          ewitab_lo,ewitab_hi;
87     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
89     real             *ewtab;
90     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
91     real             rswitch_scalar,d_scalar;
92     __m256           dummy_mask,cutoff_mask;
93     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
94     __m256           one     = _mm256_set1_ps(1.0);
95     __m256           two     = _mm256_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
111     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
112     beta2            = _mm256_mul_ps(beta,beta);
113     beta3            = _mm256_mul_ps(beta,beta2);
114
115     ewtab            = fr->ic->tabq_coul_FDV0;
116     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
117     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
122     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
123     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff_scalar   = fr->rcoulomb;
127     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
128     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
129
130     rswitch_scalar   = fr->rcoulomb_switch;
131     rswitch          = _mm256_set1_ps(rswitch_scalar);
132     /* Setup switch parameters */
133     d_scalar         = rcutoff_scalar-rswitch_scalar;
134     d                = _mm256_set1_ps(d_scalar);
135     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
136     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
137     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
138     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
139     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
140     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148     j_coord_offsetE = 0;
149     j_coord_offsetF = 0;
150     j_coord_offsetG = 0;
151     j_coord_offsetH = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
178
179         fix0             = _mm256_setzero_ps();
180         fiy0             = _mm256_setzero_ps();
181         fiz0             = _mm256_setzero_ps();
182         fix1             = _mm256_setzero_ps();
183         fiy1             = _mm256_setzero_ps();
184         fiz1             = _mm256_setzero_ps();
185         fix2             = _mm256_setzero_ps();
186         fiy2             = _mm256_setzero_ps();
187         fiz2             = _mm256_setzero_ps();
188
189         /* Reset potential sums */
190         velecsum         = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225             dx10             = _mm256_sub_ps(ix1,jx0);
226             dy10             = _mm256_sub_ps(iy1,jy0);
227             dz10             = _mm256_sub_ps(iz1,jz0);
228             dx20             = _mm256_sub_ps(ix2,jx0);
229             dy20             = _mm256_sub_ps(iy2,jy0);
230             dz20             = _mm256_sub_ps(iz2,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
234             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
235             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
236
237             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
240
241             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
242             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0,
248                                                                  charge+jnrE+0,charge+jnrF+0,
249                                                                  charge+jnrG+0,charge+jnrH+0);
250
251             fjx0             = _mm256_setzero_ps();
252             fjy0             = _mm256_setzero_ps();
253             fjz0             = _mm256_setzero_ps();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             if (gmx_mm256_any_lt(rsq00,rcutoff2))
260             {
261
262             r00              = _mm256_mul_ps(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             qq00             = _mm256_mul_ps(iq0,jq0);
266
267             /* EWALD ELECTROSTATICS */
268             
269             /* Analytical PME correction */
270             zeta2            = _mm256_mul_ps(beta2,rsq00);
271             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
272             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
273             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
274             felec            = _mm256_mul_ps(qq00,felec);
275             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
276             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
277             velec            = _mm256_sub_ps(rinv00,pmecorrV);
278             velec            = _mm256_mul_ps(qq00,velec);
279             
280             d                = _mm256_sub_ps(r00,rswitch);
281             d                = _mm256_max_ps(d,_mm256_setzero_ps());
282             d2               = _mm256_mul_ps(d,d);
283             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
284
285             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
286
287             /* Evaluate switch function */
288             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
289             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
290             velec            = _mm256_mul_ps(velec,sw);
291             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velec            = _mm256_and_ps(velec,cutoff_mask);
295             velecsum         = _mm256_add_ps(velecsum,velec);
296
297             fscal            = felec;
298
299             fscal            = _mm256_and_ps(fscal,cutoff_mask);
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm256_mul_ps(fscal,dx00);
303             ty               = _mm256_mul_ps(fscal,dy00);
304             tz               = _mm256_mul_ps(fscal,dz00);
305
306             /* Update vectorial force */
307             fix0             = _mm256_add_ps(fix0,tx);
308             fiy0             = _mm256_add_ps(fiy0,ty);
309             fiz0             = _mm256_add_ps(fiz0,tz);
310
311             fjx0             = _mm256_add_ps(fjx0,tx);
312             fjy0             = _mm256_add_ps(fjy0,ty);
313             fjz0             = _mm256_add_ps(fjz0,tz);
314
315             }
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             if (gmx_mm256_any_lt(rsq10,rcutoff2))
322             {
323
324             r10              = _mm256_mul_ps(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm256_mul_ps(iq1,jq0);
328
329             /* EWALD ELECTROSTATICS */
330             
331             /* Analytical PME correction */
332             zeta2            = _mm256_mul_ps(beta2,rsq10);
333             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
334             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
335             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
336             felec            = _mm256_mul_ps(qq10,felec);
337             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
338             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
339             velec            = _mm256_sub_ps(rinv10,pmecorrV);
340             velec            = _mm256_mul_ps(qq10,velec);
341             
342             d                = _mm256_sub_ps(r10,rswitch);
343             d                = _mm256_max_ps(d,_mm256_setzero_ps());
344             d2               = _mm256_mul_ps(d,d);
345             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
346
347             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
348
349             /* Evaluate switch function */
350             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
351             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
352             velec            = _mm256_mul_ps(velec,sw);
353             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velec            = _mm256_and_ps(velec,cutoff_mask);
357             velecsum         = _mm256_add_ps(velecsum,velec);
358
359             fscal            = felec;
360
361             fscal            = _mm256_and_ps(fscal,cutoff_mask);
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm256_mul_ps(fscal,dx10);
365             ty               = _mm256_mul_ps(fscal,dy10);
366             tz               = _mm256_mul_ps(fscal,dz10);
367
368             /* Update vectorial force */
369             fix1             = _mm256_add_ps(fix1,tx);
370             fiy1             = _mm256_add_ps(fiy1,ty);
371             fiz1             = _mm256_add_ps(fiz1,tz);
372
373             fjx0             = _mm256_add_ps(fjx0,tx);
374             fjy0             = _mm256_add_ps(fjy0,ty);
375             fjz0             = _mm256_add_ps(fjz0,tz);
376
377             }
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             if (gmx_mm256_any_lt(rsq20,rcutoff2))
384             {
385
386             r20              = _mm256_mul_ps(rsq20,rinv20);
387
388             /* Compute parameters for interactions between i and j atoms */
389             qq20             = _mm256_mul_ps(iq2,jq0);
390
391             /* EWALD ELECTROSTATICS */
392             
393             /* Analytical PME correction */
394             zeta2            = _mm256_mul_ps(beta2,rsq20);
395             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
396             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
397             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
398             felec            = _mm256_mul_ps(qq20,felec);
399             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
400             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
401             velec            = _mm256_sub_ps(rinv20,pmecorrV);
402             velec            = _mm256_mul_ps(qq20,velec);
403             
404             d                = _mm256_sub_ps(r20,rswitch);
405             d                = _mm256_max_ps(d,_mm256_setzero_ps());
406             d2               = _mm256_mul_ps(d,d);
407             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
408
409             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
410
411             /* Evaluate switch function */
412             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
413             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
414             velec            = _mm256_mul_ps(velec,sw);
415             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm256_and_ps(velec,cutoff_mask);
419             velecsum         = _mm256_add_ps(velecsum,velec);
420
421             fscal            = felec;
422
423             fscal            = _mm256_and_ps(fscal,cutoff_mask);
424
425             /* Calculate temporary vectorial force */
426             tx               = _mm256_mul_ps(fscal,dx20);
427             ty               = _mm256_mul_ps(fscal,dy20);
428             tz               = _mm256_mul_ps(fscal,dz20);
429
430             /* Update vectorial force */
431             fix2             = _mm256_add_ps(fix2,tx);
432             fiy2             = _mm256_add_ps(fiy2,ty);
433             fiz2             = _mm256_add_ps(fiz2,tz);
434
435             fjx0             = _mm256_add_ps(fjx0,tx);
436             fjy0             = _mm256_add_ps(fjy0,ty);
437             fjz0             = _mm256_add_ps(fjz0,tz);
438
439             }
440
441             fjptrA             = f+j_coord_offsetA;
442             fjptrB             = f+j_coord_offsetB;
443             fjptrC             = f+j_coord_offsetC;
444             fjptrD             = f+j_coord_offsetD;
445             fjptrE             = f+j_coord_offsetE;
446             fjptrF             = f+j_coord_offsetF;
447             fjptrG             = f+j_coord_offsetG;
448             fjptrH             = f+j_coord_offsetH;
449
450             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
451
452             /* Inner loop uses 327 flops */
453         }
454
455         if(jidx<j_index_end)
456         {
457
458             /* Get j neighbor index, and coordinate index */
459             jnrlistA         = jjnr[jidx];
460             jnrlistB         = jjnr[jidx+1];
461             jnrlistC         = jjnr[jidx+2];
462             jnrlistD         = jjnr[jidx+3];
463             jnrlistE         = jjnr[jidx+4];
464             jnrlistF         = jjnr[jidx+5];
465             jnrlistG         = jjnr[jidx+6];
466             jnrlistH         = jjnr[jidx+7];
467             /* Sign of each element will be negative for non-real atoms.
468              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
469              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
470              */
471             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
472                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
473                                             
474             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
475             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
476             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
477             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
478             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
479             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
480             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
481             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
482             j_coord_offsetA  = DIM*jnrA;
483             j_coord_offsetB  = DIM*jnrB;
484             j_coord_offsetC  = DIM*jnrC;
485             j_coord_offsetD  = DIM*jnrD;
486             j_coord_offsetE  = DIM*jnrE;
487             j_coord_offsetF  = DIM*jnrF;
488             j_coord_offsetG  = DIM*jnrG;
489             j_coord_offsetH  = DIM*jnrH;
490
491             /* load j atom coordinates */
492             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
493                                                  x+j_coord_offsetC,x+j_coord_offsetD,
494                                                  x+j_coord_offsetE,x+j_coord_offsetF,
495                                                  x+j_coord_offsetG,x+j_coord_offsetH,
496                                                  &jx0,&jy0,&jz0);
497
498             /* Calculate displacement vector */
499             dx00             = _mm256_sub_ps(ix0,jx0);
500             dy00             = _mm256_sub_ps(iy0,jy0);
501             dz00             = _mm256_sub_ps(iz0,jz0);
502             dx10             = _mm256_sub_ps(ix1,jx0);
503             dy10             = _mm256_sub_ps(iy1,jy0);
504             dz10             = _mm256_sub_ps(iz1,jz0);
505             dx20             = _mm256_sub_ps(ix2,jx0);
506             dy20             = _mm256_sub_ps(iy2,jy0);
507             dz20             = _mm256_sub_ps(iz2,jz0);
508
509             /* Calculate squared distance and things based on it */
510             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
511             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
512             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
513
514             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
515             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
516             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
517
518             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
519             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
520             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
521
522             /* Load parameters for j particles */
523             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
524                                                                  charge+jnrC+0,charge+jnrD+0,
525                                                                  charge+jnrE+0,charge+jnrF+0,
526                                                                  charge+jnrG+0,charge+jnrH+0);
527
528             fjx0             = _mm256_setzero_ps();
529             fjy0             = _mm256_setzero_ps();
530             fjz0             = _mm256_setzero_ps();
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (gmx_mm256_any_lt(rsq00,rcutoff2))
537             {
538
539             r00              = _mm256_mul_ps(rsq00,rinv00);
540             r00              = _mm256_andnot_ps(dummy_mask,r00);
541
542             /* Compute parameters for interactions between i and j atoms */
543             qq00             = _mm256_mul_ps(iq0,jq0);
544
545             /* EWALD ELECTROSTATICS */
546             
547             /* Analytical PME correction */
548             zeta2            = _mm256_mul_ps(beta2,rsq00);
549             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
550             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
551             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
552             felec            = _mm256_mul_ps(qq00,felec);
553             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
554             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
555             velec            = _mm256_sub_ps(rinv00,pmecorrV);
556             velec            = _mm256_mul_ps(qq00,velec);
557             
558             d                = _mm256_sub_ps(r00,rswitch);
559             d                = _mm256_max_ps(d,_mm256_setzero_ps());
560             d2               = _mm256_mul_ps(d,d);
561             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
562
563             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
564
565             /* Evaluate switch function */
566             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
567             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
568             velec            = _mm256_mul_ps(velec,sw);
569             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velec            = _mm256_and_ps(velec,cutoff_mask);
573             velec            = _mm256_andnot_ps(dummy_mask,velec);
574             velecsum         = _mm256_add_ps(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm256_and_ps(fscal,cutoff_mask);
579
580             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_ps(fscal,dx00);
584             ty               = _mm256_mul_ps(fscal,dy00);
585             tz               = _mm256_mul_ps(fscal,dz00);
586
587             /* Update vectorial force */
588             fix0             = _mm256_add_ps(fix0,tx);
589             fiy0             = _mm256_add_ps(fiy0,ty);
590             fiz0             = _mm256_add_ps(fiz0,tz);
591
592             fjx0             = _mm256_add_ps(fjx0,tx);
593             fjy0             = _mm256_add_ps(fjy0,ty);
594             fjz0             = _mm256_add_ps(fjz0,tz);
595
596             }
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             if (gmx_mm256_any_lt(rsq10,rcutoff2))
603             {
604
605             r10              = _mm256_mul_ps(rsq10,rinv10);
606             r10              = _mm256_andnot_ps(dummy_mask,r10);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq10             = _mm256_mul_ps(iq1,jq0);
610
611             /* EWALD ELECTROSTATICS */
612             
613             /* Analytical PME correction */
614             zeta2            = _mm256_mul_ps(beta2,rsq10);
615             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
616             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
617             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
618             felec            = _mm256_mul_ps(qq10,felec);
619             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
620             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
621             velec            = _mm256_sub_ps(rinv10,pmecorrV);
622             velec            = _mm256_mul_ps(qq10,velec);
623             
624             d                = _mm256_sub_ps(r10,rswitch);
625             d                = _mm256_max_ps(d,_mm256_setzero_ps());
626             d2               = _mm256_mul_ps(d,d);
627             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
628
629             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
630
631             /* Evaluate switch function */
632             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
633             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
634             velec            = _mm256_mul_ps(velec,sw);
635             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
636
637             /* Update potential sum for this i atom from the interaction with this j atom. */
638             velec            = _mm256_and_ps(velec,cutoff_mask);
639             velec            = _mm256_andnot_ps(dummy_mask,velec);
640             velecsum         = _mm256_add_ps(velecsum,velec);
641
642             fscal            = felec;
643
644             fscal            = _mm256_and_ps(fscal,cutoff_mask);
645
646             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm256_mul_ps(fscal,dx10);
650             ty               = _mm256_mul_ps(fscal,dy10);
651             tz               = _mm256_mul_ps(fscal,dz10);
652
653             /* Update vectorial force */
654             fix1             = _mm256_add_ps(fix1,tx);
655             fiy1             = _mm256_add_ps(fiy1,ty);
656             fiz1             = _mm256_add_ps(fiz1,tz);
657
658             fjx0             = _mm256_add_ps(fjx0,tx);
659             fjy0             = _mm256_add_ps(fjy0,ty);
660             fjz0             = _mm256_add_ps(fjz0,tz);
661
662             }
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             if (gmx_mm256_any_lt(rsq20,rcutoff2))
669             {
670
671             r20              = _mm256_mul_ps(rsq20,rinv20);
672             r20              = _mm256_andnot_ps(dummy_mask,r20);
673
674             /* Compute parameters for interactions between i and j atoms */
675             qq20             = _mm256_mul_ps(iq2,jq0);
676
677             /* EWALD ELECTROSTATICS */
678             
679             /* Analytical PME correction */
680             zeta2            = _mm256_mul_ps(beta2,rsq20);
681             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
682             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
683             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
684             felec            = _mm256_mul_ps(qq20,felec);
685             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
686             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
687             velec            = _mm256_sub_ps(rinv20,pmecorrV);
688             velec            = _mm256_mul_ps(qq20,velec);
689             
690             d                = _mm256_sub_ps(r20,rswitch);
691             d                = _mm256_max_ps(d,_mm256_setzero_ps());
692             d2               = _mm256_mul_ps(d,d);
693             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
694
695             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
696
697             /* Evaluate switch function */
698             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
699             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
700             velec            = _mm256_mul_ps(velec,sw);
701             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
702
703             /* Update potential sum for this i atom from the interaction with this j atom. */
704             velec            = _mm256_and_ps(velec,cutoff_mask);
705             velec            = _mm256_andnot_ps(dummy_mask,velec);
706             velecsum         = _mm256_add_ps(velecsum,velec);
707
708             fscal            = felec;
709
710             fscal            = _mm256_and_ps(fscal,cutoff_mask);
711
712             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
713
714             /* Calculate temporary vectorial force */
715             tx               = _mm256_mul_ps(fscal,dx20);
716             ty               = _mm256_mul_ps(fscal,dy20);
717             tz               = _mm256_mul_ps(fscal,dz20);
718
719             /* Update vectorial force */
720             fix2             = _mm256_add_ps(fix2,tx);
721             fiy2             = _mm256_add_ps(fiy2,ty);
722             fiz2             = _mm256_add_ps(fiz2,tz);
723
724             fjx0             = _mm256_add_ps(fjx0,tx);
725             fjy0             = _mm256_add_ps(fjy0,ty);
726             fjz0             = _mm256_add_ps(fjz0,tz);
727
728             }
729
730             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
731             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
732             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
733             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
734             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
735             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
736             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
737             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
738
739             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
740
741             /* Inner loop uses 330 flops */
742         }
743
744         /* End of innermost loop */
745
746         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
747                                                  f+i_coord_offset,fshift+i_shift_offset);
748
749         ggid                        = gid[iidx];
750         /* Update potential energies */
751         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
752
753         /* Increment number of inner iterations */
754         inneriter                  += j_index_end - j_index_start;
755
756         /* Outer loop uses 19 flops */
757     }
758
759     /* Increment number of outer iterations */
760     outeriter        += nri;
761
762     /* Update outer/inner flops */
763
764     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*330);
765 }
766 /*
767  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_256_single
768  * Electrostatics interaction: Ewald
769  * VdW interaction:            None
770  * Geometry:                   Water3-Particle
771  * Calculate force/pot:        Force
772  */
773 void
774 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_256_single
775                     (t_nblist * gmx_restrict                nlist,
776                      rvec * gmx_restrict                    xx,
777                      rvec * gmx_restrict                    ff,
778                      t_forcerec * gmx_restrict              fr,
779                      t_mdatoms * gmx_restrict               mdatoms,
780                      nb_kernel_data_t * gmx_restrict        kernel_data,
781                      t_nrnb * gmx_restrict                  nrnb)
782 {
783     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
784      * just 0 for non-waters.
785      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
786      * jnr indices corresponding to data put in the four positions in the SIMD register.
787      */
788     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
789     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
790     int              jnrA,jnrB,jnrC,jnrD;
791     int              jnrE,jnrF,jnrG,jnrH;
792     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
793     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
794     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
795     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
796     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
797     real             rcutoff_scalar;
798     real             *shiftvec,*fshift,*x,*f;
799     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
800     real             scratch[4*DIM];
801     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
802     real *           vdwioffsetptr0;
803     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
804     real *           vdwioffsetptr1;
805     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
806     real *           vdwioffsetptr2;
807     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
808     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
809     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
810     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
811     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
812     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
813     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
814     real             *charge;
815     __m256i          ewitab;
816     __m128i          ewitab_lo,ewitab_hi;
817     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
818     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
819     real             *ewtab;
820     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
821     real             rswitch_scalar,d_scalar;
822     __m256           dummy_mask,cutoff_mask;
823     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
824     __m256           one     = _mm256_set1_ps(1.0);
825     __m256           two     = _mm256_set1_ps(2.0);
826     x                = xx[0];
827     f                = ff[0];
828
829     nri              = nlist->nri;
830     iinr             = nlist->iinr;
831     jindex           = nlist->jindex;
832     jjnr             = nlist->jjnr;
833     shiftidx         = nlist->shift;
834     gid              = nlist->gid;
835     shiftvec         = fr->shift_vec[0];
836     fshift           = fr->fshift[0];
837     facel            = _mm256_set1_ps(fr->epsfac);
838     charge           = mdatoms->chargeA;
839
840     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
841     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
842     beta2            = _mm256_mul_ps(beta,beta);
843     beta3            = _mm256_mul_ps(beta,beta2);
844
845     ewtab            = fr->ic->tabq_coul_FDV0;
846     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
847     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
848
849     /* Setup water-specific parameters */
850     inr              = nlist->iinr[0];
851     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
852     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
853     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
854
855     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
856     rcutoff_scalar   = fr->rcoulomb;
857     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
858     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
859
860     rswitch_scalar   = fr->rcoulomb_switch;
861     rswitch          = _mm256_set1_ps(rswitch_scalar);
862     /* Setup switch parameters */
863     d_scalar         = rcutoff_scalar-rswitch_scalar;
864     d                = _mm256_set1_ps(d_scalar);
865     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
866     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
867     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
868     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
869     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
870     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
871
872     /* Avoid stupid compiler warnings */
873     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
874     j_coord_offsetA = 0;
875     j_coord_offsetB = 0;
876     j_coord_offsetC = 0;
877     j_coord_offsetD = 0;
878     j_coord_offsetE = 0;
879     j_coord_offsetF = 0;
880     j_coord_offsetG = 0;
881     j_coord_offsetH = 0;
882
883     outeriter        = 0;
884     inneriter        = 0;
885
886     for(iidx=0;iidx<4*DIM;iidx++)
887     {
888         scratch[iidx] = 0.0;
889     }
890
891     /* Start outer loop over neighborlists */
892     for(iidx=0; iidx<nri; iidx++)
893     {
894         /* Load shift vector for this list */
895         i_shift_offset   = DIM*shiftidx[iidx];
896
897         /* Load limits for loop over neighbors */
898         j_index_start    = jindex[iidx];
899         j_index_end      = jindex[iidx+1];
900
901         /* Get outer coordinate index */
902         inr              = iinr[iidx];
903         i_coord_offset   = DIM*inr;
904
905         /* Load i particle coords and add shift vector */
906         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
907                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
908
909         fix0             = _mm256_setzero_ps();
910         fiy0             = _mm256_setzero_ps();
911         fiz0             = _mm256_setzero_ps();
912         fix1             = _mm256_setzero_ps();
913         fiy1             = _mm256_setzero_ps();
914         fiz1             = _mm256_setzero_ps();
915         fix2             = _mm256_setzero_ps();
916         fiy2             = _mm256_setzero_ps();
917         fiz2             = _mm256_setzero_ps();
918
919         /* Start inner kernel loop */
920         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
921         {
922
923             /* Get j neighbor index, and coordinate index */
924             jnrA             = jjnr[jidx];
925             jnrB             = jjnr[jidx+1];
926             jnrC             = jjnr[jidx+2];
927             jnrD             = jjnr[jidx+3];
928             jnrE             = jjnr[jidx+4];
929             jnrF             = jjnr[jidx+5];
930             jnrG             = jjnr[jidx+6];
931             jnrH             = jjnr[jidx+7];
932             j_coord_offsetA  = DIM*jnrA;
933             j_coord_offsetB  = DIM*jnrB;
934             j_coord_offsetC  = DIM*jnrC;
935             j_coord_offsetD  = DIM*jnrD;
936             j_coord_offsetE  = DIM*jnrE;
937             j_coord_offsetF  = DIM*jnrF;
938             j_coord_offsetG  = DIM*jnrG;
939             j_coord_offsetH  = DIM*jnrH;
940
941             /* load j atom coordinates */
942             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
943                                                  x+j_coord_offsetC,x+j_coord_offsetD,
944                                                  x+j_coord_offsetE,x+j_coord_offsetF,
945                                                  x+j_coord_offsetG,x+j_coord_offsetH,
946                                                  &jx0,&jy0,&jz0);
947
948             /* Calculate displacement vector */
949             dx00             = _mm256_sub_ps(ix0,jx0);
950             dy00             = _mm256_sub_ps(iy0,jy0);
951             dz00             = _mm256_sub_ps(iz0,jz0);
952             dx10             = _mm256_sub_ps(ix1,jx0);
953             dy10             = _mm256_sub_ps(iy1,jy0);
954             dz10             = _mm256_sub_ps(iz1,jz0);
955             dx20             = _mm256_sub_ps(ix2,jx0);
956             dy20             = _mm256_sub_ps(iy2,jy0);
957             dz20             = _mm256_sub_ps(iz2,jz0);
958
959             /* Calculate squared distance and things based on it */
960             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
961             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
962             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
963
964             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
965             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
966             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
967
968             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
969             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
970             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
971
972             /* Load parameters for j particles */
973             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
974                                                                  charge+jnrC+0,charge+jnrD+0,
975                                                                  charge+jnrE+0,charge+jnrF+0,
976                                                                  charge+jnrG+0,charge+jnrH+0);
977
978             fjx0             = _mm256_setzero_ps();
979             fjy0             = _mm256_setzero_ps();
980             fjz0             = _mm256_setzero_ps();
981
982             /**************************
983              * CALCULATE INTERACTIONS *
984              **************************/
985
986             if (gmx_mm256_any_lt(rsq00,rcutoff2))
987             {
988
989             r00              = _mm256_mul_ps(rsq00,rinv00);
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq00             = _mm256_mul_ps(iq0,jq0);
993
994             /* EWALD ELECTROSTATICS */
995             
996             /* Analytical PME correction */
997             zeta2            = _mm256_mul_ps(beta2,rsq00);
998             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
999             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1000             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1001             felec            = _mm256_mul_ps(qq00,felec);
1002             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1003             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1004             velec            = _mm256_sub_ps(rinv00,pmecorrV);
1005             velec            = _mm256_mul_ps(qq00,velec);
1006             
1007             d                = _mm256_sub_ps(r00,rswitch);
1008             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1009             d2               = _mm256_mul_ps(d,d);
1010             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1011
1012             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1013
1014             /* Evaluate switch function */
1015             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1016             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
1017             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1018
1019             fscal            = felec;
1020
1021             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1022
1023             /* Calculate temporary vectorial force */
1024             tx               = _mm256_mul_ps(fscal,dx00);
1025             ty               = _mm256_mul_ps(fscal,dy00);
1026             tz               = _mm256_mul_ps(fscal,dz00);
1027
1028             /* Update vectorial force */
1029             fix0             = _mm256_add_ps(fix0,tx);
1030             fiy0             = _mm256_add_ps(fiy0,ty);
1031             fiz0             = _mm256_add_ps(fiz0,tz);
1032
1033             fjx0             = _mm256_add_ps(fjx0,tx);
1034             fjy0             = _mm256_add_ps(fjy0,ty);
1035             fjz0             = _mm256_add_ps(fjz0,tz);
1036
1037             }
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1044             {
1045
1046             r10              = _mm256_mul_ps(rsq10,rinv10);
1047
1048             /* Compute parameters for interactions between i and j atoms */
1049             qq10             = _mm256_mul_ps(iq1,jq0);
1050
1051             /* EWALD ELECTROSTATICS */
1052             
1053             /* Analytical PME correction */
1054             zeta2            = _mm256_mul_ps(beta2,rsq10);
1055             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1056             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1057             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1058             felec            = _mm256_mul_ps(qq10,felec);
1059             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1060             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1061             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1062             velec            = _mm256_mul_ps(qq10,velec);
1063             
1064             d                = _mm256_sub_ps(r10,rswitch);
1065             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1066             d2               = _mm256_mul_ps(d,d);
1067             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1068
1069             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1070
1071             /* Evaluate switch function */
1072             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1073             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1074             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm256_mul_ps(fscal,dx10);
1082             ty               = _mm256_mul_ps(fscal,dy10);
1083             tz               = _mm256_mul_ps(fscal,dz10);
1084
1085             /* Update vectorial force */
1086             fix1             = _mm256_add_ps(fix1,tx);
1087             fiy1             = _mm256_add_ps(fiy1,ty);
1088             fiz1             = _mm256_add_ps(fiz1,tz);
1089
1090             fjx0             = _mm256_add_ps(fjx0,tx);
1091             fjy0             = _mm256_add_ps(fjy0,ty);
1092             fjz0             = _mm256_add_ps(fjz0,tz);
1093
1094             }
1095
1096             /**************************
1097              * CALCULATE INTERACTIONS *
1098              **************************/
1099
1100             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1101             {
1102
1103             r20              = _mm256_mul_ps(rsq20,rinv20);
1104
1105             /* Compute parameters for interactions between i and j atoms */
1106             qq20             = _mm256_mul_ps(iq2,jq0);
1107
1108             /* EWALD ELECTROSTATICS */
1109             
1110             /* Analytical PME correction */
1111             zeta2            = _mm256_mul_ps(beta2,rsq20);
1112             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1113             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1114             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1115             felec            = _mm256_mul_ps(qq20,felec);
1116             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1117             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1118             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1119             velec            = _mm256_mul_ps(qq20,velec);
1120             
1121             d                = _mm256_sub_ps(r20,rswitch);
1122             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1123             d2               = _mm256_mul_ps(d,d);
1124             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1125
1126             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1127
1128             /* Evaluate switch function */
1129             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1130             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1131             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1132
1133             fscal            = felec;
1134
1135             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1136
1137             /* Calculate temporary vectorial force */
1138             tx               = _mm256_mul_ps(fscal,dx20);
1139             ty               = _mm256_mul_ps(fscal,dy20);
1140             tz               = _mm256_mul_ps(fscal,dz20);
1141
1142             /* Update vectorial force */
1143             fix2             = _mm256_add_ps(fix2,tx);
1144             fiy2             = _mm256_add_ps(fiy2,ty);
1145             fiz2             = _mm256_add_ps(fiz2,tz);
1146
1147             fjx0             = _mm256_add_ps(fjx0,tx);
1148             fjy0             = _mm256_add_ps(fjy0,ty);
1149             fjz0             = _mm256_add_ps(fjz0,tz);
1150
1151             }
1152
1153             fjptrA             = f+j_coord_offsetA;
1154             fjptrB             = f+j_coord_offsetB;
1155             fjptrC             = f+j_coord_offsetC;
1156             fjptrD             = f+j_coord_offsetD;
1157             fjptrE             = f+j_coord_offsetE;
1158             fjptrF             = f+j_coord_offsetF;
1159             fjptrG             = f+j_coord_offsetG;
1160             fjptrH             = f+j_coord_offsetH;
1161
1162             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1163
1164             /* Inner loop uses 318 flops */
1165         }
1166
1167         if(jidx<j_index_end)
1168         {
1169
1170             /* Get j neighbor index, and coordinate index */
1171             jnrlistA         = jjnr[jidx];
1172             jnrlistB         = jjnr[jidx+1];
1173             jnrlistC         = jjnr[jidx+2];
1174             jnrlistD         = jjnr[jidx+3];
1175             jnrlistE         = jjnr[jidx+4];
1176             jnrlistF         = jjnr[jidx+5];
1177             jnrlistG         = jjnr[jidx+6];
1178             jnrlistH         = jjnr[jidx+7];
1179             /* Sign of each element will be negative for non-real atoms.
1180              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1181              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1182              */
1183             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1184                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1185                                             
1186             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1187             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1188             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1189             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1190             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1191             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1192             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1193             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1194             j_coord_offsetA  = DIM*jnrA;
1195             j_coord_offsetB  = DIM*jnrB;
1196             j_coord_offsetC  = DIM*jnrC;
1197             j_coord_offsetD  = DIM*jnrD;
1198             j_coord_offsetE  = DIM*jnrE;
1199             j_coord_offsetF  = DIM*jnrF;
1200             j_coord_offsetG  = DIM*jnrG;
1201             j_coord_offsetH  = DIM*jnrH;
1202
1203             /* load j atom coordinates */
1204             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1205                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1206                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1207                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1208                                                  &jx0,&jy0,&jz0);
1209
1210             /* Calculate displacement vector */
1211             dx00             = _mm256_sub_ps(ix0,jx0);
1212             dy00             = _mm256_sub_ps(iy0,jy0);
1213             dz00             = _mm256_sub_ps(iz0,jz0);
1214             dx10             = _mm256_sub_ps(ix1,jx0);
1215             dy10             = _mm256_sub_ps(iy1,jy0);
1216             dz10             = _mm256_sub_ps(iz1,jz0);
1217             dx20             = _mm256_sub_ps(ix2,jx0);
1218             dy20             = _mm256_sub_ps(iy2,jy0);
1219             dz20             = _mm256_sub_ps(iz2,jz0);
1220
1221             /* Calculate squared distance and things based on it */
1222             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1223             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1224             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1225
1226             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1227             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1228             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1229
1230             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1231             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1232             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1233
1234             /* Load parameters for j particles */
1235             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1236                                                                  charge+jnrC+0,charge+jnrD+0,
1237                                                                  charge+jnrE+0,charge+jnrF+0,
1238                                                                  charge+jnrG+0,charge+jnrH+0);
1239
1240             fjx0             = _mm256_setzero_ps();
1241             fjy0             = _mm256_setzero_ps();
1242             fjz0             = _mm256_setzero_ps();
1243
1244             /**************************
1245              * CALCULATE INTERACTIONS *
1246              **************************/
1247
1248             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1249             {
1250
1251             r00              = _mm256_mul_ps(rsq00,rinv00);
1252             r00              = _mm256_andnot_ps(dummy_mask,r00);
1253
1254             /* Compute parameters for interactions between i and j atoms */
1255             qq00             = _mm256_mul_ps(iq0,jq0);
1256
1257             /* EWALD ELECTROSTATICS */
1258             
1259             /* Analytical PME correction */
1260             zeta2            = _mm256_mul_ps(beta2,rsq00);
1261             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1262             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1263             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1264             felec            = _mm256_mul_ps(qq00,felec);
1265             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1266             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1267             velec            = _mm256_sub_ps(rinv00,pmecorrV);
1268             velec            = _mm256_mul_ps(qq00,velec);
1269             
1270             d                = _mm256_sub_ps(r00,rswitch);
1271             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1272             d2               = _mm256_mul_ps(d,d);
1273             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1274
1275             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1276
1277             /* Evaluate switch function */
1278             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1279             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
1280             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1281
1282             fscal            = felec;
1283
1284             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1285
1286             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1287
1288             /* Calculate temporary vectorial force */
1289             tx               = _mm256_mul_ps(fscal,dx00);
1290             ty               = _mm256_mul_ps(fscal,dy00);
1291             tz               = _mm256_mul_ps(fscal,dz00);
1292
1293             /* Update vectorial force */
1294             fix0             = _mm256_add_ps(fix0,tx);
1295             fiy0             = _mm256_add_ps(fiy0,ty);
1296             fiz0             = _mm256_add_ps(fiz0,tz);
1297
1298             fjx0             = _mm256_add_ps(fjx0,tx);
1299             fjy0             = _mm256_add_ps(fjy0,ty);
1300             fjz0             = _mm256_add_ps(fjz0,tz);
1301
1302             }
1303
1304             /**************************
1305              * CALCULATE INTERACTIONS *
1306              **************************/
1307
1308             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1309             {
1310
1311             r10              = _mm256_mul_ps(rsq10,rinv10);
1312             r10              = _mm256_andnot_ps(dummy_mask,r10);
1313
1314             /* Compute parameters for interactions between i and j atoms */
1315             qq10             = _mm256_mul_ps(iq1,jq0);
1316
1317             /* EWALD ELECTROSTATICS */
1318             
1319             /* Analytical PME correction */
1320             zeta2            = _mm256_mul_ps(beta2,rsq10);
1321             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1322             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1323             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1324             felec            = _mm256_mul_ps(qq10,felec);
1325             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1326             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1327             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1328             velec            = _mm256_mul_ps(qq10,velec);
1329             
1330             d                = _mm256_sub_ps(r10,rswitch);
1331             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1332             d2               = _mm256_mul_ps(d,d);
1333             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1334
1335             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1336
1337             /* Evaluate switch function */
1338             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1339             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1340             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1341
1342             fscal            = felec;
1343
1344             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1345
1346             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1347
1348             /* Calculate temporary vectorial force */
1349             tx               = _mm256_mul_ps(fscal,dx10);
1350             ty               = _mm256_mul_ps(fscal,dy10);
1351             tz               = _mm256_mul_ps(fscal,dz10);
1352
1353             /* Update vectorial force */
1354             fix1             = _mm256_add_ps(fix1,tx);
1355             fiy1             = _mm256_add_ps(fiy1,ty);
1356             fiz1             = _mm256_add_ps(fiz1,tz);
1357
1358             fjx0             = _mm256_add_ps(fjx0,tx);
1359             fjy0             = _mm256_add_ps(fjy0,ty);
1360             fjz0             = _mm256_add_ps(fjz0,tz);
1361
1362             }
1363
1364             /**************************
1365              * CALCULATE INTERACTIONS *
1366              **************************/
1367
1368             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1369             {
1370
1371             r20              = _mm256_mul_ps(rsq20,rinv20);
1372             r20              = _mm256_andnot_ps(dummy_mask,r20);
1373
1374             /* Compute parameters for interactions between i and j atoms */
1375             qq20             = _mm256_mul_ps(iq2,jq0);
1376
1377             /* EWALD ELECTROSTATICS */
1378             
1379             /* Analytical PME correction */
1380             zeta2            = _mm256_mul_ps(beta2,rsq20);
1381             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1382             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1383             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1384             felec            = _mm256_mul_ps(qq20,felec);
1385             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1386             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1387             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1388             velec            = _mm256_mul_ps(qq20,velec);
1389             
1390             d                = _mm256_sub_ps(r20,rswitch);
1391             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1392             d2               = _mm256_mul_ps(d,d);
1393             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1394
1395             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1396
1397             /* Evaluate switch function */
1398             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1399             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1400             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1401
1402             fscal            = felec;
1403
1404             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1405
1406             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1407
1408             /* Calculate temporary vectorial force */
1409             tx               = _mm256_mul_ps(fscal,dx20);
1410             ty               = _mm256_mul_ps(fscal,dy20);
1411             tz               = _mm256_mul_ps(fscal,dz20);
1412
1413             /* Update vectorial force */
1414             fix2             = _mm256_add_ps(fix2,tx);
1415             fiy2             = _mm256_add_ps(fiy2,ty);
1416             fiz2             = _mm256_add_ps(fiz2,tz);
1417
1418             fjx0             = _mm256_add_ps(fjx0,tx);
1419             fjy0             = _mm256_add_ps(fjy0,ty);
1420             fjz0             = _mm256_add_ps(fjz0,tz);
1421
1422             }
1423
1424             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1425             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1426             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1427             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1428             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1429             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1430             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1431             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1432
1433             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1434
1435             /* Inner loop uses 321 flops */
1436         }
1437
1438         /* End of innermost loop */
1439
1440         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1441                                                  f+i_coord_offset,fshift+i_shift_offset);
1442
1443         /* Increment number of inner iterations */
1444         inneriter                  += j_index_end - j_index_start;
1445
1446         /* Outer loop uses 18 flops */
1447     }
1448
1449     /* Increment number of outer iterations */
1450     outeriter        += nri;
1451
1452     /* Update outer/inner flops */
1453
1454     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*321);
1455 }