3ae1447ffa2b67d688a98a19a9ac7c892b2e23d4
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256i          ewitab;
100     __m128i          ewitab_lo,ewitab_hi;
101     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105     real             rswitch_scalar,d_scalar;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123
124     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
125     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
126     beta2            = _mm256_mul_ps(beta,beta);
127     beta3            = _mm256_mul_ps(beta,beta2);
128
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
136     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
137     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->rcoulomb;
141     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
142     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
143
144     rswitch_scalar   = fr->rcoulomb_switch;
145     rswitch          = _mm256_set1_ps(rswitch_scalar);
146     /* Setup switch parameters */
147     d_scalar         = rcutoff_scalar-rswitch_scalar;
148     d                = _mm256_set1_ps(d_scalar);
149     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
150     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
153     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160     j_coord_offsetC = 0;
161     j_coord_offsetD = 0;
162     j_coord_offsetE = 0;
163     j_coord_offsetF = 0;
164     j_coord_offsetG = 0;
165     j_coord_offsetH = 0;
166
167     outeriter        = 0;
168     inneriter        = 0;
169
170     for(iidx=0;iidx<4*DIM;iidx++)
171     {
172         scratch[iidx] = 0.0;
173     }
174
175     /* Start outer loop over neighborlists */
176     for(iidx=0; iidx<nri; iidx++)
177     {
178         /* Load shift vector for this list */
179         i_shift_offset   = DIM*shiftidx[iidx];
180
181         /* Load limits for loop over neighbors */
182         j_index_start    = jindex[iidx];
183         j_index_end      = jindex[iidx+1];
184
185         /* Get outer coordinate index */
186         inr              = iinr[iidx];
187         i_coord_offset   = DIM*inr;
188
189         /* Load i particle coords and add shift vector */
190         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
191                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
192
193         fix0             = _mm256_setzero_ps();
194         fiy0             = _mm256_setzero_ps();
195         fiz0             = _mm256_setzero_ps();
196         fix1             = _mm256_setzero_ps();
197         fiy1             = _mm256_setzero_ps();
198         fiz1             = _mm256_setzero_ps();
199         fix2             = _mm256_setzero_ps();
200         fiy2             = _mm256_setzero_ps();
201         fiz2             = _mm256_setzero_ps();
202
203         /* Reset potential sums */
204         velecsum         = _mm256_setzero_ps();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             jnrE             = jjnr[jidx+4];
216             jnrF             = jjnr[jidx+5];
217             jnrG             = jjnr[jidx+6];
218             jnrH             = jjnr[jidx+7];
219             j_coord_offsetA  = DIM*jnrA;
220             j_coord_offsetB  = DIM*jnrB;
221             j_coord_offsetC  = DIM*jnrC;
222             j_coord_offsetD  = DIM*jnrD;
223             j_coord_offsetE  = DIM*jnrE;
224             j_coord_offsetF  = DIM*jnrF;
225             j_coord_offsetG  = DIM*jnrG;
226             j_coord_offsetH  = DIM*jnrH;
227
228             /* load j atom coordinates */
229             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
230                                                  x+j_coord_offsetC,x+j_coord_offsetD,
231                                                  x+j_coord_offsetE,x+j_coord_offsetF,
232                                                  x+j_coord_offsetG,x+j_coord_offsetH,
233                                                  &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm256_sub_ps(ix0,jx0);
237             dy00             = _mm256_sub_ps(iy0,jy0);
238             dz00             = _mm256_sub_ps(iz0,jz0);
239             dx10             = _mm256_sub_ps(ix1,jx0);
240             dy10             = _mm256_sub_ps(iy1,jy0);
241             dz10             = _mm256_sub_ps(iz1,jz0);
242             dx20             = _mm256_sub_ps(ix2,jx0);
243             dy20             = _mm256_sub_ps(iy2,jy0);
244             dz20             = _mm256_sub_ps(iz2,jz0);
245
246             /* Calculate squared distance and things based on it */
247             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
248             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
249             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
250
251             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
252             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
253             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
254
255             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
256             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
257             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
258
259             /* Load parameters for j particles */
260             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
261                                                                  charge+jnrC+0,charge+jnrD+0,
262                                                                  charge+jnrE+0,charge+jnrF+0,
263                                                                  charge+jnrG+0,charge+jnrH+0);
264
265             fjx0             = _mm256_setzero_ps();
266             fjy0             = _mm256_setzero_ps();
267             fjz0             = _mm256_setzero_ps();
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             if (gmx_mm256_any_lt(rsq00,rcutoff2))
274             {
275
276             r00              = _mm256_mul_ps(rsq00,rinv00);
277
278             /* Compute parameters for interactions between i and j atoms */
279             qq00             = _mm256_mul_ps(iq0,jq0);
280
281             /* EWALD ELECTROSTATICS */
282             
283             /* Analytical PME correction */
284             zeta2            = _mm256_mul_ps(beta2,rsq00);
285             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
286             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
287             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
288             felec            = _mm256_mul_ps(qq00,felec);
289             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
290             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
291             velec            = _mm256_sub_ps(rinv00,pmecorrV);
292             velec            = _mm256_mul_ps(qq00,velec);
293             
294             d                = _mm256_sub_ps(r00,rswitch);
295             d                = _mm256_max_ps(d,_mm256_setzero_ps());
296             d2               = _mm256_mul_ps(d,d);
297             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
298
299             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
300
301             /* Evaluate switch function */
302             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
303             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
304             velec            = _mm256_mul_ps(velec,sw);
305             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm256_and_ps(velec,cutoff_mask);
309             velecsum         = _mm256_add_ps(velecsum,velec);
310
311             fscal            = felec;
312
313             fscal            = _mm256_and_ps(fscal,cutoff_mask);
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm256_mul_ps(fscal,dx00);
317             ty               = _mm256_mul_ps(fscal,dy00);
318             tz               = _mm256_mul_ps(fscal,dz00);
319
320             /* Update vectorial force */
321             fix0             = _mm256_add_ps(fix0,tx);
322             fiy0             = _mm256_add_ps(fiy0,ty);
323             fiz0             = _mm256_add_ps(fiz0,tz);
324
325             fjx0             = _mm256_add_ps(fjx0,tx);
326             fjy0             = _mm256_add_ps(fjy0,ty);
327             fjz0             = _mm256_add_ps(fjz0,tz);
328
329             }
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             if (gmx_mm256_any_lt(rsq10,rcutoff2))
336             {
337
338             r10              = _mm256_mul_ps(rsq10,rinv10);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq10             = _mm256_mul_ps(iq1,jq0);
342
343             /* EWALD ELECTROSTATICS */
344             
345             /* Analytical PME correction */
346             zeta2            = _mm256_mul_ps(beta2,rsq10);
347             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
348             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
349             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
350             felec            = _mm256_mul_ps(qq10,felec);
351             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
352             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
353             velec            = _mm256_sub_ps(rinv10,pmecorrV);
354             velec            = _mm256_mul_ps(qq10,velec);
355             
356             d                = _mm256_sub_ps(r10,rswitch);
357             d                = _mm256_max_ps(d,_mm256_setzero_ps());
358             d2               = _mm256_mul_ps(d,d);
359             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
360
361             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
362
363             /* Evaluate switch function */
364             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
365             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
366             velec            = _mm256_mul_ps(velec,sw);
367             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm256_and_ps(velec,cutoff_mask);
371             velecsum         = _mm256_add_ps(velecsum,velec);
372
373             fscal            = felec;
374
375             fscal            = _mm256_and_ps(fscal,cutoff_mask);
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm256_mul_ps(fscal,dx10);
379             ty               = _mm256_mul_ps(fscal,dy10);
380             tz               = _mm256_mul_ps(fscal,dz10);
381
382             /* Update vectorial force */
383             fix1             = _mm256_add_ps(fix1,tx);
384             fiy1             = _mm256_add_ps(fiy1,ty);
385             fiz1             = _mm256_add_ps(fiz1,tz);
386
387             fjx0             = _mm256_add_ps(fjx0,tx);
388             fjy0             = _mm256_add_ps(fjy0,ty);
389             fjz0             = _mm256_add_ps(fjz0,tz);
390
391             }
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             if (gmx_mm256_any_lt(rsq20,rcutoff2))
398             {
399
400             r20              = _mm256_mul_ps(rsq20,rinv20);
401
402             /* Compute parameters for interactions between i and j atoms */
403             qq20             = _mm256_mul_ps(iq2,jq0);
404
405             /* EWALD ELECTROSTATICS */
406             
407             /* Analytical PME correction */
408             zeta2            = _mm256_mul_ps(beta2,rsq20);
409             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
410             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
411             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
412             felec            = _mm256_mul_ps(qq20,felec);
413             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
414             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
415             velec            = _mm256_sub_ps(rinv20,pmecorrV);
416             velec            = _mm256_mul_ps(qq20,velec);
417             
418             d                = _mm256_sub_ps(r20,rswitch);
419             d                = _mm256_max_ps(d,_mm256_setzero_ps());
420             d2               = _mm256_mul_ps(d,d);
421             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
422
423             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
424
425             /* Evaluate switch function */
426             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
427             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
428             velec            = _mm256_mul_ps(velec,sw);
429             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velec            = _mm256_and_ps(velec,cutoff_mask);
433             velecsum         = _mm256_add_ps(velecsum,velec);
434
435             fscal            = felec;
436
437             fscal            = _mm256_and_ps(fscal,cutoff_mask);
438
439             /* Calculate temporary vectorial force */
440             tx               = _mm256_mul_ps(fscal,dx20);
441             ty               = _mm256_mul_ps(fscal,dy20);
442             tz               = _mm256_mul_ps(fscal,dz20);
443
444             /* Update vectorial force */
445             fix2             = _mm256_add_ps(fix2,tx);
446             fiy2             = _mm256_add_ps(fiy2,ty);
447             fiz2             = _mm256_add_ps(fiz2,tz);
448
449             fjx0             = _mm256_add_ps(fjx0,tx);
450             fjy0             = _mm256_add_ps(fjy0,ty);
451             fjz0             = _mm256_add_ps(fjz0,tz);
452
453             }
454
455             fjptrA             = f+j_coord_offsetA;
456             fjptrB             = f+j_coord_offsetB;
457             fjptrC             = f+j_coord_offsetC;
458             fjptrD             = f+j_coord_offsetD;
459             fjptrE             = f+j_coord_offsetE;
460             fjptrF             = f+j_coord_offsetF;
461             fjptrG             = f+j_coord_offsetG;
462             fjptrH             = f+j_coord_offsetH;
463
464             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
465
466             /* Inner loop uses 327 flops */
467         }
468
469         if(jidx<j_index_end)
470         {
471
472             /* Get j neighbor index, and coordinate index */
473             jnrlistA         = jjnr[jidx];
474             jnrlistB         = jjnr[jidx+1];
475             jnrlistC         = jjnr[jidx+2];
476             jnrlistD         = jjnr[jidx+3];
477             jnrlistE         = jjnr[jidx+4];
478             jnrlistF         = jjnr[jidx+5];
479             jnrlistG         = jjnr[jidx+6];
480             jnrlistH         = jjnr[jidx+7];
481             /* Sign of each element will be negative for non-real atoms.
482              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
483              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
484              */
485             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
486                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
487                                             
488             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
489             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
490             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
491             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
492             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
493             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
494             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
495             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
496             j_coord_offsetA  = DIM*jnrA;
497             j_coord_offsetB  = DIM*jnrB;
498             j_coord_offsetC  = DIM*jnrC;
499             j_coord_offsetD  = DIM*jnrD;
500             j_coord_offsetE  = DIM*jnrE;
501             j_coord_offsetF  = DIM*jnrF;
502             j_coord_offsetG  = DIM*jnrG;
503             j_coord_offsetH  = DIM*jnrH;
504
505             /* load j atom coordinates */
506             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
507                                                  x+j_coord_offsetC,x+j_coord_offsetD,
508                                                  x+j_coord_offsetE,x+j_coord_offsetF,
509                                                  x+j_coord_offsetG,x+j_coord_offsetH,
510                                                  &jx0,&jy0,&jz0);
511
512             /* Calculate displacement vector */
513             dx00             = _mm256_sub_ps(ix0,jx0);
514             dy00             = _mm256_sub_ps(iy0,jy0);
515             dz00             = _mm256_sub_ps(iz0,jz0);
516             dx10             = _mm256_sub_ps(ix1,jx0);
517             dy10             = _mm256_sub_ps(iy1,jy0);
518             dz10             = _mm256_sub_ps(iz1,jz0);
519             dx20             = _mm256_sub_ps(ix2,jx0);
520             dy20             = _mm256_sub_ps(iy2,jy0);
521             dz20             = _mm256_sub_ps(iz2,jz0);
522
523             /* Calculate squared distance and things based on it */
524             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
525             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
526             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
527
528             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
529             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
530             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
531
532             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
533             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
534             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
535
536             /* Load parameters for j particles */
537             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
538                                                                  charge+jnrC+0,charge+jnrD+0,
539                                                                  charge+jnrE+0,charge+jnrF+0,
540                                                                  charge+jnrG+0,charge+jnrH+0);
541
542             fjx0             = _mm256_setzero_ps();
543             fjy0             = _mm256_setzero_ps();
544             fjz0             = _mm256_setzero_ps();
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             if (gmx_mm256_any_lt(rsq00,rcutoff2))
551             {
552
553             r00              = _mm256_mul_ps(rsq00,rinv00);
554             r00              = _mm256_andnot_ps(dummy_mask,r00);
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq00             = _mm256_mul_ps(iq0,jq0);
558
559             /* EWALD ELECTROSTATICS */
560             
561             /* Analytical PME correction */
562             zeta2            = _mm256_mul_ps(beta2,rsq00);
563             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
564             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
565             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
566             felec            = _mm256_mul_ps(qq00,felec);
567             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
568             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
569             velec            = _mm256_sub_ps(rinv00,pmecorrV);
570             velec            = _mm256_mul_ps(qq00,velec);
571             
572             d                = _mm256_sub_ps(r00,rswitch);
573             d                = _mm256_max_ps(d,_mm256_setzero_ps());
574             d2               = _mm256_mul_ps(d,d);
575             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
576
577             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
578
579             /* Evaluate switch function */
580             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
581             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
582             velec            = _mm256_mul_ps(velec,sw);
583             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
584
585             /* Update potential sum for this i atom from the interaction with this j atom. */
586             velec            = _mm256_and_ps(velec,cutoff_mask);
587             velec            = _mm256_andnot_ps(dummy_mask,velec);
588             velecsum         = _mm256_add_ps(velecsum,velec);
589
590             fscal            = felec;
591
592             fscal            = _mm256_and_ps(fscal,cutoff_mask);
593
594             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm256_mul_ps(fscal,dx00);
598             ty               = _mm256_mul_ps(fscal,dy00);
599             tz               = _mm256_mul_ps(fscal,dz00);
600
601             /* Update vectorial force */
602             fix0             = _mm256_add_ps(fix0,tx);
603             fiy0             = _mm256_add_ps(fiy0,ty);
604             fiz0             = _mm256_add_ps(fiz0,tz);
605
606             fjx0             = _mm256_add_ps(fjx0,tx);
607             fjy0             = _mm256_add_ps(fjy0,ty);
608             fjz0             = _mm256_add_ps(fjz0,tz);
609
610             }
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             if (gmx_mm256_any_lt(rsq10,rcutoff2))
617             {
618
619             r10              = _mm256_mul_ps(rsq10,rinv10);
620             r10              = _mm256_andnot_ps(dummy_mask,r10);
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq10             = _mm256_mul_ps(iq1,jq0);
624
625             /* EWALD ELECTROSTATICS */
626             
627             /* Analytical PME correction */
628             zeta2            = _mm256_mul_ps(beta2,rsq10);
629             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
630             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
631             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
632             felec            = _mm256_mul_ps(qq10,felec);
633             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
634             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
635             velec            = _mm256_sub_ps(rinv10,pmecorrV);
636             velec            = _mm256_mul_ps(qq10,velec);
637             
638             d                = _mm256_sub_ps(r10,rswitch);
639             d                = _mm256_max_ps(d,_mm256_setzero_ps());
640             d2               = _mm256_mul_ps(d,d);
641             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
642
643             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
644
645             /* Evaluate switch function */
646             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
647             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
648             velec            = _mm256_mul_ps(velec,sw);
649             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
650
651             /* Update potential sum for this i atom from the interaction with this j atom. */
652             velec            = _mm256_and_ps(velec,cutoff_mask);
653             velec            = _mm256_andnot_ps(dummy_mask,velec);
654             velecsum         = _mm256_add_ps(velecsum,velec);
655
656             fscal            = felec;
657
658             fscal            = _mm256_and_ps(fscal,cutoff_mask);
659
660             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
661
662             /* Calculate temporary vectorial force */
663             tx               = _mm256_mul_ps(fscal,dx10);
664             ty               = _mm256_mul_ps(fscal,dy10);
665             tz               = _mm256_mul_ps(fscal,dz10);
666
667             /* Update vectorial force */
668             fix1             = _mm256_add_ps(fix1,tx);
669             fiy1             = _mm256_add_ps(fiy1,ty);
670             fiz1             = _mm256_add_ps(fiz1,tz);
671
672             fjx0             = _mm256_add_ps(fjx0,tx);
673             fjy0             = _mm256_add_ps(fjy0,ty);
674             fjz0             = _mm256_add_ps(fjz0,tz);
675
676             }
677
678             /**************************
679              * CALCULATE INTERACTIONS *
680              **************************/
681
682             if (gmx_mm256_any_lt(rsq20,rcutoff2))
683             {
684
685             r20              = _mm256_mul_ps(rsq20,rinv20);
686             r20              = _mm256_andnot_ps(dummy_mask,r20);
687
688             /* Compute parameters for interactions between i and j atoms */
689             qq20             = _mm256_mul_ps(iq2,jq0);
690
691             /* EWALD ELECTROSTATICS */
692             
693             /* Analytical PME correction */
694             zeta2            = _mm256_mul_ps(beta2,rsq20);
695             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
696             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
697             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
698             felec            = _mm256_mul_ps(qq20,felec);
699             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
700             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
701             velec            = _mm256_sub_ps(rinv20,pmecorrV);
702             velec            = _mm256_mul_ps(qq20,velec);
703             
704             d                = _mm256_sub_ps(r20,rswitch);
705             d                = _mm256_max_ps(d,_mm256_setzero_ps());
706             d2               = _mm256_mul_ps(d,d);
707             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
708
709             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
710
711             /* Evaluate switch function */
712             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
713             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
714             velec            = _mm256_mul_ps(velec,sw);
715             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
716
717             /* Update potential sum for this i atom from the interaction with this j atom. */
718             velec            = _mm256_and_ps(velec,cutoff_mask);
719             velec            = _mm256_andnot_ps(dummy_mask,velec);
720             velecsum         = _mm256_add_ps(velecsum,velec);
721
722             fscal            = felec;
723
724             fscal            = _mm256_and_ps(fscal,cutoff_mask);
725
726             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
727
728             /* Calculate temporary vectorial force */
729             tx               = _mm256_mul_ps(fscal,dx20);
730             ty               = _mm256_mul_ps(fscal,dy20);
731             tz               = _mm256_mul_ps(fscal,dz20);
732
733             /* Update vectorial force */
734             fix2             = _mm256_add_ps(fix2,tx);
735             fiy2             = _mm256_add_ps(fiy2,ty);
736             fiz2             = _mm256_add_ps(fiz2,tz);
737
738             fjx0             = _mm256_add_ps(fjx0,tx);
739             fjy0             = _mm256_add_ps(fjy0,ty);
740             fjz0             = _mm256_add_ps(fjz0,tz);
741
742             }
743
744             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
745             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
746             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
747             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
748             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
749             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
750             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
751             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
752
753             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
754
755             /* Inner loop uses 330 flops */
756         }
757
758         /* End of innermost loop */
759
760         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
761                                                  f+i_coord_offset,fshift+i_shift_offset);
762
763         ggid                        = gid[iidx];
764         /* Update potential energies */
765         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
766
767         /* Increment number of inner iterations */
768         inneriter                  += j_index_end - j_index_start;
769
770         /* Outer loop uses 19 flops */
771     }
772
773     /* Increment number of outer iterations */
774     outeriter        += nri;
775
776     /* Update outer/inner flops */
777
778     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*330);
779 }
780 /*
781  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_256_single
782  * Electrostatics interaction: Ewald
783  * VdW interaction:            None
784  * Geometry:                   Water3-Particle
785  * Calculate force/pot:        Force
786  */
787 void
788 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_256_single
789                     (t_nblist                    * gmx_restrict       nlist,
790                      rvec                        * gmx_restrict          xx,
791                      rvec                        * gmx_restrict          ff,
792                      t_forcerec                  * gmx_restrict          fr,
793                      t_mdatoms                   * gmx_restrict     mdatoms,
794                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
795                      t_nrnb                      * gmx_restrict        nrnb)
796 {
797     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
798      * just 0 for non-waters.
799      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
800      * jnr indices corresponding to data put in the four positions in the SIMD register.
801      */
802     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
803     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
804     int              jnrA,jnrB,jnrC,jnrD;
805     int              jnrE,jnrF,jnrG,jnrH;
806     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
807     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
808     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
809     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
810     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
811     real             rcutoff_scalar;
812     real             *shiftvec,*fshift,*x,*f;
813     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
814     real             scratch[4*DIM];
815     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
816     real *           vdwioffsetptr0;
817     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
818     real *           vdwioffsetptr1;
819     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
820     real *           vdwioffsetptr2;
821     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
822     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
823     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
824     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
825     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
826     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
827     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
828     real             *charge;
829     __m256i          ewitab;
830     __m128i          ewitab_lo,ewitab_hi;
831     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
832     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
833     real             *ewtab;
834     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
835     real             rswitch_scalar,d_scalar;
836     __m256           dummy_mask,cutoff_mask;
837     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
838     __m256           one     = _mm256_set1_ps(1.0);
839     __m256           two     = _mm256_set1_ps(2.0);
840     x                = xx[0];
841     f                = ff[0];
842
843     nri              = nlist->nri;
844     iinr             = nlist->iinr;
845     jindex           = nlist->jindex;
846     jjnr             = nlist->jjnr;
847     shiftidx         = nlist->shift;
848     gid              = nlist->gid;
849     shiftvec         = fr->shift_vec[0];
850     fshift           = fr->fshift[0];
851     facel            = _mm256_set1_ps(fr->epsfac);
852     charge           = mdatoms->chargeA;
853
854     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
855     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
856     beta2            = _mm256_mul_ps(beta,beta);
857     beta3            = _mm256_mul_ps(beta,beta2);
858
859     ewtab            = fr->ic->tabq_coul_FDV0;
860     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
861     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
862
863     /* Setup water-specific parameters */
864     inr              = nlist->iinr[0];
865     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
866     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
867     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
868
869     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
870     rcutoff_scalar   = fr->rcoulomb;
871     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
872     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
873
874     rswitch_scalar   = fr->rcoulomb_switch;
875     rswitch          = _mm256_set1_ps(rswitch_scalar);
876     /* Setup switch parameters */
877     d_scalar         = rcutoff_scalar-rswitch_scalar;
878     d                = _mm256_set1_ps(d_scalar);
879     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
880     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
881     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
882     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
883     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
884     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
885
886     /* Avoid stupid compiler warnings */
887     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
888     j_coord_offsetA = 0;
889     j_coord_offsetB = 0;
890     j_coord_offsetC = 0;
891     j_coord_offsetD = 0;
892     j_coord_offsetE = 0;
893     j_coord_offsetF = 0;
894     j_coord_offsetG = 0;
895     j_coord_offsetH = 0;
896
897     outeriter        = 0;
898     inneriter        = 0;
899
900     for(iidx=0;iidx<4*DIM;iidx++)
901     {
902         scratch[iidx] = 0.0;
903     }
904
905     /* Start outer loop over neighborlists */
906     for(iidx=0; iidx<nri; iidx++)
907     {
908         /* Load shift vector for this list */
909         i_shift_offset   = DIM*shiftidx[iidx];
910
911         /* Load limits for loop over neighbors */
912         j_index_start    = jindex[iidx];
913         j_index_end      = jindex[iidx+1];
914
915         /* Get outer coordinate index */
916         inr              = iinr[iidx];
917         i_coord_offset   = DIM*inr;
918
919         /* Load i particle coords and add shift vector */
920         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
921                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
922
923         fix0             = _mm256_setzero_ps();
924         fiy0             = _mm256_setzero_ps();
925         fiz0             = _mm256_setzero_ps();
926         fix1             = _mm256_setzero_ps();
927         fiy1             = _mm256_setzero_ps();
928         fiz1             = _mm256_setzero_ps();
929         fix2             = _mm256_setzero_ps();
930         fiy2             = _mm256_setzero_ps();
931         fiz2             = _mm256_setzero_ps();
932
933         /* Start inner kernel loop */
934         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
935         {
936
937             /* Get j neighbor index, and coordinate index */
938             jnrA             = jjnr[jidx];
939             jnrB             = jjnr[jidx+1];
940             jnrC             = jjnr[jidx+2];
941             jnrD             = jjnr[jidx+3];
942             jnrE             = jjnr[jidx+4];
943             jnrF             = jjnr[jidx+5];
944             jnrG             = jjnr[jidx+6];
945             jnrH             = jjnr[jidx+7];
946             j_coord_offsetA  = DIM*jnrA;
947             j_coord_offsetB  = DIM*jnrB;
948             j_coord_offsetC  = DIM*jnrC;
949             j_coord_offsetD  = DIM*jnrD;
950             j_coord_offsetE  = DIM*jnrE;
951             j_coord_offsetF  = DIM*jnrF;
952             j_coord_offsetG  = DIM*jnrG;
953             j_coord_offsetH  = DIM*jnrH;
954
955             /* load j atom coordinates */
956             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
957                                                  x+j_coord_offsetC,x+j_coord_offsetD,
958                                                  x+j_coord_offsetE,x+j_coord_offsetF,
959                                                  x+j_coord_offsetG,x+j_coord_offsetH,
960                                                  &jx0,&jy0,&jz0);
961
962             /* Calculate displacement vector */
963             dx00             = _mm256_sub_ps(ix0,jx0);
964             dy00             = _mm256_sub_ps(iy0,jy0);
965             dz00             = _mm256_sub_ps(iz0,jz0);
966             dx10             = _mm256_sub_ps(ix1,jx0);
967             dy10             = _mm256_sub_ps(iy1,jy0);
968             dz10             = _mm256_sub_ps(iz1,jz0);
969             dx20             = _mm256_sub_ps(ix2,jx0);
970             dy20             = _mm256_sub_ps(iy2,jy0);
971             dz20             = _mm256_sub_ps(iz2,jz0);
972
973             /* Calculate squared distance and things based on it */
974             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
975             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
976             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
977
978             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
979             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
980             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
981
982             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
983             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
984             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
985
986             /* Load parameters for j particles */
987             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
988                                                                  charge+jnrC+0,charge+jnrD+0,
989                                                                  charge+jnrE+0,charge+jnrF+0,
990                                                                  charge+jnrG+0,charge+jnrH+0);
991
992             fjx0             = _mm256_setzero_ps();
993             fjy0             = _mm256_setzero_ps();
994             fjz0             = _mm256_setzero_ps();
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1001             {
1002
1003             r00              = _mm256_mul_ps(rsq00,rinv00);
1004
1005             /* Compute parameters for interactions between i and j atoms */
1006             qq00             = _mm256_mul_ps(iq0,jq0);
1007
1008             /* EWALD ELECTROSTATICS */
1009             
1010             /* Analytical PME correction */
1011             zeta2            = _mm256_mul_ps(beta2,rsq00);
1012             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1013             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1014             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1015             felec            = _mm256_mul_ps(qq00,felec);
1016             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1017             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1018             velec            = _mm256_sub_ps(rinv00,pmecorrV);
1019             velec            = _mm256_mul_ps(qq00,velec);
1020             
1021             d                = _mm256_sub_ps(r00,rswitch);
1022             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1023             d2               = _mm256_mul_ps(d,d);
1024             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1025
1026             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1027
1028             /* Evaluate switch function */
1029             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1030             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
1031             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1032
1033             fscal            = felec;
1034
1035             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1036
1037             /* Calculate temporary vectorial force */
1038             tx               = _mm256_mul_ps(fscal,dx00);
1039             ty               = _mm256_mul_ps(fscal,dy00);
1040             tz               = _mm256_mul_ps(fscal,dz00);
1041
1042             /* Update vectorial force */
1043             fix0             = _mm256_add_ps(fix0,tx);
1044             fiy0             = _mm256_add_ps(fiy0,ty);
1045             fiz0             = _mm256_add_ps(fiz0,tz);
1046
1047             fjx0             = _mm256_add_ps(fjx0,tx);
1048             fjy0             = _mm256_add_ps(fjy0,ty);
1049             fjz0             = _mm256_add_ps(fjz0,tz);
1050
1051             }
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1058             {
1059
1060             r10              = _mm256_mul_ps(rsq10,rinv10);
1061
1062             /* Compute parameters for interactions between i and j atoms */
1063             qq10             = _mm256_mul_ps(iq1,jq0);
1064
1065             /* EWALD ELECTROSTATICS */
1066             
1067             /* Analytical PME correction */
1068             zeta2            = _mm256_mul_ps(beta2,rsq10);
1069             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1070             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1071             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1072             felec            = _mm256_mul_ps(qq10,felec);
1073             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1074             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1075             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1076             velec            = _mm256_mul_ps(qq10,velec);
1077             
1078             d                = _mm256_sub_ps(r10,rswitch);
1079             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1080             d2               = _mm256_mul_ps(d,d);
1081             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1082
1083             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1084
1085             /* Evaluate switch function */
1086             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1087             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1088             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1089
1090             fscal            = felec;
1091
1092             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm256_mul_ps(fscal,dx10);
1096             ty               = _mm256_mul_ps(fscal,dy10);
1097             tz               = _mm256_mul_ps(fscal,dz10);
1098
1099             /* Update vectorial force */
1100             fix1             = _mm256_add_ps(fix1,tx);
1101             fiy1             = _mm256_add_ps(fiy1,ty);
1102             fiz1             = _mm256_add_ps(fiz1,tz);
1103
1104             fjx0             = _mm256_add_ps(fjx0,tx);
1105             fjy0             = _mm256_add_ps(fjy0,ty);
1106             fjz0             = _mm256_add_ps(fjz0,tz);
1107
1108             }
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1115             {
1116
1117             r20              = _mm256_mul_ps(rsq20,rinv20);
1118
1119             /* Compute parameters for interactions between i and j atoms */
1120             qq20             = _mm256_mul_ps(iq2,jq0);
1121
1122             /* EWALD ELECTROSTATICS */
1123             
1124             /* Analytical PME correction */
1125             zeta2            = _mm256_mul_ps(beta2,rsq20);
1126             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1127             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1128             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1129             felec            = _mm256_mul_ps(qq20,felec);
1130             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1131             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1132             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1133             velec            = _mm256_mul_ps(qq20,velec);
1134             
1135             d                = _mm256_sub_ps(r20,rswitch);
1136             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1137             d2               = _mm256_mul_ps(d,d);
1138             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1139
1140             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1141
1142             /* Evaluate switch function */
1143             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1144             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1145             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1146
1147             fscal            = felec;
1148
1149             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1150
1151             /* Calculate temporary vectorial force */
1152             tx               = _mm256_mul_ps(fscal,dx20);
1153             ty               = _mm256_mul_ps(fscal,dy20);
1154             tz               = _mm256_mul_ps(fscal,dz20);
1155
1156             /* Update vectorial force */
1157             fix2             = _mm256_add_ps(fix2,tx);
1158             fiy2             = _mm256_add_ps(fiy2,ty);
1159             fiz2             = _mm256_add_ps(fiz2,tz);
1160
1161             fjx0             = _mm256_add_ps(fjx0,tx);
1162             fjy0             = _mm256_add_ps(fjy0,ty);
1163             fjz0             = _mm256_add_ps(fjz0,tz);
1164
1165             }
1166
1167             fjptrA             = f+j_coord_offsetA;
1168             fjptrB             = f+j_coord_offsetB;
1169             fjptrC             = f+j_coord_offsetC;
1170             fjptrD             = f+j_coord_offsetD;
1171             fjptrE             = f+j_coord_offsetE;
1172             fjptrF             = f+j_coord_offsetF;
1173             fjptrG             = f+j_coord_offsetG;
1174             fjptrH             = f+j_coord_offsetH;
1175
1176             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1177
1178             /* Inner loop uses 318 flops */
1179         }
1180
1181         if(jidx<j_index_end)
1182         {
1183
1184             /* Get j neighbor index, and coordinate index */
1185             jnrlistA         = jjnr[jidx];
1186             jnrlistB         = jjnr[jidx+1];
1187             jnrlistC         = jjnr[jidx+2];
1188             jnrlistD         = jjnr[jidx+3];
1189             jnrlistE         = jjnr[jidx+4];
1190             jnrlistF         = jjnr[jidx+5];
1191             jnrlistG         = jjnr[jidx+6];
1192             jnrlistH         = jjnr[jidx+7];
1193             /* Sign of each element will be negative for non-real atoms.
1194              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1195              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1196              */
1197             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1198                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1199                                             
1200             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1201             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1202             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1203             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1204             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1205             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1206             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1207             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1208             j_coord_offsetA  = DIM*jnrA;
1209             j_coord_offsetB  = DIM*jnrB;
1210             j_coord_offsetC  = DIM*jnrC;
1211             j_coord_offsetD  = DIM*jnrD;
1212             j_coord_offsetE  = DIM*jnrE;
1213             j_coord_offsetF  = DIM*jnrF;
1214             j_coord_offsetG  = DIM*jnrG;
1215             j_coord_offsetH  = DIM*jnrH;
1216
1217             /* load j atom coordinates */
1218             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1219                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1220                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1221                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1222                                                  &jx0,&jy0,&jz0);
1223
1224             /* Calculate displacement vector */
1225             dx00             = _mm256_sub_ps(ix0,jx0);
1226             dy00             = _mm256_sub_ps(iy0,jy0);
1227             dz00             = _mm256_sub_ps(iz0,jz0);
1228             dx10             = _mm256_sub_ps(ix1,jx0);
1229             dy10             = _mm256_sub_ps(iy1,jy0);
1230             dz10             = _mm256_sub_ps(iz1,jz0);
1231             dx20             = _mm256_sub_ps(ix2,jx0);
1232             dy20             = _mm256_sub_ps(iy2,jy0);
1233             dz20             = _mm256_sub_ps(iz2,jz0);
1234
1235             /* Calculate squared distance and things based on it */
1236             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1237             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1238             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1239
1240             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1241             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1242             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1243
1244             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1245             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1246             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1247
1248             /* Load parameters for j particles */
1249             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1250                                                                  charge+jnrC+0,charge+jnrD+0,
1251                                                                  charge+jnrE+0,charge+jnrF+0,
1252                                                                  charge+jnrG+0,charge+jnrH+0);
1253
1254             fjx0             = _mm256_setzero_ps();
1255             fjy0             = _mm256_setzero_ps();
1256             fjz0             = _mm256_setzero_ps();
1257
1258             /**************************
1259              * CALCULATE INTERACTIONS *
1260              **************************/
1261
1262             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1263             {
1264
1265             r00              = _mm256_mul_ps(rsq00,rinv00);
1266             r00              = _mm256_andnot_ps(dummy_mask,r00);
1267
1268             /* Compute parameters for interactions between i and j atoms */
1269             qq00             = _mm256_mul_ps(iq0,jq0);
1270
1271             /* EWALD ELECTROSTATICS */
1272             
1273             /* Analytical PME correction */
1274             zeta2            = _mm256_mul_ps(beta2,rsq00);
1275             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1276             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1277             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1278             felec            = _mm256_mul_ps(qq00,felec);
1279             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1280             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1281             velec            = _mm256_sub_ps(rinv00,pmecorrV);
1282             velec            = _mm256_mul_ps(qq00,velec);
1283             
1284             d                = _mm256_sub_ps(r00,rswitch);
1285             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1286             d2               = _mm256_mul_ps(d,d);
1287             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1288
1289             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1290
1291             /* Evaluate switch function */
1292             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1293             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
1294             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1295
1296             fscal            = felec;
1297
1298             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1299
1300             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1301
1302             /* Calculate temporary vectorial force */
1303             tx               = _mm256_mul_ps(fscal,dx00);
1304             ty               = _mm256_mul_ps(fscal,dy00);
1305             tz               = _mm256_mul_ps(fscal,dz00);
1306
1307             /* Update vectorial force */
1308             fix0             = _mm256_add_ps(fix0,tx);
1309             fiy0             = _mm256_add_ps(fiy0,ty);
1310             fiz0             = _mm256_add_ps(fiz0,tz);
1311
1312             fjx0             = _mm256_add_ps(fjx0,tx);
1313             fjy0             = _mm256_add_ps(fjy0,ty);
1314             fjz0             = _mm256_add_ps(fjz0,tz);
1315
1316             }
1317
1318             /**************************
1319              * CALCULATE INTERACTIONS *
1320              **************************/
1321
1322             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1323             {
1324
1325             r10              = _mm256_mul_ps(rsq10,rinv10);
1326             r10              = _mm256_andnot_ps(dummy_mask,r10);
1327
1328             /* Compute parameters for interactions between i and j atoms */
1329             qq10             = _mm256_mul_ps(iq1,jq0);
1330
1331             /* EWALD ELECTROSTATICS */
1332             
1333             /* Analytical PME correction */
1334             zeta2            = _mm256_mul_ps(beta2,rsq10);
1335             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1336             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1337             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1338             felec            = _mm256_mul_ps(qq10,felec);
1339             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1340             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1341             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1342             velec            = _mm256_mul_ps(qq10,velec);
1343             
1344             d                = _mm256_sub_ps(r10,rswitch);
1345             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1346             d2               = _mm256_mul_ps(d,d);
1347             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1348
1349             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1350
1351             /* Evaluate switch function */
1352             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1353             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1354             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1355
1356             fscal            = felec;
1357
1358             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1359
1360             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1361
1362             /* Calculate temporary vectorial force */
1363             tx               = _mm256_mul_ps(fscal,dx10);
1364             ty               = _mm256_mul_ps(fscal,dy10);
1365             tz               = _mm256_mul_ps(fscal,dz10);
1366
1367             /* Update vectorial force */
1368             fix1             = _mm256_add_ps(fix1,tx);
1369             fiy1             = _mm256_add_ps(fiy1,ty);
1370             fiz1             = _mm256_add_ps(fiz1,tz);
1371
1372             fjx0             = _mm256_add_ps(fjx0,tx);
1373             fjy0             = _mm256_add_ps(fjy0,ty);
1374             fjz0             = _mm256_add_ps(fjz0,tz);
1375
1376             }
1377
1378             /**************************
1379              * CALCULATE INTERACTIONS *
1380              **************************/
1381
1382             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1383             {
1384
1385             r20              = _mm256_mul_ps(rsq20,rinv20);
1386             r20              = _mm256_andnot_ps(dummy_mask,r20);
1387
1388             /* Compute parameters for interactions between i and j atoms */
1389             qq20             = _mm256_mul_ps(iq2,jq0);
1390
1391             /* EWALD ELECTROSTATICS */
1392             
1393             /* Analytical PME correction */
1394             zeta2            = _mm256_mul_ps(beta2,rsq20);
1395             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1396             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1397             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1398             felec            = _mm256_mul_ps(qq20,felec);
1399             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1400             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1401             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1402             velec            = _mm256_mul_ps(qq20,velec);
1403             
1404             d                = _mm256_sub_ps(r20,rswitch);
1405             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1406             d2               = _mm256_mul_ps(d,d);
1407             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1408
1409             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1410
1411             /* Evaluate switch function */
1412             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1413             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1414             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1415
1416             fscal            = felec;
1417
1418             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1419
1420             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1421
1422             /* Calculate temporary vectorial force */
1423             tx               = _mm256_mul_ps(fscal,dx20);
1424             ty               = _mm256_mul_ps(fscal,dy20);
1425             tz               = _mm256_mul_ps(fscal,dz20);
1426
1427             /* Update vectorial force */
1428             fix2             = _mm256_add_ps(fix2,tx);
1429             fiy2             = _mm256_add_ps(fiy2,ty);
1430             fiz2             = _mm256_add_ps(fiz2,tz);
1431
1432             fjx0             = _mm256_add_ps(fjx0,tx);
1433             fjy0             = _mm256_add_ps(fjy0,ty);
1434             fjz0             = _mm256_add_ps(fjz0,tz);
1435
1436             }
1437
1438             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1439             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1440             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1441             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1442             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1443             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1444             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1445             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1446
1447             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1448
1449             /* Inner loop uses 321 flops */
1450         }
1451
1452         /* End of innermost loop */
1453
1454         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1455                                                  f+i_coord_offset,fshift+i_shift_offset);
1456
1457         /* Increment number of inner iterations */
1458         inneriter                  += j_index_end - j_index_start;
1459
1460         /* Outer loop uses 18 flops */
1461     }
1462
1463     /* Increment number of outer iterations */
1464     outeriter        += nri;
1465
1466     /* Update outer/inner flops */
1467
1468     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*321);
1469 }