Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m256i          ewitab;
93     __m128i          ewitab_lo,ewitab_hi;
94     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
96     real             *ewtab;
97     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
98     real             rswitch_scalar,d_scalar;
99     __m256           dummy_mask,cutoff_mask;
100     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
101     __m256           one     = _mm256_set1_ps(1.0);
102     __m256           two     = _mm256_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_ps(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116
117     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
118     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
119     beta2            = _mm256_mul_ps(beta,beta);
120     beta3            = _mm256_mul_ps(beta,beta2);
121
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->ic->rcoulomb;
128     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
129     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->ic->rcoulomb_switch;
132     rswitch          = _mm256_set1_ps(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm256_set1_ps(d_scalar);
136     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149     j_coord_offsetE = 0;
150     j_coord_offsetF = 0;
151     j_coord_offsetG = 0;
152     j_coord_offsetH = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
178
179         fix0             = _mm256_setzero_ps();
180         fiy0             = _mm256_setzero_ps();
181         fiz0             = _mm256_setzero_ps();
182
183         /* Load parameters for i particles */
184         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             jnrE             = jjnr[jidx+4];
199             jnrF             = jjnr[jidx+5];
200             jnrG             = jjnr[jidx+6];
201             jnrH             = jjnr[jidx+7];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206             j_coord_offsetE  = DIM*jnrE;
207             j_coord_offsetF  = DIM*jnrF;
208             j_coord_offsetG  = DIM*jnrG;
209             j_coord_offsetH  = DIM*jnrH;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  x+j_coord_offsetE,x+j_coord_offsetF,
215                                                  x+j_coord_offsetG,x+j_coord_offsetH,
216                                                  &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm256_sub_ps(ix0,jx0);
220             dy00             = _mm256_sub_ps(iy0,jy0);
221             dz00             = _mm256_sub_ps(iz0,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
225
226             rinv00           = avx256_invsqrt_f(rsq00);
227
228             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232                                                                  charge+jnrC+0,charge+jnrD+0,
233                                                                  charge+jnrE+0,charge+jnrF+0,
234                                                                  charge+jnrG+0,charge+jnrH+0);
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             if (gmx_mm256_any_lt(rsq00,rcutoff2))
241             {
242
243             r00              = _mm256_mul_ps(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm256_mul_ps(iq0,jq0);
247
248             /* EWALD ELECTROSTATICS */
249             
250             /* Analytical PME correction */
251             zeta2            = _mm256_mul_ps(beta2,rsq00);
252             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
253             pmecorrF         = avx256_pmecorrF_f(zeta2);
254             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
255             felec            = _mm256_mul_ps(qq00,felec);
256             pmecorrV         = avx256_pmecorrV_f(zeta2);
257             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
258             velec            = _mm256_sub_ps(rinv00,pmecorrV);
259             velec            = _mm256_mul_ps(qq00,velec);
260             
261             d                = _mm256_sub_ps(r00,rswitch);
262             d                = _mm256_max_ps(d,_mm256_setzero_ps());
263             d2               = _mm256_mul_ps(d,d);
264             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
265
266             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
267
268             /* Evaluate switch function */
269             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
270             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
271             velec            = _mm256_mul_ps(velec,sw);
272             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velec            = _mm256_and_ps(velec,cutoff_mask);
276             velecsum         = _mm256_add_ps(velecsum,velec);
277
278             fscal            = felec;
279
280             fscal            = _mm256_and_ps(fscal,cutoff_mask);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm256_mul_ps(fscal,dx00);
284             ty               = _mm256_mul_ps(fscal,dy00);
285             tz               = _mm256_mul_ps(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm256_add_ps(fix0,tx);
289             fiy0             = _mm256_add_ps(fiy0,ty);
290             fiz0             = _mm256_add_ps(fiz0,tz);
291
292             fjptrA             = f+j_coord_offsetA;
293             fjptrB             = f+j_coord_offsetB;
294             fjptrC             = f+j_coord_offsetC;
295             fjptrD             = f+j_coord_offsetD;
296             fjptrE             = f+j_coord_offsetE;
297             fjptrF             = f+j_coord_offsetF;
298             fjptrG             = f+j_coord_offsetG;
299             fjptrH             = f+j_coord_offsetH;
300             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
301
302             }
303
304             /* Inner loop uses 108 flops */
305         }
306
307         if(jidx<j_index_end)
308         {
309
310             /* Get j neighbor index, and coordinate index */
311             jnrlistA         = jjnr[jidx];
312             jnrlistB         = jjnr[jidx+1];
313             jnrlistC         = jjnr[jidx+2];
314             jnrlistD         = jjnr[jidx+3];
315             jnrlistE         = jjnr[jidx+4];
316             jnrlistF         = jjnr[jidx+5];
317             jnrlistG         = jjnr[jidx+6];
318             jnrlistH         = jjnr[jidx+7];
319             /* Sign of each element will be negative for non-real atoms.
320              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
321              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
322              */
323             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
324                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
325                                             
326             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
327             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
328             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
329             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
330             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
331             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
332             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
333             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
334             j_coord_offsetA  = DIM*jnrA;
335             j_coord_offsetB  = DIM*jnrB;
336             j_coord_offsetC  = DIM*jnrC;
337             j_coord_offsetD  = DIM*jnrD;
338             j_coord_offsetE  = DIM*jnrE;
339             j_coord_offsetF  = DIM*jnrF;
340             j_coord_offsetG  = DIM*jnrG;
341             j_coord_offsetH  = DIM*jnrH;
342
343             /* load j atom coordinates */
344             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
345                                                  x+j_coord_offsetC,x+j_coord_offsetD,
346                                                  x+j_coord_offsetE,x+j_coord_offsetF,
347                                                  x+j_coord_offsetG,x+j_coord_offsetH,
348                                                  &jx0,&jy0,&jz0);
349
350             /* Calculate displacement vector */
351             dx00             = _mm256_sub_ps(ix0,jx0);
352             dy00             = _mm256_sub_ps(iy0,jy0);
353             dz00             = _mm256_sub_ps(iz0,jz0);
354
355             /* Calculate squared distance and things based on it */
356             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
357
358             rinv00           = avx256_invsqrt_f(rsq00);
359
360             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
361
362             /* Load parameters for j particles */
363             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
364                                                                  charge+jnrC+0,charge+jnrD+0,
365                                                                  charge+jnrE+0,charge+jnrF+0,
366                                                                  charge+jnrG+0,charge+jnrH+0);
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             if (gmx_mm256_any_lt(rsq00,rcutoff2))
373             {
374
375             r00              = _mm256_mul_ps(rsq00,rinv00);
376             r00              = _mm256_andnot_ps(dummy_mask,r00);
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq00             = _mm256_mul_ps(iq0,jq0);
380
381             /* EWALD ELECTROSTATICS */
382             
383             /* Analytical PME correction */
384             zeta2            = _mm256_mul_ps(beta2,rsq00);
385             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
386             pmecorrF         = avx256_pmecorrF_f(zeta2);
387             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
388             felec            = _mm256_mul_ps(qq00,felec);
389             pmecorrV         = avx256_pmecorrV_f(zeta2);
390             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
391             velec            = _mm256_sub_ps(rinv00,pmecorrV);
392             velec            = _mm256_mul_ps(qq00,velec);
393             
394             d                = _mm256_sub_ps(r00,rswitch);
395             d                = _mm256_max_ps(d,_mm256_setzero_ps());
396             d2               = _mm256_mul_ps(d,d);
397             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
398
399             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
400
401             /* Evaluate switch function */
402             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
403             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
404             velec            = _mm256_mul_ps(velec,sw);
405             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm256_and_ps(velec,cutoff_mask);
409             velec            = _mm256_andnot_ps(dummy_mask,velec);
410             velecsum         = _mm256_add_ps(velecsum,velec);
411
412             fscal            = felec;
413
414             fscal            = _mm256_and_ps(fscal,cutoff_mask);
415
416             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
417
418             /* Calculate temporary vectorial force */
419             tx               = _mm256_mul_ps(fscal,dx00);
420             ty               = _mm256_mul_ps(fscal,dy00);
421             tz               = _mm256_mul_ps(fscal,dz00);
422
423             /* Update vectorial force */
424             fix0             = _mm256_add_ps(fix0,tx);
425             fiy0             = _mm256_add_ps(fiy0,ty);
426             fiz0             = _mm256_add_ps(fiz0,tz);
427
428             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
429             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
430             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
431             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
432             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
433             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
434             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
435             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
436             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
437
438             }
439
440             /* Inner loop uses 109 flops */
441         }
442
443         /* End of innermost loop */
444
445         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
446                                                  f+i_coord_offset,fshift+i_shift_offset);
447
448         ggid                        = gid[iidx];
449         /* Update potential energies */
450         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
451
452         /* Increment number of inner iterations */
453         inneriter                  += j_index_end - j_index_start;
454
455         /* Outer loop uses 8 flops */
456     }
457
458     /* Increment number of outer iterations */
459     outeriter        += nri;
460
461     /* Update outer/inner flops */
462
463     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*109);
464 }
465 /*
466  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_single
467  * Electrostatics interaction: Ewald
468  * VdW interaction:            None
469  * Geometry:                   Particle-Particle
470  * Calculate force/pot:        Force
471  */
472 void
473 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_single
474                     (t_nblist                    * gmx_restrict       nlist,
475                      rvec                        * gmx_restrict          xx,
476                      rvec                        * gmx_restrict          ff,
477                      struct t_forcerec           * gmx_restrict          fr,
478                      t_mdatoms                   * gmx_restrict     mdatoms,
479                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
480                      t_nrnb                      * gmx_restrict        nrnb)
481 {
482     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
483      * just 0 for non-waters.
484      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
485      * jnr indices corresponding to data put in the four positions in the SIMD register.
486      */
487     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
488     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
489     int              jnrA,jnrB,jnrC,jnrD;
490     int              jnrE,jnrF,jnrG,jnrH;
491     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
492     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
493     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
494     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
495     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
496     real             rcutoff_scalar;
497     real             *shiftvec,*fshift,*x,*f;
498     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
499     real             scratch[4*DIM];
500     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
501     real *           vdwioffsetptr0;
502     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
503     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
504     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
505     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
506     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
507     real             *charge;
508     __m256i          ewitab;
509     __m128i          ewitab_lo,ewitab_hi;
510     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
511     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
512     real             *ewtab;
513     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
514     real             rswitch_scalar,d_scalar;
515     __m256           dummy_mask,cutoff_mask;
516     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
517     __m256           one     = _mm256_set1_ps(1.0);
518     __m256           two     = _mm256_set1_ps(2.0);
519     x                = xx[0];
520     f                = ff[0];
521
522     nri              = nlist->nri;
523     iinr             = nlist->iinr;
524     jindex           = nlist->jindex;
525     jjnr             = nlist->jjnr;
526     shiftidx         = nlist->shift;
527     gid              = nlist->gid;
528     shiftvec         = fr->shift_vec[0];
529     fshift           = fr->fshift[0];
530     facel            = _mm256_set1_ps(fr->ic->epsfac);
531     charge           = mdatoms->chargeA;
532
533     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
534     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
535     beta2            = _mm256_mul_ps(beta,beta);
536     beta3            = _mm256_mul_ps(beta,beta2);
537
538     ewtab            = fr->ic->tabq_coul_FDV0;
539     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
540     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
541
542     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
543     rcutoff_scalar   = fr->ic->rcoulomb;
544     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
545     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
546
547     rswitch_scalar   = fr->ic->rcoulomb_switch;
548     rswitch          = _mm256_set1_ps(rswitch_scalar);
549     /* Setup switch parameters */
550     d_scalar         = rcutoff_scalar-rswitch_scalar;
551     d                = _mm256_set1_ps(d_scalar);
552     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
553     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
554     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
555     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
556     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
557     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
558
559     /* Avoid stupid compiler warnings */
560     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
561     j_coord_offsetA = 0;
562     j_coord_offsetB = 0;
563     j_coord_offsetC = 0;
564     j_coord_offsetD = 0;
565     j_coord_offsetE = 0;
566     j_coord_offsetF = 0;
567     j_coord_offsetG = 0;
568     j_coord_offsetH = 0;
569
570     outeriter        = 0;
571     inneriter        = 0;
572
573     for(iidx=0;iidx<4*DIM;iidx++)
574     {
575         scratch[iidx] = 0.0;
576     }
577
578     /* Start outer loop over neighborlists */
579     for(iidx=0; iidx<nri; iidx++)
580     {
581         /* Load shift vector for this list */
582         i_shift_offset   = DIM*shiftidx[iidx];
583
584         /* Load limits for loop over neighbors */
585         j_index_start    = jindex[iidx];
586         j_index_end      = jindex[iidx+1];
587
588         /* Get outer coordinate index */
589         inr              = iinr[iidx];
590         i_coord_offset   = DIM*inr;
591
592         /* Load i particle coords and add shift vector */
593         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
594
595         fix0             = _mm256_setzero_ps();
596         fiy0             = _mm256_setzero_ps();
597         fiz0             = _mm256_setzero_ps();
598
599         /* Load parameters for i particles */
600         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
601
602         /* Start inner kernel loop */
603         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
604         {
605
606             /* Get j neighbor index, and coordinate index */
607             jnrA             = jjnr[jidx];
608             jnrB             = jjnr[jidx+1];
609             jnrC             = jjnr[jidx+2];
610             jnrD             = jjnr[jidx+3];
611             jnrE             = jjnr[jidx+4];
612             jnrF             = jjnr[jidx+5];
613             jnrG             = jjnr[jidx+6];
614             jnrH             = jjnr[jidx+7];
615             j_coord_offsetA  = DIM*jnrA;
616             j_coord_offsetB  = DIM*jnrB;
617             j_coord_offsetC  = DIM*jnrC;
618             j_coord_offsetD  = DIM*jnrD;
619             j_coord_offsetE  = DIM*jnrE;
620             j_coord_offsetF  = DIM*jnrF;
621             j_coord_offsetG  = DIM*jnrG;
622             j_coord_offsetH  = DIM*jnrH;
623
624             /* load j atom coordinates */
625             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
626                                                  x+j_coord_offsetC,x+j_coord_offsetD,
627                                                  x+j_coord_offsetE,x+j_coord_offsetF,
628                                                  x+j_coord_offsetG,x+j_coord_offsetH,
629                                                  &jx0,&jy0,&jz0);
630
631             /* Calculate displacement vector */
632             dx00             = _mm256_sub_ps(ix0,jx0);
633             dy00             = _mm256_sub_ps(iy0,jy0);
634             dz00             = _mm256_sub_ps(iz0,jz0);
635
636             /* Calculate squared distance and things based on it */
637             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
638
639             rinv00           = avx256_invsqrt_f(rsq00);
640
641             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
642
643             /* Load parameters for j particles */
644             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
645                                                                  charge+jnrC+0,charge+jnrD+0,
646                                                                  charge+jnrE+0,charge+jnrF+0,
647                                                                  charge+jnrG+0,charge+jnrH+0);
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             if (gmx_mm256_any_lt(rsq00,rcutoff2))
654             {
655
656             r00              = _mm256_mul_ps(rsq00,rinv00);
657
658             /* Compute parameters for interactions between i and j atoms */
659             qq00             = _mm256_mul_ps(iq0,jq0);
660
661             /* EWALD ELECTROSTATICS */
662             
663             /* Analytical PME correction */
664             zeta2            = _mm256_mul_ps(beta2,rsq00);
665             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
666             pmecorrF         = avx256_pmecorrF_f(zeta2);
667             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
668             felec            = _mm256_mul_ps(qq00,felec);
669             pmecorrV         = avx256_pmecorrV_f(zeta2);
670             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
671             velec            = _mm256_sub_ps(rinv00,pmecorrV);
672             velec            = _mm256_mul_ps(qq00,velec);
673             
674             d                = _mm256_sub_ps(r00,rswitch);
675             d                = _mm256_max_ps(d,_mm256_setzero_ps());
676             d2               = _mm256_mul_ps(d,d);
677             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
678
679             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
680
681             /* Evaluate switch function */
682             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
683             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
684             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
685
686             fscal            = felec;
687
688             fscal            = _mm256_and_ps(fscal,cutoff_mask);
689
690             /* Calculate temporary vectorial force */
691             tx               = _mm256_mul_ps(fscal,dx00);
692             ty               = _mm256_mul_ps(fscal,dy00);
693             tz               = _mm256_mul_ps(fscal,dz00);
694
695             /* Update vectorial force */
696             fix0             = _mm256_add_ps(fix0,tx);
697             fiy0             = _mm256_add_ps(fiy0,ty);
698             fiz0             = _mm256_add_ps(fiz0,tz);
699
700             fjptrA             = f+j_coord_offsetA;
701             fjptrB             = f+j_coord_offsetB;
702             fjptrC             = f+j_coord_offsetC;
703             fjptrD             = f+j_coord_offsetD;
704             fjptrE             = f+j_coord_offsetE;
705             fjptrF             = f+j_coord_offsetF;
706             fjptrG             = f+j_coord_offsetG;
707             fjptrH             = f+j_coord_offsetH;
708             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
709
710             }
711
712             /* Inner loop uses 105 flops */
713         }
714
715         if(jidx<j_index_end)
716         {
717
718             /* Get j neighbor index, and coordinate index */
719             jnrlistA         = jjnr[jidx];
720             jnrlistB         = jjnr[jidx+1];
721             jnrlistC         = jjnr[jidx+2];
722             jnrlistD         = jjnr[jidx+3];
723             jnrlistE         = jjnr[jidx+4];
724             jnrlistF         = jjnr[jidx+5];
725             jnrlistG         = jjnr[jidx+6];
726             jnrlistH         = jjnr[jidx+7];
727             /* Sign of each element will be negative for non-real atoms.
728              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
729              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
730              */
731             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
732                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
733                                             
734             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
735             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
736             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
737             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
738             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
739             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
740             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
741             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
742             j_coord_offsetA  = DIM*jnrA;
743             j_coord_offsetB  = DIM*jnrB;
744             j_coord_offsetC  = DIM*jnrC;
745             j_coord_offsetD  = DIM*jnrD;
746             j_coord_offsetE  = DIM*jnrE;
747             j_coord_offsetF  = DIM*jnrF;
748             j_coord_offsetG  = DIM*jnrG;
749             j_coord_offsetH  = DIM*jnrH;
750
751             /* load j atom coordinates */
752             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
753                                                  x+j_coord_offsetC,x+j_coord_offsetD,
754                                                  x+j_coord_offsetE,x+j_coord_offsetF,
755                                                  x+j_coord_offsetG,x+j_coord_offsetH,
756                                                  &jx0,&jy0,&jz0);
757
758             /* Calculate displacement vector */
759             dx00             = _mm256_sub_ps(ix0,jx0);
760             dy00             = _mm256_sub_ps(iy0,jy0);
761             dz00             = _mm256_sub_ps(iz0,jz0);
762
763             /* Calculate squared distance and things based on it */
764             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
765
766             rinv00           = avx256_invsqrt_f(rsq00);
767
768             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
769
770             /* Load parameters for j particles */
771             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
772                                                                  charge+jnrC+0,charge+jnrD+0,
773                                                                  charge+jnrE+0,charge+jnrF+0,
774                                                                  charge+jnrG+0,charge+jnrH+0);
775
776             /**************************
777              * CALCULATE INTERACTIONS *
778              **************************/
779
780             if (gmx_mm256_any_lt(rsq00,rcutoff2))
781             {
782
783             r00              = _mm256_mul_ps(rsq00,rinv00);
784             r00              = _mm256_andnot_ps(dummy_mask,r00);
785
786             /* Compute parameters for interactions between i and j atoms */
787             qq00             = _mm256_mul_ps(iq0,jq0);
788
789             /* EWALD ELECTROSTATICS */
790             
791             /* Analytical PME correction */
792             zeta2            = _mm256_mul_ps(beta2,rsq00);
793             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
794             pmecorrF         = avx256_pmecorrF_f(zeta2);
795             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
796             felec            = _mm256_mul_ps(qq00,felec);
797             pmecorrV         = avx256_pmecorrV_f(zeta2);
798             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
799             velec            = _mm256_sub_ps(rinv00,pmecorrV);
800             velec            = _mm256_mul_ps(qq00,velec);
801             
802             d                = _mm256_sub_ps(r00,rswitch);
803             d                = _mm256_max_ps(d,_mm256_setzero_ps());
804             d2               = _mm256_mul_ps(d,d);
805             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
806
807             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
808
809             /* Evaluate switch function */
810             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
811             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
812             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
813
814             fscal            = felec;
815
816             fscal            = _mm256_and_ps(fscal,cutoff_mask);
817
818             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
819
820             /* Calculate temporary vectorial force */
821             tx               = _mm256_mul_ps(fscal,dx00);
822             ty               = _mm256_mul_ps(fscal,dy00);
823             tz               = _mm256_mul_ps(fscal,dz00);
824
825             /* Update vectorial force */
826             fix0             = _mm256_add_ps(fix0,tx);
827             fiy0             = _mm256_add_ps(fiy0,ty);
828             fiz0             = _mm256_add_ps(fiz0,tz);
829
830             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
831             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
832             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
833             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
834             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
835             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
836             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
837             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
838             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
839
840             }
841
842             /* Inner loop uses 106 flops */
843         }
844
845         /* End of innermost loop */
846
847         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
848                                                  f+i_coord_offset,fshift+i_shift_offset);
849
850         /* Increment number of inner iterations */
851         inneriter                  += j_index_end - j_index_start;
852
853         /* Outer loop uses 7 flops */
854     }
855
856     /* Increment number of outer iterations */
857     outeriter        += nri;
858
859     /* Update outer/inner flops */
860
861     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*106);
862 }