Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m256i          ewitab;
96     __m128i          ewitab_lo,ewitab_hi;
97     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99     real             *ewtab;
100     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
101     real             rswitch_scalar,d_scalar;
102     __m256           dummy_mask,cutoff_mask;
103     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
104     __m256           one     = _mm256_set1_ps(1.0);
105     __m256           two     = _mm256_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119
120     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
121     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
122     beta2            = _mm256_mul_ps(beta,beta);
123     beta3            = _mm256_mul_ps(beta,beta2);
124
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
132     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
133
134     rswitch_scalar   = fr->rcoulomb_switch;
135     rswitch          = _mm256_set1_ps(rswitch_scalar);
136     /* Setup switch parameters */
137     d_scalar         = rcutoff_scalar-rswitch_scalar;
138     d                = _mm256_set1_ps(d_scalar);
139     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
140     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
143     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
144     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152     j_coord_offsetE = 0;
153     j_coord_offsetF = 0;
154     j_coord_offsetG = 0;
155     j_coord_offsetH = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
181
182         fix0             = _mm256_setzero_ps();
183         fiy0             = _mm256_setzero_ps();
184         fiz0             = _mm256_setzero_ps();
185
186         /* Load parameters for i particles */
187         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
188
189         /* Reset potential sums */
190         velecsum         = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
228
229             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
230
231             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
235                                                                  charge+jnrC+0,charge+jnrD+0,
236                                                                  charge+jnrE+0,charge+jnrF+0,
237                                                                  charge+jnrG+0,charge+jnrH+0);
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             if (gmx_mm256_any_lt(rsq00,rcutoff2))
244             {
245
246             r00              = _mm256_mul_ps(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             qq00             = _mm256_mul_ps(iq0,jq0);
250
251             /* EWALD ELECTROSTATICS */
252             
253             /* Analytical PME correction */
254             zeta2            = _mm256_mul_ps(beta2,rsq00);
255             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
256             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
257             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
258             felec            = _mm256_mul_ps(qq00,felec);
259             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
260             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
261             velec            = _mm256_sub_ps(rinv00,pmecorrV);
262             velec            = _mm256_mul_ps(qq00,velec);
263             
264             d                = _mm256_sub_ps(r00,rswitch);
265             d                = _mm256_max_ps(d,_mm256_setzero_ps());
266             d2               = _mm256_mul_ps(d,d);
267             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
268
269             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
270
271             /* Evaluate switch function */
272             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
273             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
274             velec            = _mm256_mul_ps(velec,sw);
275             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velec            = _mm256_and_ps(velec,cutoff_mask);
279             velecsum         = _mm256_add_ps(velecsum,velec);
280
281             fscal            = felec;
282
283             fscal            = _mm256_and_ps(fscal,cutoff_mask);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm256_mul_ps(fscal,dx00);
287             ty               = _mm256_mul_ps(fscal,dy00);
288             tz               = _mm256_mul_ps(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm256_add_ps(fix0,tx);
292             fiy0             = _mm256_add_ps(fiy0,ty);
293             fiz0             = _mm256_add_ps(fiz0,tz);
294
295             fjptrA             = f+j_coord_offsetA;
296             fjptrB             = f+j_coord_offsetB;
297             fjptrC             = f+j_coord_offsetC;
298             fjptrD             = f+j_coord_offsetD;
299             fjptrE             = f+j_coord_offsetE;
300             fjptrF             = f+j_coord_offsetF;
301             fjptrG             = f+j_coord_offsetG;
302             fjptrH             = f+j_coord_offsetH;
303             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
304
305             }
306
307             /* Inner loop uses 108 flops */
308         }
309
310         if(jidx<j_index_end)
311         {
312
313             /* Get j neighbor index, and coordinate index */
314             jnrlistA         = jjnr[jidx];
315             jnrlistB         = jjnr[jidx+1];
316             jnrlistC         = jjnr[jidx+2];
317             jnrlistD         = jjnr[jidx+3];
318             jnrlistE         = jjnr[jidx+4];
319             jnrlistF         = jjnr[jidx+5];
320             jnrlistG         = jjnr[jidx+6];
321             jnrlistH         = jjnr[jidx+7];
322             /* Sign of each element will be negative for non-real atoms.
323              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
324              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
325              */
326             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
327                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
328                                             
329             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
330             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
331             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
332             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
333             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
334             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
335             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
336             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
337             j_coord_offsetA  = DIM*jnrA;
338             j_coord_offsetB  = DIM*jnrB;
339             j_coord_offsetC  = DIM*jnrC;
340             j_coord_offsetD  = DIM*jnrD;
341             j_coord_offsetE  = DIM*jnrE;
342             j_coord_offsetF  = DIM*jnrF;
343             j_coord_offsetG  = DIM*jnrG;
344             j_coord_offsetH  = DIM*jnrH;
345
346             /* load j atom coordinates */
347             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
348                                                  x+j_coord_offsetC,x+j_coord_offsetD,
349                                                  x+j_coord_offsetE,x+j_coord_offsetF,
350                                                  x+j_coord_offsetG,x+j_coord_offsetH,
351                                                  &jx0,&jy0,&jz0);
352
353             /* Calculate displacement vector */
354             dx00             = _mm256_sub_ps(ix0,jx0);
355             dy00             = _mm256_sub_ps(iy0,jy0);
356             dz00             = _mm256_sub_ps(iz0,jz0);
357
358             /* Calculate squared distance and things based on it */
359             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
360
361             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
362
363             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
364
365             /* Load parameters for j particles */
366             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
367                                                                  charge+jnrC+0,charge+jnrD+0,
368                                                                  charge+jnrE+0,charge+jnrF+0,
369                                                                  charge+jnrG+0,charge+jnrH+0);
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             if (gmx_mm256_any_lt(rsq00,rcutoff2))
376             {
377
378             r00              = _mm256_mul_ps(rsq00,rinv00);
379             r00              = _mm256_andnot_ps(dummy_mask,r00);
380
381             /* Compute parameters for interactions between i and j atoms */
382             qq00             = _mm256_mul_ps(iq0,jq0);
383
384             /* EWALD ELECTROSTATICS */
385             
386             /* Analytical PME correction */
387             zeta2            = _mm256_mul_ps(beta2,rsq00);
388             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
389             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
390             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
391             felec            = _mm256_mul_ps(qq00,felec);
392             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
393             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
394             velec            = _mm256_sub_ps(rinv00,pmecorrV);
395             velec            = _mm256_mul_ps(qq00,velec);
396             
397             d                = _mm256_sub_ps(r00,rswitch);
398             d                = _mm256_max_ps(d,_mm256_setzero_ps());
399             d2               = _mm256_mul_ps(d,d);
400             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
401
402             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
403
404             /* Evaluate switch function */
405             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
406             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
407             velec            = _mm256_mul_ps(velec,sw);
408             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velec            = _mm256_and_ps(velec,cutoff_mask);
412             velec            = _mm256_andnot_ps(dummy_mask,velec);
413             velecsum         = _mm256_add_ps(velecsum,velec);
414
415             fscal            = felec;
416
417             fscal            = _mm256_and_ps(fscal,cutoff_mask);
418
419             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
420
421             /* Calculate temporary vectorial force */
422             tx               = _mm256_mul_ps(fscal,dx00);
423             ty               = _mm256_mul_ps(fscal,dy00);
424             tz               = _mm256_mul_ps(fscal,dz00);
425
426             /* Update vectorial force */
427             fix0             = _mm256_add_ps(fix0,tx);
428             fiy0             = _mm256_add_ps(fiy0,ty);
429             fiz0             = _mm256_add_ps(fiz0,tz);
430
431             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
432             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
433             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
434             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
435             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
436             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
437             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
438             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
439             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
440
441             }
442
443             /* Inner loop uses 109 flops */
444         }
445
446         /* End of innermost loop */
447
448         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
449                                                  f+i_coord_offset,fshift+i_shift_offset);
450
451         ggid                        = gid[iidx];
452         /* Update potential energies */
453         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
454
455         /* Increment number of inner iterations */
456         inneriter                  += j_index_end - j_index_start;
457
458         /* Outer loop uses 8 flops */
459     }
460
461     /* Increment number of outer iterations */
462     outeriter        += nri;
463
464     /* Update outer/inner flops */
465
466     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*109);
467 }
468 /*
469  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_single
470  * Electrostatics interaction: Ewald
471  * VdW interaction:            None
472  * Geometry:                   Particle-Particle
473  * Calculate force/pot:        Force
474  */
475 void
476 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_single
477                     (t_nblist                    * gmx_restrict       nlist,
478                      rvec                        * gmx_restrict          xx,
479                      rvec                        * gmx_restrict          ff,
480                      t_forcerec                  * gmx_restrict          fr,
481                      t_mdatoms                   * gmx_restrict     mdatoms,
482                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
483                      t_nrnb                      * gmx_restrict        nrnb)
484 {
485     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
486      * just 0 for non-waters.
487      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
488      * jnr indices corresponding to data put in the four positions in the SIMD register.
489      */
490     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
491     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
492     int              jnrA,jnrB,jnrC,jnrD;
493     int              jnrE,jnrF,jnrG,jnrH;
494     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
495     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
496     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
497     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
498     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
499     real             rcutoff_scalar;
500     real             *shiftvec,*fshift,*x,*f;
501     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
502     real             scratch[4*DIM];
503     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
504     real *           vdwioffsetptr0;
505     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
506     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
507     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
508     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
509     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
510     real             *charge;
511     __m256i          ewitab;
512     __m128i          ewitab_lo,ewitab_hi;
513     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
514     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
515     real             *ewtab;
516     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
517     real             rswitch_scalar,d_scalar;
518     __m256           dummy_mask,cutoff_mask;
519     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
520     __m256           one     = _mm256_set1_ps(1.0);
521     __m256           two     = _mm256_set1_ps(2.0);
522     x                = xx[0];
523     f                = ff[0];
524
525     nri              = nlist->nri;
526     iinr             = nlist->iinr;
527     jindex           = nlist->jindex;
528     jjnr             = nlist->jjnr;
529     shiftidx         = nlist->shift;
530     gid              = nlist->gid;
531     shiftvec         = fr->shift_vec[0];
532     fshift           = fr->fshift[0];
533     facel            = _mm256_set1_ps(fr->epsfac);
534     charge           = mdatoms->chargeA;
535
536     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
537     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
538     beta2            = _mm256_mul_ps(beta,beta);
539     beta3            = _mm256_mul_ps(beta,beta2);
540
541     ewtab            = fr->ic->tabq_coul_FDV0;
542     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
543     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
544
545     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
546     rcutoff_scalar   = fr->rcoulomb;
547     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
548     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
549
550     rswitch_scalar   = fr->rcoulomb_switch;
551     rswitch          = _mm256_set1_ps(rswitch_scalar);
552     /* Setup switch parameters */
553     d_scalar         = rcutoff_scalar-rswitch_scalar;
554     d                = _mm256_set1_ps(d_scalar);
555     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
556     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
557     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
558     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
559     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
560     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
561
562     /* Avoid stupid compiler warnings */
563     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
564     j_coord_offsetA = 0;
565     j_coord_offsetB = 0;
566     j_coord_offsetC = 0;
567     j_coord_offsetD = 0;
568     j_coord_offsetE = 0;
569     j_coord_offsetF = 0;
570     j_coord_offsetG = 0;
571     j_coord_offsetH = 0;
572
573     outeriter        = 0;
574     inneriter        = 0;
575
576     for(iidx=0;iidx<4*DIM;iidx++)
577     {
578         scratch[iidx] = 0.0;
579     }
580
581     /* Start outer loop over neighborlists */
582     for(iidx=0; iidx<nri; iidx++)
583     {
584         /* Load shift vector for this list */
585         i_shift_offset   = DIM*shiftidx[iidx];
586
587         /* Load limits for loop over neighbors */
588         j_index_start    = jindex[iidx];
589         j_index_end      = jindex[iidx+1];
590
591         /* Get outer coordinate index */
592         inr              = iinr[iidx];
593         i_coord_offset   = DIM*inr;
594
595         /* Load i particle coords and add shift vector */
596         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
597
598         fix0             = _mm256_setzero_ps();
599         fiy0             = _mm256_setzero_ps();
600         fiz0             = _mm256_setzero_ps();
601
602         /* Load parameters for i particles */
603         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
604
605         /* Start inner kernel loop */
606         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
607         {
608
609             /* Get j neighbor index, and coordinate index */
610             jnrA             = jjnr[jidx];
611             jnrB             = jjnr[jidx+1];
612             jnrC             = jjnr[jidx+2];
613             jnrD             = jjnr[jidx+3];
614             jnrE             = jjnr[jidx+4];
615             jnrF             = jjnr[jidx+5];
616             jnrG             = jjnr[jidx+6];
617             jnrH             = jjnr[jidx+7];
618             j_coord_offsetA  = DIM*jnrA;
619             j_coord_offsetB  = DIM*jnrB;
620             j_coord_offsetC  = DIM*jnrC;
621             j_coord_offsetD  = DIM*jnrD;
622             j_coord_offsetE  = DIM*jnrE;
623             j_coord_offsetF  = DIM*jnrF;
624             j_coord_offsetG  = DIM*jnrG;
625             j_coord_offsetH  = DIM*jnrH;
626
627             /* load j atom coordinates */
628             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
629                                                  x+j_coord_offsetC,x+j_coord_offsetD,
630                                                  x+j_coord_offsetE,x+j_coord_offsetF,
631                                                  x+j_coord_offsetG,x+j_coord_offsetH,
632                                                  &jx0,&jy0,&jz0);
633
634             /* Calculate displacement vector */
635             dx00             = _mm256_sub_ps(ix0,jx0);
636             dy00             = _mm256_sub_ps(iy0,jy0);
637             dz00             = _mm256_sub_ps(iz0,jz0);
638
639             /* Calculate squared distance and things based on it */
640             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
641
642             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
643
644             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
645
646             /* Load parameters for j particles */
647             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
648                                                                  charge+jnrC+0,charge+jnrD+0,
649                                                                  charge+jnrE+0,charge+jnrF+0,
650                                                                  charge+jnrG+0,charge+jnrH+0);
651
652             /**************************
653              * CALCULATE INTERACTIONS *
654              **************************/
655
656             if (gmx_mm256_any_lt(rsq00,rcutoff2))
657             {
658
659             r00              = _mm256_mul_ps(rsq00,rinv00);
660
661             /* Compute parameters for interactions between i and j atoms */
662             qq00             = _mm256_mul_ps(iq0,jq0);
663
664             /* EWALD ELECTROSTATICS */
665             
666             /* Analytical PME correction */
667             zeta2            = _mm256_mul_ps(beta2,rsq00);
668             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
669             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
670             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
671             felec            = _mm256_mul_ps(qq00,felec);
672             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
673             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
674             velec            = _mm256_sub_ps(rinv00,pmecorrV);
675             velec            = _mm256_mul_ps(qq00,velec);
676             
677             d                = _mm256_sub_ps(r00,rswitch);
678             d                = _mm256_max_ps(d,_mm256_setzero_ps());
679             d2               = _mm256_mul_ps(d,d);
680             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
681
682             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
683
684             /* Evaluate switch function */
685             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
686             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
687             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
688
689             fscal            = felec;
690
691             fscal            = _mm256_and_ps(fscal,cutoff_mask);
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm256_mul_ps(fscal,dx00);
695             ty               = _mm256_mul_ps(fscal,dy00);
696             tz               = _mm256_mul_ps(fscal,dz00);
697
698             /* Update vectorial force */
699             fix0             = _mm256_add_ps(fix0,tx);
700             fiy0             = _mm256_add_ps(fiy0,ty);
701             fiz0             = _mm256_add_ps(fiz0,tz);
702
703             fjptrA             = f+j_coord_offsetA;
704             fjptrB             = f+j_coord_offsetB;
705             fjptrC             = f+j_coord_offsetC;
706             fjptrD             = f+j_coord_offsetD;
707             fjptrE             = f+j_coord_offsetE;
708             fjptrF             = f+j_coord_offsetF;
709             fjptrG             = f+j_coord_offsetG;
710             fjptrH             = f+j_coord_offsetH;
711             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
712
713             }
714
715             /* Inner loop uses 105 flops */
716         }
717
718         if(jidx<j_index_end)
719         {
720
721             /* Get j neighbor index, and coordinate index */
722             jnrlistA         = jjnr[jidx];
723             jnrlistB         = jjnr[jidx+1];
724             jnrlistC         = jjnr[jidx+2];
725             jnrlistD         = jjnr[jidx+3];
726             jnrlistE         = jjnr[jidx+4];
727             jnrlistF         = jjnr[jidx+5];
728             jnrlistG         = jjnr[jidx+6];
729             jnrlistH         = jjnr[jidx+7];
730             /* Sign of each element will be negative for non-real atoms.
731              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
732              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
733              */
734             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
735                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
736                                             
737             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
738             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
739             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
740             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
741             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
742             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
743             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
744             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
745             j_coord_offsetA  = DIM*jnrA;
746             j_coord_offsetB  = DIM*jnrB;
747             j_coord_offsetC  = DIM*jnrC;
748             j_coord_offsetD  = DIM*jnrD;
749             j_coord_offsetE  = DIM*jnrE;
750             j_coord_offsetF  = DIM*jnrF;
751             j_coord_offsetG  = DIM*jnrG;
752             j_coord_offsetH  = DIM*jnrH;
753
754             /* load j atom coordinates */
755             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
756                                                  x+j_coord_offsetC,x+j_coord_offsetD,
757                                                  x+j_coord_offsetE,x+j_coord_offsetF,
758                                                  x+j_coord_offsetG,x+j_coord_offsetH,
759                                                  &jx0,&jy0,&jz0);
760
761             /* Calculate displacement vector */
762             dx00             = _mm256_sub_ps(ix0,jx0);
763             dy00             = _mm256_sub_ps(iy0,jy0);
764             dz00             = _mm256_sub_ps(iz0,jz0);
765
766             /* Calculate squared distance and things based on it */
767             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
768
769             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
770
771             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
772
773             /* Load parameters for j particles */
774             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
775                                                                  charge+jnrC+0,charge+jnrD+0,
776                                                                  charge+jnrE+0,charge+jnrF+0,
777                                                                  charge+jnrG+0,charge+jnrH+0);
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             if (gmx_mm256_any_lt(rsq00,rcutoff2))
784             {
785
786             r00              = _mm256_mul_ps(rsq00,rinv00);
787             r00              = _mm256_andnot_ps(dummy_mask,r00);
788
789             /* Compute parameters for interactions between i and j atoms */
790             qq00             = _mm256_mul_ps(iq0,jq0);
791
792             /* EWALD ELECTROSTATICS */
793             
794             /* Analytical PME correction */
795             zeta2            = _mm256_mul_ps(beta2,rsq00);
796             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
797             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
798             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
799             felec            = _mm256_mul_ps(qq00,felec);
800             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
801             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
802             velec            = _mm256_sub_ps(rinv00,pmecorrV);
803             velec            = _mm256_mul_ps(qq00,velec);
804             
805             d                = _mm256_sub_ps(r00,rswitch);
806             d                = _mm256_max_ps(d,_mm256_setzero_ps());
807             d2               = _mm256_mul_ps(d,d);
808             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
809
810             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
811
812             /* Evaluate switch function */
813             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
814             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
815             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
816
817             fscal            = felec;
818
819             fscal            = _mm256_and_ps(fscal,cutoff_mask);
820
821             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
822
823             /* Calculate temporary vectorial force */
824             tx               = _mm256_mul_ps(fscal,dx00);
825             ty               = _mm256_mul_ps(fscal,dy00);
826             tz               = _mm256_mul_ps(fscal,dz00);
827
828             /* Update vectorial force */
829             fix0             = _mm256_add_ps(fix0,tx);
830             fiy0             = _mm256_add_ps(fiy0,ty);
831             fiz0             = _mm256_add_ps(fiz0,tz);
832
833             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
834             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
835             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
836             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
837             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
838             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
839             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
840             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
841             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
842
843             }
844
845             /* Inner loop uses 106 flops */
846         }
847
848         /* End of innermost loop */
849
850         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
851                                                  f+i_coord_offset,fshift+i_shift_offset);
852
853         /* Increment number of inner iterations */
854         inneriter                  += j_index_end - j_index_start;
855
856         /* Outer loop uses 7 flops */
857     }
858
859     /* Increment number of outer iterations */
860     outeriter        += nri;
861
862     /* Update outer/inner flops */
863
864     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*106);
865 }