Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256i          ewitab;
94     __m128i          ewitab_lo,ewitab_hi;
95     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
96     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
97     real             *ewtab;
98     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m256           dummy_mask,cutoff_mask;
101     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
102     __m256           one     = _mm256_set1_ps(1.0);
103     __m256           two     = _mm256_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
119     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
120     beta2            = _mm256_mul_ps(beta,beta);
121     beta3            = _mm256_mul_ps(beta,beta2);
122
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
130     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
131
132     rswitch_scalar   = fr->rcoulomb_switch;
133     rswitch          = _mm256_set1_ps(rswitch_scalar);
134     /* Setup switch parameters */
135     d_scalar         = rcutoff_scalar-rswitch_scalar;
136     d                = _mm256_set1_ps(d_scalar);
137     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
138     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
141     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150     j_coord_offsetE = 0;
151     j_coord_offsetF = 0;
152     j_coord_offsetG = 0;
153     j_coord_offsetH = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
179
180         fix0             = _mm256_setzero_ps();
181         fiy0             = _mm256_setzero_ps();
182         fiz0             = _mm256_setzero_ps();
183
184         /* Load parameters for i particles */
185         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
186
187         /* Reset potential sums */
188         velecsum         = _mm256_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             jnrE             = jjnr[jidx+4];
200             jnrF             = jjnr[jidx+5];
201             jnrG             = jjnr[jidx+6];
202             jnrH             = jjnr[jidx+7];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207             j_coord_offsetE  = DIM*jnrE;
208             j_coord_offsetF  = DIM*jnrF;
209             j_coord_offsetG  = DIM*jnrG;
210             j_coord_offsetH  = DIM*jnrH;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  x+j_coord_offsetE,x+j_coord_offsetF,
216                                                  x+j_coord_offsetG,x+j_coord_offsetH,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_ps(ix0,jx0);
221             dy00             = _mm256_sub_ps(iy0,jy0);
222             dz00             = _mm256_sub_ps(iz0,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
226
227             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
228
229             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                                  charge+jnrC+0,charge+jnrD+0,
234                                                                  charge+jnrE+0,charge+jnrF+0,
235                                                                  charge+jnrG+0,charge+jnrH+0);
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             if (gmx_mm256_any_lt(rsq00,rcutoff2))
242             {
243
244             r00              = _mm256_mul_ps(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             qq00             = _mm256_mul_ps(iq0,jq0);
248
249             /* EWALD ELECTROSTATICS */
250             
251             /* Analytical PME correction */
252             zeta2            = _mm256_mul_ps(beta2,rsq00);
253             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
254             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
255             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
256             felec            = _mm256_mul_ps(qq00,felec);
257             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
258             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
259             velec            = _mm256_sub_ps(rinv00,pmecorrV);
260             velec            = _mm256_mul_ps(qq00,velec);
261             
262             d                = _mm256_sub_ps(r00,rswitch);
263             d                = _mm256_max_ps(d,_mm256_setzero_ps());
264             d2               = _mm256_mul_ps(d,d);
265             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
266
267             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
268
269             /* Evaluate switch function */
270             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
271             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
272             velec            = _mm256_mul_ps(velec,sw);
273             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm256_and_ps(velec,cutoff_mask);
277             velecsum         = _mm256_add_ps(velecsum,velec);
278
279             fscal            = felec;
280
281             fscal            = _mm256_and_ps(fscal,cutoff_mask);
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm256_mul_ps(fscal,dx00);
285             ty               = _mm256_mul_ps(fscal,dy00);
286             tz               = _mm256_mul_ps(fscal,dz00);
287
288             /* Update vectorial force */
289             fix0             = _mm256_add_ps(fix0,tx);
290             fiy0             = _mm256_add_ps(fiy0,ty);
291             fiz0             = _mm256_add_ps(fiz0,tz);
292
293             fjptrA             = f+j_coord_offsetA;
294             fjptrB             = f+j_coord_offsetB;
295             fjptrC             = f+j_coord_offsetC;
296             fjptrD             = f+j_coord_offsetD;
297             fjptrE             = f+j_coord_offsetE;
298             fjptrF             = f+j_coord_offsetF;
299             fjptrG             = f+j_coord_offsetG;
300             fjptrH             = f+j_coord_offsetH;
301             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
302
303             }
304
305             /* Inner loop uses 108 flops */
306         }
307
308         if(jidx<j_index_end)
309         {
310
311             /* Get j neighbor index, and coordinate index */
312             jnrlistA         = jjnr[jidx];
313             jnrlistB         = jjnr[jidx+1];
314             jnrlistC         = jjnr[jidx+2];
315             jnrlistD         = jjnr[jidx+3];
316             jnrlistE         = jjnr[jidx+4];
317             jnrlistF         = jjnr[jidx+5];
318             jnrlistG         = jjnr[jidx+6];
319             jnrlistH         = jjnr[jidx+7];
320             /* Sign of each element will be negative for non-real atoms.
321              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
322              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
323              */
324             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
325                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
326                                             
327             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
328             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
329             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
330             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
331             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
332             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
333             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
334             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
335             j_coord_offsetA  = DIM*jnrA;
336             j_coord_offsetB  = DIM*jnrB;
337             j_coord_offsetC  = DIM*jnrC;
338             j_coord_offsetD  = DIM*jnrD;
339             j_coord_offsetE  = DIM*jnrE;
340             j_coord_offsetF  = DIM*jnrF;
341             j_coord_offsetG  = DIM*jnrG;
342             j_coord_offsetH  = DIM*jnrH;
343
344             /* load j atom coordinates */
345             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
346                                                  x+j_coord_offsetC,x+j_coord_offsetD,
347                                                  x+j_coord_offsetE,x+j_coord_offsetF,
348                                                  x+j_coord_offsetG,x+j_coord_offsetH,
349                                                  &jx0,&jy0,&jz0);
350
351             /* Calculate displacement vector */
352             dx00             = _mm256_sub_ps(ix0,jx0);
353             dy00             = _mm256_sub_ps(iy0,jy0);
354             dz00             = _mm256_sub_ps(iz0,jz0);
355
356             /* Calculate squared distance and things based on it */
357             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
358
359             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
360
361             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
362
363             /* Load parameters for j particles */
364             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
365                                                                  charge+jnrC+0,charge+jnrD+0,
366                                                                  charge+jnrE+0,charge+jnrF+0,
367                                                                  charge+jnrG+0,charge+jnrH+0);
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             if (gmx_mm256_any_lt(rsq00,rcutoff2))
374             {
375
376             r00              = _mm256_mul_ps(rsq00,rinv00);
377             r00              = _mm256_andnot_ps(dummy_mask,r00);
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq00             = _mm256_mul_ps(iq0,jq0);
381
382             /* EWALD ELECTROSTATICS */
383             
384             /* Analytical PME correction */
385             zeta2            = _mm256_mul_ps(beta2,rsq00);
386             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
387             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
388             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
389             felec            = _mm256_mul_ps(qq00,felec);
390             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
391             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
392             velec            = _mm256_sub_ps(rinv00,pmecorrV);
393             velec            = _mm256_mul_ps(qq00,velec);
394             
395             d                = _mm256_sub_ps(r00,rswitch);
396             d                = _mm256_max_ps(d,_mm256_setzero_ps());
397             d2               = _mm256_mul_ps(d,d);
398             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
399
400             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
401
402             /* Evaluate switch function */
403             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
404             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
405             velec            = _mm256_mul_ps(velec,sw);
406             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
407
408             /* Update potential sum for this i atom from the interaction with this j atom. */
409             velec            = _mm256_and_ps(velec,cutoff_mask);
410             velec            = _mm256_andnot_ps(dummy_mask,velec);
411             velecsum         = _mm256_add_ps(velecsum,velec);
412
413             fscal            = felec;
414
415             fscal            = _mm256_and_ps(fscal,cutoff_mask);
416
417             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm256_mul_ps(fscal,dx00);
421             ty               = _mm256_mul_ps(fscal,dy00);
422             tz               = _mm256_mul_ps(fscal,dz00);
423
424             /* Update vectorial force */
425             fix0             = _mm256_add_ps(fix0,tx);
426             fiy0             = _mm256_add_ps(fiy0,ty);
427             fiz0             = _mm256_add_ps(fiz0,tz);
428
429             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
430             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
431             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
432             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
433             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
434             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
435             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
436             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
437             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
438
439             }
440
441             /* Inner loop uses 109 flops */
442         }
443
444         /* End of innermost loop */
445
446         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
447                                                  f+i_coord_offset,fshift+i_shift_offset);
448
449         ggid                        = gid[iidx];
450         /* Update potential energies */
451         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
452
453         /* Increment number of inner iterations */
454         inneriter                  += j_index_end - j_index_start;
455
456         /* Outer loop uses 8 flops */
457     }
458
459     /* Increment number of outer iterations */
460     outeriter        += nri;
461
462     /* Update outer/inner flops */
463
464     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*109);
465 }
466 /*
467  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_single
468  * Electrostatics interaction: Ewald
469  * VdW interaction:            None
470  * Geometry:                   Particle-Particle
471  * Calculate force/pot:        Force
472  */
473 void
474 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_single
475                     (t_nblist                    * gmx_restrict       nlist,
476                      rvec                        * gmx_restrict          xx,
477                      rvec                        * gmx_restrict          ff,
478                      t_forcerec                  * gmx_restrict          fr,
479                      t_mdatoms                   * gmx_restrict     mdatoms,
480                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
481                      t_nrnb                      * gmx_restrict        nrnb)
482 {
483     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
484      * just 0 for non-waters.
485      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
486      * jnr indices corresponding to data put in the four positions in the SIMD register.
487      */
488     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
489     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
490     int              jnrA,jnrB,jnrC,jnrD;
491     int              jnrE,jnrF,jnrG,jnrH;
492     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
493     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
494     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
495     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
496     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
497     real             rcutoff_scalar;
498     real             *shiftvec,*fshift,*x,*f;
499     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
500     real             scratch[4*DIM];
501     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
502     real *           vdwioffsetptr0;
503     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
504     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
505     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
506     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
507     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
508     real             *charge;
509     __m256i          ewitab;
510     __m128i          ewitab_lo,ewitab_hi;
511     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
512     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
513     real             *ewtab;
514     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
515     real             rswitch_scalar,d_scalar;
516     __m256           dummy_mask,cutoff_mask;
517     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
518     __m256           one     = _mm256_set1_ps(1.0);
519     __m256           two     = _mm256_set1_ps(2.0);
520     x                = xx[0];
521     f                = ff[0];
522
523     nri              = nlist->nri;
524     iinr             = nlist->iinr;
525     jindex           = nlist->jindex;
526     jjnr             = nlist->jjnr;
527     shiftidx         = nlist->shift;
528     gid              = nlist->gid;
529     shiftvec         = fr->shift_vec[0];
530     fshift           = fr->fshift[0];
531     facel            = _mm256_set1_ps(fr->epsfac);
532     charge           = mdatoms->chargeA;
533
534     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
535     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
536     beta2            = _mm256_mul_ps(beta,beta);
537     beta3            = _mm256_mul_ps(beta,beta2);
538
539     ewtab            = fr->ic->tabq_coul_FDV0;
540     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
541     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
542
543     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
544     rcutoff_scalar   = fr->rcoulomb;
545     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
546     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
547
548     rswitch_scalar   = fr->rcoulomb_switch;
549     rswitch          = _mm256_set1_ps(rswitch_scalar);
550     /* Setup switch parameters */
551     d_scalar         = rcutoff_scalar-rswitch_scalar;
552     d                = _mm256_set1_ps(d_scalar);
553     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
554     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
555     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
556     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
557     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
558     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
559
560     /* Avoid stupid compiler warnings */
561     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
562     j_coord_offsetA = 0;
563     j_coord_offsetB = 0;
564     j_coord_offsetC = 0;
565     j_coord_offsetD = 0;
566     j_coord_offsetE = 0;
567     j_coord_offsetF = 0;
568     j_coord_offsetG = 0;
569     j_coord_offsetH = 0;
570
571     outeriter        = 0;
572     inneriter        = 0;
573
574     for(iidx=0;iidx<4*DIM;iidx++)
575     {
576         scratch[iidx] = 0.0;
577     }
578
579     /* Start outer loop over neighborlists */
580     for(iidx=0; iidx<nri; iidx++)
581     {
582         /* Load shift vector for this list */
583         i_shift_offset   = DIM*shiftidx[iidx];
584
585         /* Load limits for loop over neighbors */
586         j_index_start    = jindex[iidx];
587         j_index_end      = jindex[iidx+1];
588
589         /* Get outer coordinate index */
590         inr              = iinr[iidx];
591         i_coord_offset   = DIM*inr;
592
593         /* Load i particle coords and add shift vector */
594         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
595
596         fix0             = _mm256_setzero_ps();
597         fiy0             = _mm256_setzero_ps();
598         fiz0             = _mm256_setzero_ps();
599
600         /* Load parameters for i particles */
601         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
602
603         /* Start inner kernel loop */
604         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
605         {
606
607             /* Get j neighbor index, and coordinate index */
608             jnrA             = jjnr[jidx];
609             jnrB             = jjnr[jidx+1];
610             jnrC             = jjnr[jidx+2];
611             jnrD             = jjnr[jidx+3];
612             jnrE             = jjnr[jidx+4];
613             jnrF             = jjnr[jidx+5];
614             jnrG             = jjnr[jidx+6];
615             jnrH             = jjnr[jidx+7];
616             j_coord_offsetA  = DIM*jnrA;
617             j_coord_offsetB  = DIM*jnrB;
618             j_coord_offsetC  = DIM*jnrC;
619             j_coord_offsetD  = DIM*jnrD;
620             j_coord_offsetE  = DIM*jnrE;
621             j_coord_offsetF  = DIM*jnrF;
622             j_coord_offsetG  = DIM*jnrG;
623             j_coord_offsetH  = DIM*jnrH;
624
625             /* load j atom coordinates */
626             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
627                                                  x+j_coord_offsetC,x+j_coord_offsetD,
628                                                  x+j_coord_offsetE,x+j_coord_offsetF,
629                                                  x+j_coord_offsetG,x+j_coord_offsetH,
630                                                  &jx0,&jy0,&jz0);
631
632             /* Calculate displacement vector */
633             dx00             = _mm256_sub_ps(ix0,jx0);
634             dy00             = _mm256_sub_ps(iy0,jy0);
635             dz00             = _mm256_sub_ps(iz0,jz0);
636
637             /* Calculate squared distance and things based on it */
638             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
639
640             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
641
642             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
643
644             /* Load parameters for j particles */
645             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
646                                                                  charge+jnrC+0,charge+jnrD+0,
647                                                                  charge+jnrE+0,charge+jnrF+0,
648                                                                  charge+jnrG+0,charge+jnrH+0);
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             if (gmx_mm256_any_lt(rsq00,rcutoff2))
655             {
656
657             r00              = _mm256_mul_ps(rsq00,rinv00);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq00             = _mm256_mul_ps(iq0,jq0);
661
662             /* EWALD ELECTROSTATICS */
663             
664             /* Analytical PME correction */
665             zeta2            = _mm256_mul_ps(beta2,rsq00);
666             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
667             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
668             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
669             felec            = _mm256_mul_ps(qq00,felec);
670             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
671             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
672             velec            = _mm256_sub_ps(rinv00,pmecorrV);
673             velec            = _mm256_mul_ps(qq00,velec);
674             
675             d                = _mm256_sub_ps(r00,rswitch);
676             d                = _mm256_max_ps(d,_mm256_setzero_ps());
677             d2               = _mm256_mul_ps(d,d);
678             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
679
680             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
681
682             /* Evaluate switch function */
683             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
684             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
685             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
686
687             fscal            = felec;
688
689             fscal            = _mm256_and_ps(fscal,cutoff_mask);
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm256_mul_ps(fscal,dx00);
693             ty               = _mm256_mul_ps(fscal,dy00);
694             tz               = _mm256_mul_ps(fscal,dz00);
695
696             /* Update vectorial force */
697             fix0             = _mm256_add_ps(fix0,tx);
698             fiy0             = _mm256_add_ps(fiy0,ty);
699             fiz0             = _mm256_add_ps(fiz0,tz);
700
701             fjptrA             = f+j_coord_offsetA;
702             fjptrB             = f+j_coord_offsetB;
703             fjptrC             = f+j_coord_offsetC;
704             fjptrD             = f+j_coord_offsetD;
705             fjptrE             = f+j_coord_offsetE;
706             fjptrF             = f+j_coord_offsetF;
707             fjptrG             = f+j_coord_offsetG;
708             fjptrH             = f+j_coord_offsetH;
709             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
710
711             }
712
713             /* Inner loop uses 105 flops */
714         }
715
716         if(jidx<j_index_end)
717         {
718
719             /* Get j neighbor index, and coordinate index */
720             jnrlistA         = jjnr[jidx];
721             jnrlistB         = jjnr[jidx+1];
722             jnrlistC         = jjnr[jidx+2];
723             jnrlistD         = jjnr[jidx+3];
724             jnrlistE         = jjnr[jidx+4];
725             jnrlistF         = jjnr[jidx+5];
726             jnrlistG         = jjnr[jidx+6];
727             jnrlistH         = jjnr[jidx+7];
728             /* Sign of each element will be negative for non-real atoms.
729              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
730              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
731              */
732             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
733                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
734                                             
735             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
736             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
737             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
738             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
739             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
740             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
741             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
742             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
743             j_coord_offsetA  = DIM*jnrA;
744             j_coord_offsetB  = DIM*jnrB;
745             j_coord_offsetC  = DIM*jnrC;
746             j_coord_offsetD  = DIM*jnrD;
747             j_coord_offsetE  = DIM*jnrE;
748             j_coord_offsetF  = DIM*jnrF;
749             j_coord_offsetG  = DIM*jnrG;
750             j_coord_offsetH  = DIM*jnrH;
751
752             /* load j atom coordinates */
753             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
754                                                  x+j_coord_offsetC,x+j_coord_offsetD,
755                                                  x+j_coord_offsetE,x+j_coord_offsetF,
756                                                  x+j_coord_offsetG,x+j_coord_offsetH,
757                                                  &jx0,&jy0,&jz0);
758
759             /* Calculate displacement vector */
760             dx00             = _mm256_sub_ps(ix0,jx0);
761             dy00             = _mm256_sub_ps(iy0,jy0);
762             dz00             = _mm256_sub_ps(iz0,jz0);
763
764             /* Calculate squared distance and things based on it */
765             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
766
767             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
768
769             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
770
771             /* Load parameters for j particles */
772             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
773                                                                  charge+jnrC+0,charge+jnrD+0,
774                                                                  charge+jnrE+0,charge+jnrF+0,
775                                                                  charge+jnrG+0,charge+jnrH+0);
776
777             /**************************
778              * CALCULATE INTERACTIONS *
779              **************************/
780
781             if (gmx_mm256_any_lt(rsq00,rcutoff2))
782             {
783
784             r00              = _mm256_mul_ps(rsq00,rinv00);
785             r00              = _mm256_andnot_ps(dummy_mask,r00);
786
787             /* Compute parameters for interactions between i and j atoms */
788             qq00             = _mm256_mul_ps(iq0,jq0);
789
790             /* EWALD ELECTROSTATICS */
791             
792             /* Analytical PME correction */
793             zeta2            = _mm256_mul_ps(beta2,rsq00);
794             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
795             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
796             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
797             felec            = _mm256_mul_ps(qq00,felec);
798             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
799             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
800             velec            = _mm256_sub_ps(rinv00,pmecorrV);
801             velec            = _mm256_mul_ps(qq00,velec);
802             
803             d                = _mm256_sub_ps(r00,rswitch);
804             d                = _mm256_max_ps(d,_mm256_setzero_ps());
805             d2               = _mm256_mul_ps(d,d);
806             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
807
808             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
809
810             /* Evaluate switch function */
811             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
812             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
813             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
814
815             fscal            = felec;
816
817             fscal            = _mm256_and_ps(fscal,cutoff_mask);
818
819             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
820
821             /* Calculate temporary vectorial force */
822             tx               = _mm256_mul_ps(fscal,dx00);
823             ty               = _mm256_mul_ps(fscal,dy00);
824             tz               = _mm256_mul_ps(fscal,dz00);
825
826             /* Update vectorial force */
827             fix0             = _mm256_add_ps(fix0,tx);
828             fiy0             = _mm256_add_ps(fiy0,ty);
829             fiz0             = _mm256_add_ps(fiz0,tz);
830
831             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
832             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
833             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
834             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
835             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
836             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
837             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
838             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
839             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
840
841             }
842
843             /* Inner loop uses 106 flops */
844         }
845
846         /* End of innermost loop */
847
848         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
849                                                  f+i_coord_offset,fshift+i_shift_offset);
850
851         /* Increment number of inner iterations */
852         inneriter                  += j_index_end - j_index_start;
853
854         /* Outer loop uses 7 flops */
855     }
856
857     /* Increment number of outer iterations */
858     outeriter        += nri;
859
860     /* Update outer/inner flops */
861
862     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*106);
863 }