Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     real *           vdwioffsetptr3;
95     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
96     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
97     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
98     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
100     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
102     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
109     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
110     __m256i          ewitab;
111     __m128i          ewitab_lo,ewitab_hi;
112     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
114     real             *ewtab;
115     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
116     real             rswitch_scalar,d_scalar;
117     __m256           dummy_mask,cutoff_mask;
118     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
119     __m256           one     = _mm256_set1_ps(1.0);
120     __m256           two     = _mm256_set1_ps(2.0);
121     x                = xx[0];
122     f                = ff[0];
123
124     nri              = nlist->nri;
125     iinr             = nlist->iinr;
126     jindex           = nlist->jindex;
127     jjnr             = nlist->jjnr;
128     shiftidx         = nlist->shift;
129     gid              = nlist->gid;
130     shiftvec         = fr->shift_vec[0];
131     fshift           = fr->fshift[0];
132     facel            = _mm256_set1_ps(fr->epsfac);
133     charge           = mdatoms->chargeA;
134     nvdwtype         = fr->ntype;
135     vdwparam         = fr->nbfp;
136     vdwtype          = mdatoms->typeA;
137
138     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
139     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
140     beta2            = _mm256_mul_ps(beta,beta);
141     beta3            = _mm256_mul_ps(beta,beta2);
142
143     ewtab            = fr->ic->tabq_coul_FDV0;
144     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
145     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
146
147     /* Setup water-specific parameters */
148     inr              = nlist->iinr[0];
149     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
150     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
151     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
152     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
153
154     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
155     rcutoff_scalar   = fr->rcoulomb;
156     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
157     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
158
159     rswitch_scalar   = fr->rcoulomb_switch;
160     rswitch          = _mm256_set1_ps(rswitch_scalar);
161     /* Setup switch parameters */
162     d_scalar         = rcutoff_scalar-rswitch_scalar;
163     d                = _mm256_set1_ps(d_scalar);
164     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
165     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
166     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
167     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
168     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
169     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
170
171     /* Avoid stupid compiler warnings */
172     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
173     j_coord_offsetA = 0;
174     j_coord_offsetB = 0;
175     j_coord_offsetC = 0;
176     j_coord_offsetD = 0;
177     j_coord_offsetE = 0;
178     j_coord_offsetF = 0;
179     j_coord_offsetG = 0;
180     j_coord_offsetH = 0;
181
182     outeriter        = 0;
183     inneriter        = 0;
184
185     for(iidx=0;iidx<4*DIM;iidx++)
186     {
187         scratch[iidx] = 0.0;
188     }
189
190     /* Start outer loop over neighborlists */
191     for(iidx=0; iidx<nri; iidx++)
192     {
193         /* Load shift vector for this list */
194         i_shift_offset   = DIM*shiftidx[iidx];
195
196         /* Load limits for loop over neighbors */
197         j_index_start    = jindex[iidx];
198         j_index_end      = jindex[iidx+1];
199
200         /* Get outer coordinate index */
201         inr              = iinr[iidx];
202         i_coord_offset   = DIM*inr;
203
204         /* Load i particle coords and add shift vector */
205         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
206                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
207
208         fix0             = _mm256_setzero_ps();
209         fiy0             = _mm256_setzero_ps();
210         fiz0             = _mm256_setzero_ps();
211         fix1             = _mm256_setzero_ps();
212         fiy1             = _mm256_setzero_ps();
213         fiz1             = _mm256_setzero_ps();
214         fix2             = _mm256_setzero_ps();
215         fiy2             = _mm256_setzero_ps();
216         fiz2             = _mm256_setzero_ps();
217         fix3             = _mm256_setzero_ps();
218         fiy3             = _mm256_setzero_ps();
219         fiz3             = _mm256_setzero_ps();
220
221         /* Reset potential sums */
222         velecsum         = _mm256_setzero_ps();
223         vvdwsum          = _mm256_setzero_ps();
224
225         /* Start inner kernel loop */
226         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
227         {
228
229             /* Get j neighbor index, and coordinate index */
230             jnrA             = jjnr[jidx];
231             jnrB             = jjnr[jidx+1];
232             jnrC             = jjnr[jidx+2];
233             jnrD             = jjnr[jidx+3];
234             jnrE             = jjnr[jidx+4];
235             jnrF             = jjnr[jidx+5];
236             jnrG             = jjnr[jidx+6];
237             jnrH             = jjnr[jidx+7];
238             j_coord_offsetA  = DIM*jnrA;
239             j_coord_offsetB  = DIM*jnrB;
240             j_coord_offsetC  = DIM*jnrC;
241             j_coord_offsetD  = DIM*jnrD;
242             j_coord_offsetE  = DIM*jnrE;
243             j_coord_offsetF  = DIM*jnrF;
244             j_coord_offsetG  = DIM*jnrG;
245             j_coord_offsetH  = DIM*jnrH;
246
247             /* load j atom coordinates */
248             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
249                                                  x+j_coord_offsetC,x+j_coord_offsetD,
250                                                  x+j_coord_offsetE,x+j_coord_offsetF,
251                                                  x+j_coord_offsetG,x+j_coord_offsetH,
252                                                  &jx0,&jy0,&jz0);
253
254             /* Calculate displacement vector */
255             dx00             = _mm256_sub_ps(ix0,jx0);
256             dy00             = _mm256_sub_ps(iy0,jy0);
257             dz00             = _mm256_sub_ps(iz0,jz0);
258             dx10             = _mm256_sub_ps(ix1,jx0);
259             dy10             = _mm256_sub_ps(iy1,jy0);
260             dz10             = _mm256_sub_ps(iz1,jz0);
261             dx20             = _mm256_sub_ps(ix2,jx0);
262             dy20             = _mm256_sub_ps(iy2,jy0);
263             dz20             = _mm256_sub_ps(iz2,jz0);
264             dx30             = _mm256_sub_ps(ix3,jx0);
265             dy30             = _mm256_sub_ps(iy3,jy0);
266             dz30             = _mm256_sub_ps(iz3,jz0);
267
268             /* Calculate squared distance and things based on it */
269             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
270             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
271             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
272             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
273
274             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
275             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
276             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
277             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
278
279             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
280             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
281             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
282             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
283
284             /* Load parameters for j particles */
285             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
286                                                                  charge+jnrC+0,charge+jnrD+0,
287                                                                  charge+jnrE+0,charge+jnrF+0,
288                                                                  charge+jnrG+0,charge+jnrH+0);
289             vdwjidx0A        = 2*vdwtype[jnrA+0];
290             vdwjidx0B        = 2*vdwtype[jnrB+0];
291             vdwjidx0C        = 2*vdwtype[jnrC+0];
292             vdwjidx0D        = 2*vdwtype[jnrD+0];
293             vdwjidx0E        = 2*vdwtype[jnrE+0];
294             vdwjidx0F        = 2*vdwtype[jnrF+0];
295             vdwjidx0G        = 2*vdwtype[jnrG+0];
296             vdwjidx0H        = 2*vdwtype[jnrH+0];
297
298             fjx0             = _mm256_setzero_ps();
299             fjy0             = _mm256_setzero_ps();
300             fjz0             = _mm256_setzero_ps();
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             if (gmx_mm256_any_lt(rsq00,rcutoff2))
307             {
308
309             r00              = _mm256_mul_ps(rsq00,rinv00);
310
311             /* Compute parameters for interactions between i and j atoms */
312             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
313                                             vdwioffsetptr0+vdwjidx0B,
314                                             vdwioffsetptr0+vdwjidx0C,
315                                             vdwioffsetptr0+vdwjidx0D,
316                                             vdwioffsetptr0+vdwjidx0E,
317                                             vdwioffsetptr0+vdwjidx0F,
318                                             vdwioffsetptr0+vdwjidx0G,
319                                             vdwioffsetptr0+vdwjidx0H,
320                                             &c6_00,&c12_00);
321
322             /* LENNARD-JONES DISPERSION/REPULSION */
323
324             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
325             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
326             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
327             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
328             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
329
330             d                = _mm256_sub_ps(r00,rswitch);
331             d                = _mm256_max_ps(d,_mm256_setzero_ps());
332             d2               = _mm256_mul_ps(d,d);
333             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
334
335             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
336
337             /* Evaluate switch function */
338             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
339             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
340             vvdw             = _mm256_mul_ps(vvdw,sw);
341             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
345             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
346
347             fscal            = fvdw;
348
349             fscal            = _mm256_and_ps(fscal,cutoff_mask);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_ps(fscal,dx00);
353             ty               = _mm256_mul_ps(fscal,dy00);
354             tz               = _mm256_mul_ps(fscal,dz00);
355
356             /* Update vectorial force */
357             fix0             = _mm256_add_ps(fix0,tx);
358             fiy0             = _mm256_add_ps(fiy0,ty);
359             fiz0             = _mm256_add_ps(fiz0,tz);
360
361             fjx0             = _mm256_add_ps(fjx0,tx);
362             fjy0             = _mm256_add_ps(fjy0,ty);
363             fjz0             = _mm256_add_ps(fjz0,tz);
364
365             }
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             if (gmx_mm256_any_lt(rsq10,rcutoff2))
372             {
373
374             r10              = _mm256_mul_ps(rsq10,rinv10);
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq10             = _mm256_mul_ps(iq1,jq0);
378
379             /* EWALD ELECTROSTATICS */
380             
381             /* Analytical PME correction */
382             zeta2            = _mm256_mul_ps(beta2,rsq10);
383             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
384             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
385             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
386             felec            = _mm256_mul_ps(qq10,felec);
387             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
388             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
389             velec            = _mm256_sub_ps(rinv10,pmecorrV);
390             velec            = _mm256_mul_ps(qq10,velec);
391             
392             d                = _mm256_sub_ps(r10,rswitch);
393             d                = _mm256_max_ps(d,_mm256_setzero_ps());
394             d2               = _mm256_mul_ps(d,d);
395             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
396
397             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
398
399             /* Evaluate switch function */
400             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
401             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
402             velec            = _mm256_mul_ps(velec,sw);
403             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velec            = _mm256_and_ps(velec,cutoff_mask);
407             velecsum         = _mm256_add_ps(velecsum,velec);
408
409             fscal            = felec;
410
411             fscal            = _mm256_and_ps(fscal,cutoff_mask);
412
413             /* Calculate temporary vectorial force */
414             tx               = _mm256_mul_ps(fscal,dx10);
415             ty               = _mm256_mul_ps(fscal,dy10);
416             tz               = _mm256_mul_ps(fscal,dz10);
417
418             /* Update vectorial force */
419             fix1             = _mm256_add_ps(fix1,tx);
420             fiy1             = _mm256_add_ps(fiy1,ty);
421             fiz1             = _mm256_add_ps(fiz1,tz);
422
423             fjx0             = _mm256_add_ps(fjx0,tx);
424             fjy0             = _mm256_add_ps(fjy0,ty);
425             fjz0             = _mm256_add_ps(fjz0,tz);
426
427             }
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             if (gmx_mm256_any_lt(rsq20,rcutoff2))
434             {
435
436             r20              = _mm256_mul_ps(rsq20,rinv20);
437
438             /* Compute parameters for interactions between i and j atoms */
439             qq20             = _mm256_mul_ps(iq2,jq0);
440
441             /* EWALD ELECTROSTATICS */
442             
443             /* Analytical PME correction */
444             zeta2            = _mm256_mul_ps(beta2,rsq20);
445             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
446             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
447             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
448             felec            = _mm256_mul_ps(qq20,felec);
449             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
450             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
451             velec            = _mm256_sub_ps(rinv20,pmecorrV);
452             velec            = _mm256_mul_ps(qq20,velec);
453             
454             d                = _mm256_sub_ps(r20,rswitch);
455             d                = _mm256_max_ps(d,_mm256_setzero_ps());
456             d2               = _mm256_mul_ps(d,d);
457             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
458
459             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
460
461             /* Evaluate switch function */
462             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
463             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
464             velec            = _mm256_mul_ps(velec,sw);
465             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
466
467             /* Update potential sum for this i atom from the interaction with this j atom. */
468             velec            = _mm256_and_ps(velec,cutoff_mask);
469             velecsum         = _mm256_add_ps(velecsum,velec);
470
471             fscal            = felec;
472
473             fscal            = _mm256_and_ps(fscal,cutoff_mask);
474
475             /* Calculate temporary vectorial force */
476             tx               = _mm256_mul_ps(fscal,dx20);
477             ty               = _mm256_mul_ps(fscal,dy20);
478             tz               = _mm256_mul_ps(fscal,dz20);
479
480             /* Update vectorial force */
481             fix2             = _mm256_add_ps(fix2,tx);
482             fiy2             = _mm256_add_ps(fiy2,ty);
483             fiz2             = _mm256_add_ps(fiz2,tz);
484
485             fjx0             = _mm256_add_ps(fjx0,tx);
486             fjy0             = _mm256_add_ps(fjy0,ty);
487             fjz0             = _mm256_add_ps(fjz0,tz);
488
489             }
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             if (gmx_mm256_any_lt(rsq30,rcutoff2))
496             {
497
498             r30              = _mm256_mul_ps(rsq30,rinv30);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq30             = _mm256_mul_ps(iq3,jq0);
502
503             /* EWALD ELECTROSTATICS */
504             
505             /* Analytical PME correction */
506             zeta2            = _mm256_mul_ps(beta2,rsq30);
507             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
508             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
509             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
510             felec            = _mm256_mul_ps(qq30,felec);
511             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
512             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
513             velec            = _mm256_sub_ps(rinv30,pmecorrV);
514             velec            = _mm256_mul_ps(qq30,velec);
515             
516             d                = _mm256_sub_ps(r30,rswitch);
517             d                = _mm256_max_ps(d,_mm256_setzero_ps());
518             d2               = _mm256_mul_ps(d,d);
519             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
520
521             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
522
523             /* Evaluate switch function */
524             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
525             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv30,_mm256_mul_ps(velec,dsw)) );
526             velec            = _mm256_mul_ps(velec,sw);
527             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velec            = _mm256_and_ps(velec,cutoff_mask);
531             velecsum         = _mm256_add_ps(velecsum,velec);
532
533             fscal            = felec;
534
535             fscal            = _mm256_and_ps(fscal,cutoff_mask);
536
537             /* Calculate temporary vectorial force */
538             tx               = _mm256_mul_ps(fscal,dx30);
539             ty               = _mm256_mul_ps(fscal,dy30);
540             tz               = _mm256_mul_ps(fscal,dz30);
541
542             /* Update vectorial force */
543             fix3             = _mm256_add_ps(fix3,tx);
544             fiy3             = _mm256_add_ps(fiy3,ty);
545             fiz3             = _mm256_add_ps(fiz3,tz);
546
547             fjx0             = _mm256_add_ps(fjx0,tx);
548             fjy0             = _mm256_add_ps(fjy0,ty);
549             fjz0             = _mm256_add_ps(fjz0,tz);
550
551             }
552
553             fjptrA             = f+j_coord_offsetA;
554             fjptrB             = f+j_coord_offsetB;
555             fjptrC             = f+j_coord_offsetC;
556             fjptrD             = f+j_coord_offsetD;
557             fjptrE             = f+j_coord_offsetE;
558             fjptrF             = f+j_coord_offsetF;
559             fjptrG             = f+j_coord_offsetG;
560             fjptrH             = f+j_coord_offsetH;
561
562             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
563
564             /* Inner loop uses 386 flops */
565         }
566
567         if(jidx<j_index_end)
568         {
569
570             /* Get j neighbor index, and coordinate index */
571             jnrlistA         = jjnr[jidx];
572             jnrlistB         = jjnr[jidx+1];
573             jnrlistC         = jjnr[jidx+2];
574             jnrlistD         = jjnr[jidx+3];
575             jnrlistE         = jjnr[jidx+4];
576             jnrlistF         = jjnr[jidx+5];
577             jnrlistG         = jjnr[jidx+6];
578             jnrlistH         = jjnr[jidx+7];
579             /* Sign of each element will be negative for non-real atoms.
580              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
581              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
582              */
583             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
584                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
585                                             
586             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
587             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
588             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
589             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
590             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
591             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
592             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
593             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
594             j_coord_offsetA  = DIM*jnrA;
595             j_coord_offsetB  = DIM*jnrB;
596             j_coord_offsetC  = DIM*jnrC;
597             j_coord_offsetD  = DIM*jnrD;
598             j_coord_offsetE  = DIM*jnrE;
599             j_coord_offsetF  = DIM*jnrF;
600             j_coord_offsetG  = DIM*jnrG;
601             j_coord_offsetH  = DIM*jnrH;
602
603             /* load j atom coordinates */
604             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
605                                                  x+j_coord_offsetC,x+j_coord_offsetD,
606                                                  x+j_coord_offsetE,x+j_coord_offsetF,
607                                                  x+j_coord_offsetG,x+j_coord_offsetH,
608                                                  &jx0,&jy0,&jz0);
609
610             /* Calculate displacement vector */
611             dx00             = _mm256_sub_ps(ix0,jx0);
612             dy00             = _mm256_sub_ps(iy0,jy0);
613             dz00             = _mm256_sub_ps(iz0,jz0);
614             dx10             = _mm256_sub_ps(ix1,jx0);
615             dy10             = _mm256_sub_ps(iy1,jy0);
616             dz10             = _mm256_sub_ps(iz1,jz0);
617             dx20             = _mm256_sub_ps(ix2,jx0);
618             dy20             = _mm256_sub_ps(iy2,jy0);
619             dz20             = _mm256_sub_ps(iz2,jz0);
620             dx30             = _mm256_sub_ps(ix3,jx0);
621             dy30             = _mm256_sub_ps(iy3,jy0);
622             dz30             = _mm256_sub_ps(iz3,jz0);
623
624             /* Calculate squared distance and things based on it */
625             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
626             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
627             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
628             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
629
630             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
631             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
632             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
633             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
634
635             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
636             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
637             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
638             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
639
640             /* Load parameters for j particles */
641             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
642                                                                  charge+jnrC+0,charge+jnrD+0,
643                                                                  charge+jnrE+0,charge+jnrF+0,
644                                                                  charge+jnrG+0,charge+jnrH+0);
645             vdwjidx0A        = 2*vdwtype[jnrA+0];
646             vdwjidx0B        = 2*vdwtype[jnrB+0];
647             vdwjidx0C        = 2*vdwtype[jnrC+0];
648             vdwjidx0D        = 2*vdwtype[jnrD+0];
649             vdwjidx0E        = 2*vdwtype[jnrE+0];
650             vdwjidx0F        = 2*vdwtype[jnrF+0];
651             vdwjidx0G        = 2*vdwtype[jnrG+0];
652             vdwjidx0H        = 2*vdwtype[jnrH+0];
653
654             fjx0             = _mm256_setzero_ps();
655             fjy0             = _mm256_setzero_ps();
656             fjz0             = _mm256_setzero_ps();
657
658             /**************************
659              * CALCULATE INTERACTIONS *
660              **************************/
661
662             if (gmx_mm256_any_lt(rsq00,rcutoff2))
663             {
664
665             r00              = _mm256_mul_ps(rsq00,rinv00);
666             r00              = _mm256_andnot_ps(dummy_mask,r00);
667
668             /* Compute parameters for interactions between i and j atoms */
669             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
670                                             vdwioffsetptr0+vdwjidx0B,
671                                             vdwioffsetptr0+vdwjidx0C,
672                                             vdwioffsetptr0+vdwjidx0D,
673                                             vdwioffsetptr0+vdwjidx0E,
674                                             vdwioffsetptr0+vdwjidx0F,
675                                             vdwioffsetptr0+vdwjidx0G,
676                                             vdwioffsetptr0+vdwjidx0H,
677                                             &c6_00,&c12_00);
678
679             /* LENNARD-JONES DISPERSION/REPULSION */
680
681             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
682             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
683             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
684             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
685             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
686
687             d                = _mm256_sub_ps(r00,rswitch);
688             d                = _mm256_max_ps(d,_mm256_setzero_ps());
689             d2               = _mm256_mul_ps(d,d);
690             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
691
692             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
693
694             /* Evaluate switch function */
695             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
696             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
697             vvdw             = _mm256_mul_ps(vvdw,sw);
698             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
699
700             /* Update potential sum for this i atom from the interaction with this j atom. */
701             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
702             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
703             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
704
705             fscal            = fvdw;
706
707             fscal            = _mm256_and_ps(fscal,cutoff_mask);
708
709             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
710
711             /* Calculate temporary vectorial force */
712             tx               = _mm256_mul_ps(fscal,dx00);
713             ty               = _mm256_mul_ps(fscal,dy00);
714             tz               = _mm256_mul_ps(fscal,dz00);
715
716             /* Update vectorial force */
717             fix0             = _mm256_add_ps(fix0,tx);
718             fiy0             = _mm256_add_ps(fiy0,ty);
719             fiz0             = _mm256_add_ps(fiz0,tz);
720
721             fjx0             = _mm256_add_ps(fjx0,tx);
722             fjy0             = _mm256_add_ps(fjy0,ty);
723             fjz0             = _mm256_add_ps(fjz0,tz);
724
725             }
726
727             /**************************
728              * CALCULATE INTERACTIONS *
729              **************************/
730
731             if (gmx_mm256_any_lt(rsq10,rcutoff2))
732             {
733
734             r10              = _mm256_mul_ps(rsq10,rinv10);
735             r10              = _mm256_andnot_ps(dummy_mask,r10);
736
737             /* Compute parameters for interactions between i and j atoms */
738             qq10             = _mm256_mul_ps(iq1,jq0);
739
740             /* EWALD ELECTROSTATICS */
741             
742             /* Analytical PME correction */
743             zeta2            = _mm256_mul_ps(beta2,rsq10);
744             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
745             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
746             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
747             felec            = _mm256_mul_ps(qq10,felec);
748             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
749             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
750             velec            = _mm256_sub_ps(rinv10,pmecorrV);
751             velec            = _mm256_mul_ps(qq10,velec);
752             
753             d                = _mm256_sub_ps(r10,rswitch);
754             d                = _mm256_max_ps(d,_mm256_setzero_ps());
755             d2               = _mm256_mul_ps(d,d);
756             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
757
758             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
759
760             /* Evaluate switch function */
761             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
762             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
763             velec            = _mm256_mul_ps(velec,sw);
764             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
765
766             /* Update potential sum for this i atom from the interaction with this j atom. */
767             velec            = _mm256_and_ps(velec,cutoff_mask);
768             velec            = _mm256_andnot_ps(dummy_mask,velec);
769             velecsum         = _mm256_add_ps(velecsum,velec);
770
771             fscal            = felec;
772
773             fscal            = _mm256_and_ps(fscal,cutoff_mask);
774
775             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
776
777             /* Calculate temporary vectorial force */
778             tx               = _mm256_mul_ps(fscal,dx10);
779             ty               = _mm256_mul_ps(fscal,dy10);
780             tz               = _mm256_mul_ps(fscal,dz10);
781
782             /* Update vectorial force */
783             fix1             = _mm256_add_ps(fix1,tx);
784             fiy1             = _mm256_add_ps(fiy1,ty);
785             fiz1             = _mm256_add_ps(fiz1,tz);
786
787             fjx0             = _mm256_add_ps(fjx0,tx);
788             fjy0             = _mm256_add_ps(fjy0,ty);
789             fjz0             = _mm256_add_ps(fjz0,tz);
790
791             }
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             if (gmx_mm256_any_lt(rsq20,rcutoff2))
798             {
799
800             r20              = _mm256_mul_ps(rsq20,rinv20);
801             r20              = _mm256_andnot_ps(dummy_mask,r20);
802
803             /* Compute parameters for interactions between i and j atoms */
804             qq20             = _mm256_mul_ps(iq2,jq0);
805
806             /* EWALD ELECTROSTATICS */
807             
808             /* Analytical PME correction */
809             zeta2            = _mm256_mul_ps(beta2,rsq20);
810             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
811             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
812             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
813             felec            = _mm256_mul_ps(qq20,felec);
814             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
815             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
816             velec            = _mm256_sub_ps(rinv20,pmecorrV);
817             velec            = _mm256_mul_ps(qq20,velec);
818             
819             d                = _mm256_sub_ps(r20,rswitch);
820             d                = _mm256_max_ps(d,_mm256_setzero_ps());
821             d2               = _mm256_mul_ps(d,d);
822             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
823
824             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
825
826             /* Evaluate switch function */
827             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
828             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
829             velec            = _mm256_mul_ps(velec,sw);
830             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
831
832             /* Update potential sum for this i atom from the interaction with this j atom. */
833             velec            = _mm256_and_ps(velec,cutoff_mask);
834             velec            = _mm256_andnot_ps(dummy_mask,velec);
835             velecsum         = _mm256_add_ps(velecsum,velec);
836
837             fscal            = felec;
838
839             fscal            = _mm256_and_ps(fscal,cutoff_mask);
840
841             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
842
843             /* Calculate temporary vectorial force */
844             tx               = _mm256_mul_ps(fscal,dx20);
845             ty               = _mm256_mul_ps(fscal,dy20);
846             tz               = _mm256_mul_ps(fscal,dz20);
847
848             /* Update vectorial force */
849             fix2             = _mm256_add_ps(fix2,tx);
850             fiy2             = _mm256_add_ps(fiy2,ty);
851             fiz2             = _mm256_add_ps(fiz2,tz);
852
853             fjx0             = _mm256_add_ps(fjx0,tx);
854             fjy0             = _mm256_add_ps(fjy0,ty);
855             fjz0             = _mm256_add_ps(fjz0,tz);
856
857             }
858
859             /**************************
860              * CALCULATE INTERACTIONS *
861              **************************/
862
863             if (gmx_mm256_any_lt(rsq30,rcutoff2))
864             {
865
866             r30              = _mm256_mul_ps(rsq30,rinv30);
867             r30              = _mm256_andnot_ps(dummy_mask,r30);
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq30             = _mm256_mul_ps(iq3,jq0);
871
872             /* EWALD ELECTROSTATICS */
873             
874             /* Analytical PME correction */
875             zeta2            = _mm256_mul_ps(beta2,rsq30);
876             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
877             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
878             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
879             felec            = _mm256_mul_ps(qq30,felec);
880             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
881             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
882             velec            = _mm256_sub_ps(rinv30,pmecorrV);
883             velec            = _mm256_mul_ps(qq30,velec);
884             
885             d                = _mm256_sub_ps(r30,rswitch);
886             d                = _mm256_max_ps(d,_mm256_setzero_ps());
887             d2               = _mm256_mul_ps(d,d);
888             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
889
890             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
891
892             /* Evaluate switch function */
893             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
894             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv30,_mm256_mul_ps(velec,dsw)) );
895             velec            = _mm256_mul_ps(velec,sw);
896             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
897
898             /* Update potential sum for this i atom from the interaction with this j atom. */
899             velec            = _mm256_and_ps(velec,cutoff_mask);
900             velec            = _mm256_andnot_ps(dummy_mask,velec);
901             velecsum         = _mm256_add_ps(velecsum,velec);
902
903             fscal            = felec;
904
905             fscal            = _mm256_and_ps(fscal,cutoff_mask);
906
907             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
908
909             /* Calculate temporary vectorial force */
910             tx               = _mm256_mul_ps(fscal,dx30);
911             ty               = _mm256_mul_ps(fscal,dy30);
912             tz               = _mm256_mul_ps(fscal,dz30);
913
914             /* Update vectorial force */
915             fix3             = _mm256_add_ps(fix3,tx);
916             fiy3             = _mm256_add_ps(fiy3,ty);
917             fiz3             = _mm256_add_ps(fiz3,tz);
918
919             fjx0             = _mm256_add_ps(fjx0,tx);
920             fjy0             = _mm256_add_ps(fjy0,ty);
921             fjz0             = _mm256_add_ps(fjz0,tz);
922
923             }
924
925             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
926             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
927             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
928             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
929             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
930             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
931             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
932             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
933
934             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
935
936             /* Inner loop uses 390 flops */
937         }
938
939         /* End of innermost loop */
940
941         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
942                                                  f+i_coord_offset,fshift+i_shift_offset);
943
944         ggid                        = gid[iidx];
945         /* Update potential energies */
946         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
947         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
948
949         /* Increment number of inner iterations */
950         inneriter                  += j_index_end - j_index_start;
951
952         /* Outer loop uses 26 flops */
953     }
954
955     /* Increment number of outer iterations */
956     outeriter        += nri;
957
958     /* Update outer/inner flops */
959
960     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*390);
961 }
962 /*
963  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_256_single
964  * Electrostatics interaction: Ewald
965  * VdW interaction:            LennardJones
966  * Geometry:                   Water4-Particle
967  * Calculate force/pot:        Force
968  */
969 void
970 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_256_single
971                     (t_nblist                    * gmx_restrict       nlist,
972                      rvec                        * gmx_restrict          xx,
973                      rvec                        * gmx_restrict          ff,
974                      t_forcerec                  * gmx_restrict          fr,
975                      t_mdatoms                   * gmx_restrict     mdatoms,
976                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
977                      t_nrnb                      * gmx_restrict        nrnb)
978 {
979     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
980      * just 0 for non-waters.
981      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
982      * jnr indices corresponding to data put in the four positions in the SIMD register.
983      */
984     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
985     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
986     int              jnrA,jnrB,jnrC,jnrD;
987     int              jnrE,jnrF,jnrG,jnrH;
988     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
989     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
990     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
991     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
992     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
993     real             rcutoff_scalar;
994     real             *shiftvec,*fshift,*x,*f;
995     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
996     real             scratch[4*DIM];
997     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
998     real *           vdwioffsetptr0;
999     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1000     real *           vdwioffsetptr1;
1001     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1002     real *           vdwioffsetptr2;
1003     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1004     real *           vdwioffsetptr3;
1005     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1006     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
1007     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1008     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1009     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1010     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1011     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
1012     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
1013     real             *charge;
1014     int              nvdwtype;
1015     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1016     int              *vdwtype;
1017     real             *vdwparam;
1018     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
1019     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
1020     __m256i          ewitab;
1021     __m128i          ewitab_lo,ewitab_hi;
1022     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1023     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
1024     real             *ewtab;
1025     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
1026     real             rswitch_scalar,d_scalar;
1027     __m256           dummy_mask,cutoff_mask;
1028     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
1029     __m256           one     = _mm256_set1_ps(1.0);
1030     __m256           two     = _mm256_set1_ps(2.0);
1031     x                = xx[0];
1032     f                = ff[0];
1033
1034     nri              = nlist->nri;
1035     iinr             = nlist->iinr;
1036     jindex           = nlist->jindex;
1037     jjnr             = nlist->jjnr;
1038     shiftidx         = nlist->shift;
1039     gid              = nlist->gid;
1040     shiftvec         = fr->shift_vec[0];
1041     fshift           = fr->fshift[0];
1042     facel            = _mm256_set1_ps(fr->epsfac);
1043     charge           = mdatoms->chargeA;
1044     nvdwtype         = fr->ntype;
1045     vdwparam         = fr->nbfp;
1046     vdwtype          = mdatoms->typeA;
1047
1048     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
1049     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
1050     beta2            = _mm256_mul_ps(beta,beta);
1051     beta3            = _mm256_mul_ps(beta,beta2);
1052
1053     ewtab            = fr->ic->tabq_coul_FDV0;
1054     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
1055     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
1056
1057     /* Setup water-specific parameters */
1058     inr              = nlist->iinr[0];
1059     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
1060     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
1061     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
1062     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
1063
1064     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1065     rcutoff_scalar   = fr->rcoulomb;
1066     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
1067     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
1068
1069     rswitch_scalar   = fr->rcoulomb_switch;
1070     rswitch          = _mm256_set1_ps(rswitch_scalar);
1071     /* Setup switch parameters */
1072     d_scalar         = rcutoff_scalar-rswitch_scalar;
1073     d                = _mm256_set1_ps(d_scalar);
1074     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
1075     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1076     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1077     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
1078     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1079     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1080
1081     /* Avoid stupid compiler warnings */
1082     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
1083     j_coord_offsetA = 0;
1084     j_coord_offsetB = 0;
1085     j_coord_offsetC = 0;
1086     j_coord_offsetD = 0;
1087     j_coord_offsetE = 0;
1088     j_coord_offsetF = 0;
1089     j_coord_offsetG = 0;
1090     j_coord_offsetH = 0;
1091
1092     outeriter        = 0;
1093     inneriter        = 0;
1094
1095     for(iidx=0;iidx<4*DIM;iidx++)
1096     {
1097         scratch[iidx] = 0.0;
1098     }
1099
1100     /* Start outer loop over neighborlists */
1101     for(iidx=0; iidx<nri; iidx++)
1102     {
1103         /* Load shift vector for this list */
1104         i_shift_offset   = DIM*shiftidx[iidx];
1105
1106         /* Load limits for loop over neighbors */
1107         j_index_start    = jindex[iidx];
1108         j_index_end      = jindex[iidx+1];
1109
1110         /* Get outer coordinate index */
1111         inr              = iinr[iidx];
1112         i_coord_offset   = DIM*inr;
1113
1114         /* Load i particle coords and add shift vector */
1115         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1116                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1117
1118         fix0             = _mm256_setzero_ps();
1119         fiy0             = _mm256_setzero_ps();
1120         fiz0             = _mm256_setzero_ps();
1121         fix1             = _mm256_setzero_ps();
1122         fiy1             = _mm256_setzero_ps();
1123         fiz1             = _mm256_setzero_ps();
1124         fix2             = _mm256_setzero_ps();
1125         fiy2             = _mm256_setzero_ps();
1126         fiz2             = _mm256_setzero_ps();
1127         fix3             = _mm256_setzero_ps();
1128         fiy3             = _mm256_setzero_ps();
1129         fiz3             = _mm256_setzero_ps();
1130
1131         /* Start inner kernel loop */
1132         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
1133         {
1134
1135             /* Get j neighbor index, and coordinate index */
1136             jnrA             = jjnr[jidx];
1137             jnrB             = jjnr[jidx+1];
1138             jnrC             = jjnr[jidx+2];
1139             jnrD             = jjnr[jidx+3];
1140             jnrE             = jjnr[jidx+4];
1141             jnrF             = jjnr[jidx+5];
1142             jnrG             = jjnr[jidx+6];
1143             jnrH             = jjnr[jidx+7];
1144             j_coord_offsetA  = DIM*jnrA;
1145             j_coord_offsetB  = DIM*jnrB;
1146             j_coord_offsetC  = DIM*jnrC;
1147             j_coord_offsetD  = DIM*jnrD;
1148             j_coord_offsetE  = DIM*jnrE;
1149             j_coord_offsetF  = DIM*jnrF;
1150             j_coord_offsetG  = DIM*jnrG;
1151             j_coord_offsetH  = DIM*jnrH;
1152
1153             /* load j atom coordinates */
1154             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1155                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1156                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1157                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1158                                                  &jx0,&jy0,&jz0);
1159
1160             /* Calculate displacement vector */
1161             dx00             = _mm256_sub_ps(ix0,jx0);
1162             dy00             = _mm256_sub_ps(iy0,jy0);
1163             dz00             = _mm256_sub_ps(iz0,jz0);
1164             dx10             = _mm256_sub_ps(ix1,jx0);
1165             dy10             = _mm256_sub_ps(iy1,jy0);
1166             dz10             = _mm256_sub_ps(iz1,jz0);
1167             dx20             = _mm256_sub_ps(ix2,jx0);
1168             dy20             = _mm256_sub_ps(iy2,jy0);
1169             dz20             = _mm256_sub_ps(iz2,jz0);
1170             dx30             = _mm256_sub_ps(ix3,jx0);
1171             dy30             = _mm256_sub_ps(iy3,jy0);
1172             dz30             = _mm256_sub_ps(iz3,jz0);
1173
1174             /* Calculate squared distance and things based on it */
1175             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1176             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1177             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1178             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1179
1180             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1181             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1182             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1183             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1184
1185             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1186             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1187             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1188             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1189
1190             /* Load parameters for j particles */
1191             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1192                                                                  charge+jnrC+0,charge+jnrD+0,
1193                                                                  charge+jnrE+0,charge+jnrF+0,
1194                                                                  charge+jnrG+0,charge+jnrH+0);
1195             vdwjidx0A        = 2*vdwtype[jnrA+0];
1196             vdwjidx0B        = 2*vdwtype[jnrB+0];
1197             vdwjidx0C        = 2*vdwtype[jnrC+0];
1198             vdwjidx0D        = 2*vdwtype[jnrD+0];
1199             vdwjidx0E        = 2*vdwtype[jnrE+0];
1200             vdwjidx0F        = 2*vdwtype[jnrF+0];
1201             vdwjidx0G        = 2*vdwtype[jnrG+0];
1202             vdwjidx0H        = 2*vdwtype[jnrH+0];
1203
1204             fjx0             = _mm256_setzero_ps();
1205             fjy0             = _mm256_setzero_ps();
1206             fjz0             = _mm256_setzero_ps();
1207
1208             /**************************
1209              * CALCULATE INTERACTIONS *
1210              **************************/
1211
1212             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1213             {
1214
1215             r00              = _mm256_mul_ps(rsq00,rinv00);
1216
1217             /* Compute parameters for interactions between i and j atoms */
1218             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1219                                             vdwioffsetptr0+vdwjidx0B,
1220                                             vdwioffsetptr0+vdwjidx0C,
1221                                             vdwioffsetptr0+vdwjidx0D,
1222                                             vdwioffsetptr0+vdwjidx0E,
1223                                             vdwioffsetptr0+vdwjidx0F,
1224                                             vdwioffsetptr0+vdwjidx0G,
1225                                             vdwioffsetptr0+vdwjidx0H,
1226                                             &c6_00,&c12_00);
1227
1228             /* LENNARD-JONES DISPERSION/REPULSION */
1229
1230             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1231             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1232             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1233             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1234             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1235
1236             d                = _mm256_sub_ps(r00,rswitch);
1237             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1238             d2               = _mm256_mul_ps(d,d);
1239             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1240
1241             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1242
1243             /* Evaluate switch function */
1244             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1245             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1246             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1247
1248             fscal            = fvdw;
1249
1250             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1251
1252             /* Calculate temporary vectorial force */
1253             tx               = _mm256_mul_ps(fscal,dx00);
1254             ty               = _mm256_mul_ps(fscal,dy00);
1255             tz               = _mm256_mul_ps(fscal,dz00);
1256
1257             /* Update vectorial force */
1258             fix0             = _mm256_add_ps(fix0,tx);
1259             fiy0             = _mm256_add_ps(fiy0,ty);
1260             fiz0             = _mm256_add_ps(fiz0,tz);
1261
1262             fjx0             = _mm256_add_ps(fjx0,tx);
1263             fjy0             = _mm256_add_ps(fjy0,ty);
1264             fjz0             = _mm256_add_ps(fjz0,tz);
1265
1266             }
1267
1268             /**************************
1269              * CALCULATE INTERACTIONS *
1270              **************************/
1271
1272             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1273             {
1274
1275             r10              = _mm256_mul_ps(rsq10,rinv10);
1276
1277             /* Compute parameters for interactions between i and j atoms */
1278             qq10             = _mm256_mul_ps(iq1,jq0);
1279
1280             /* EWALD ELECTROSTATICS */
1281             
1282             /* Analytical PME correction */
1283             zeta2            = _mm256_mul_ps(beta2,rsq10);
1284             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1285             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1286             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1287             felec            = _mm256_mul_ps(qq10,felec);
1288             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1289             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1290             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1291             velec            = _mm256_mul_ps(qq10,velec);
1292             
1293             d                = _mm256_sub_ps(r10,rswitch);
1294             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1295             d2               = _mm256_mul_ps(d,d);
1296             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1297
1298             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1299
1300             /* Evaluate switch function */
1301             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1302             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1303             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1304
1305             fscal            = felec;
1306
1307             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1308
1309             /* Calculate temporary vectorial force */
1310             tx               = _mm256_mul_ps(fscal,dx10);
1311             ty               = _mm256_mul_ps(fscal,dy10);
1312             tz               = _mm256_mul_ps(fscal,dz10);
1313
1314             /* Update vectorial force */
1315             fix1             = _mm256_add_ps(fix1,tx);
1316             fiy1             = _mm256_add_ps(fiy1,ty);
1317             fiz1             = _mm256_add_ps(fiz1,tz);
1318
1319             fjx0             = _mm256_add_ps(fjx0,tx);
1320             fjy0             = _mm256_add_ps(fjy0,ty);
1321             fjz0             = _mm256_add_ps(fjz0,tz);
1322
1323             }
1324
1325             /**************************
1326              * CALCULATE INTERACTIONS *
1327              **************************/
1328
1329             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1330             {
1331
1332             r20              = _mm256_mul_ps(rsq20,rinv20);
1333
1334             /* Compute parameters for interactions between i and j atoms */
1335             qq20             = _mm256_mul_ps(iq2,jq0);
1336
1337             /* EWALD ELECTROSTATICS */
1338             
1339             /* Analytical PME correction */
1340             zeta2            = _mm256_mul_ps(beta2,rsq20);
1341             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1342             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1343             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1344             felec            = _mm256_mul_ps(qq20,felec);
1345             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1346             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1347             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1348             velec            = _mm256_mul_ps(qq20,velec);
1349             
1350             d                = _mm256_sub_ps(r20,rswitch);
1351             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1352             d2               = _mm256_mul_ps(d,d);
1353             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1354
1355             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1356
1357             /* Evaluate switch function */
1358             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1359             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1360             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1361
1362             fscal            = felec;
1363
1364             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1365
1366             /* Calculate temporary vectorial force */
1367             tx               = _mm256_mul_ps(fscal,dx20);
1368             ty               = _mm256_mul_ps(fscal,dy20);
1369             tz               = _mm256_mul_ps(fscal,dz20);
1370
1371             /* Update vectorial force */
1372             fix2             = _mm256_add_ps(fix2,tx);
1373             fiy2             = _mm256_add_ps(fiy2,ty);
1374             fiz2             = _mm256_add_ps(fiz2,tz);
1375
1376             fjx0             = _mm256_add_ps(fjx0,tx);
1377             fjy0             = _mm256_add_ps(fjy0,ty);
1378             fjz0             = _mm256_add_ps(fjz0,tz);
1379
1380             }
1381
1382             /**************************
1383              * CALCULATE INTERACTIONS *
1384              **************************/
1385
1386             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1387             {
1388
1389             r30              = _mm256_mul_ps(rsq30,rinv30);
1390
1391             /* Compute parameters for interactions between i and j atoms */
1392             qq30             = _mm256_mul_ps(iq3,jq0);
1393
1394             /* EWALD ELECTROSTATICS */
1395             
1396             /* Analytical PME correction */
1397             zeta2            = _mm256_mul_ps(beta2,rsq30);
1398             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1399             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1400             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1401             felec            = _mm256_mul_ps(qq30,felec);
1402             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1403             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1404             velec            = _mm256_sub_ps(rinv30,pmecorrV);
1405             velec            = _mm256_mul_ps(qq30,velec);
1406             
1407             d                = _mm256_sub_ps(r30,rswitch);
1408             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1409             d2               = _mm256_mul_ps(d,d);
1410             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1411
1412             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1413
1414             /* Evaluate switch function */
1415             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1416             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv30,_mm256_mul_ps(velec,dsw)) );
1417             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1418
1419             fscal            = felec;
1420
1421             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1422
1423             /* Calculate temporary vectorial force */
1424             tx               = _mm256_mul_ps(fscal,dx30);
1425             ty               = _mm256_mul_ps(fscal,dy30);
1426             tz               = _mm256_mul_ps(fscal,dz30);
1427
1428             /* Update vectorial force */
1429             fix3             = _mm256_add_ps(fix3,tx);
1430             fiy3             = _mm256_add_ps(fiy3,ty);
1431             fiz3             = _mm256_add_ps(fiz3,tz);
1432
1433             fjx0             = _mm256_add_ps(fjx0,tx);
1434             fjy0             = _mm256_add_ps(fjy0,ty);
1435             fjz0             = _mm256_add_ps(fjz0,tz);
1436
1437             }
1438
1439             fjptrA             = f+j_coord_offsetA;
1440             fjptrB             = f+j_coord_offsetB;
1441             fjptrC             = f+j_coord_offsetC;
1442             fjptrD             = f+j_coord_offsetD;
1443             fjptrE             = f+j_coord_offsetE;
1444             fjptrF             = f+j_coord_offsetF;
1445             fjptrG             = f+j_coord_offsetG;
1446             fjptrH             = f+j_coord_offsetH;
1447
1448             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1449
1450             /* Inner loop uses 374 flops */
1451         }
1452
1453         if(jidx<j_index_end)
1454         {
1455
1456             /* Get j neighbor index, and coordinate index */
1457             jnrlistA         = jjnr[jidx];
1458             jnrlistB         = jjnr[jidx+1];
1459             jnrlistC         = jjnr[jidx+2];
1460             jnrlistD         = jjnr[jidx+3];
1461             jnrlistE         = jjnr[jidx+4];
1462             jnrlistF         = jjnr[jidx+5];
1463             jnrlistG         = jjnr[jidx+6];
1464             jnrlistH         = jjnr[jidx+7];
1465             /* Sign of each element will be negative for non-real atoms.
1466              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1467              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1468              */
1469             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1470                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1471                                             
1472             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1473             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1474             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1475             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1476             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1477             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1478             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1479             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1480             j_coord_offsetA  = DIM*jnrA;
1481             j_coord_offsetB  = DIM*jnrB;
1482             j_coord_offsetC  = DIM*jnrC;
1483             j_coord_offsetD  = DIM*jnrD;
1484             j_coord_offsetE  = DIM*jnrE;
1485             j_coord_offsetF  = DIM*jnrF;
1486             j_coord_offsetG  = DIM*jnrG;
1487             j_coord_offsetH  = DIM*jnrH;
1488
1489             /* load j atom coordinates */
1490             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1491                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1492                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1493                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1494                                                  &jx0,&jy0,&jz0);
1495
1496             /* Calculate displacement vector */
1497             dx00             = _mm256_sub_ps(ix0,jx0);
1498             dy00             = _mm256_sub_ps(iy0,jy0);
1499             dz00             = _mm256_sub_ps(iz0,jz0);
1500             dx10             = _mm256_sub_ps(ix1,jx0);
1501             dy10             = _mm256_sub_ps(iy1,jy0);
1502             dz10             = _mm256_sub_ps(iz1,jz0);
1503             dx20             = _mm256_sub_ps(ix2,jx0);
1504             dy20             = _mm256_sub_ps(iy2,jy0);
1505             dz20             = _mm256_sub_ps(iz2,jz0);
1506             dx30             = _mm256_sub_ps(ix3,jx0);
1507             dy30             = _mm256_sub_ps(iy3,jy0);
1508             dz30             = _mm256_sub_ps(iz3,jz0);
1509
1510             /* Calculate squared distance and things based on it */
1511             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1512             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1513             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1514             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1515
1516             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1517             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1518             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1519             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1520
1521             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1522             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1523             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1524             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1525
1526             /* Load parameters for j particles */
1527             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1528                                                                  charge+jnrC+0,charge+jnrD+0,
1529                                                                  charge+jnrE+0,charge+jnrF+0,
1530                                                                  charge+jnrG+0,charge+jnrH+0);
1531             vdwjidx0A        = 2*vdwtype[jnrA+0];
1532             vdwjidx0B        = 2*vdwtype[jnrB+0];
1533             vdwjidx0C        = 2*vdwtype[jnrC+0];
1534             vdwjidx0D        = 2*vdwtype[jnrD+0];
1535             vdwjidx0E        = 2*vdwtype[jnrE+0];
1536             vdwjidx0F        = 2*vdwtype[jnrF+0];
1537             vdwjidx0G        = 2*vdwtype[jnrG+0];
1538             vdwjidx0H        = 2*vdwtype[jnrH+0];
1539
1540             fjx0             = _mm256_setzero_ps();
1541             fjy0             = _mm256_setzero_ps();
1542             fjz0             = _mm256_setzero_ps();
1543
1544             /**************************
1545              * CALCULATE INTERACTIONS *
1546              **************************/
1547
1548             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1549             {
1550
1551             r00              = _mm256_mul_ps(rsq00,rinv00);
1552             r00              = _mm256_andnot_ps(dummy_mask,r00);
1553
1554             /* Compute parameters for interactions between i and j atoms */
1555             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1556                                             vdwioffsetptr0+vdwjidx0B,
1557                                             vdwioffsetptr0+vdwjidx0C,
1558                                             vdwioffsetptr0+vdwjidx0D,
1559                                             vdwioffsetptr0+vdwjidx0E,
1560                                             vdwioffsetptr0+vdwjidx0F,
1561                                             vdwioffsetptr0+vdwjidx0G,
1562                                             vdwioffsetptr0+vdwjidx0H,
1563                                             &c6_00,&c12_00);
1564
1565             /* LENNARD-JONES DISPERSION/REPULSION */
1566
1567             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1568             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1569             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1570             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1571             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1572
1573             d                = _mm256_sub_ps(r00,rswitch);
1574             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1575             d2               = _mm256_mul_ps(d,d);
1576             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1577
1578             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1579
1580             /* Evaluate switch function */
1581             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1582             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1583             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1584
1585             fscal            = fvdw;
1586
1587             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1588
1589             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1590
1591             /* Calculate temporary vectorial force */
1592             tx               = _mm256_mul_ps(fscal,dx00);
1593             ty               = _mm256_mul_ps(fscal,dy00);
1594             tz               = _mm256_mul_ps(fscal,dz00);
1595
1596             /* Update vectorial force */
1597             fix0             = _mm256_add_ps(fix0,tx);
1598             fiy0             = _mm256_add_ps(fiy0,ty);
1599             fiz0             = _mm256_add_ps(fiz0,tz);
1600
1601             fjx0             = _mm256_add_ps(fjx0,tx);
1602             fjy0             = _mm256_add_ps(fjy0,ty);
1603             fjz0             = _mm256_add_ps(fjz0,tz);
1604
1605             }
1606
1607             /**************************
1608              * CALCULATE INTERACTIONS *
1609              **************************/
1610
1611             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1612             {
1613
1614             r10              = _mm256_mul_ps(rsq10,rinv10);
1615             r10              = _mm256_andnot_ps(dummy_mask,r10);
1616
1617             /* Compute parameters for interactions between i and j atoms */
1618             qq10             = _mm256_mul_ps(iq1,jq0);
1619
1620             /* EWALD ELECTROSTATICS */
1621             
1622             /* Analytical PME correction */
1623             zeta2            = _mm256_mul_ps(beta2,rsq10);
1624             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1625             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1626             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1627             felec            = _mm256_mul_ps(qq10,felec);
1628             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1629             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1630             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1631             velec            = _mm256_mul_ps(qq10,velec);
1632             
1633             d                = _mm256_sub_ps(r10,rswitch);
1634             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1635             d2               = _mm256_mul_ps(d,d);
1636             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1637
1638             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1639
1640             /* Evaluate switch function */
1641             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1642             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1643             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1644
1645             fscal            = felec;
1646
1647             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1648
1649             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1650
1651             /* Calculate temporary vectorial force */
1652             tx               = _mm256_mul_ps(fscal,dx10);
1653             ty               = _mm256_mul_ps(fscal,dy10);
1654             tz               = _mm256_mul_ps(fscal,dz10);
1655
1656             /* Update vectorial force */
1657             fix1             = _mm256_add_ps(fix1,tx);
1658             fiy1             = _mm256_add_ps(fiy1,ty);
1659             fiz1             = _mm256_add_ps(fiz1,tz);
1660
1661             fjx0             = _mm256_add_ps(fjx0,tx);
1662             fjy0             = _mm256_add_ps(fjy0,ty);
1663             fjz0             = _mm256_add_ps(fjz0,tz);
1664
1665             }
1666
1667             /**************************
1668              * CALCULATE INTERACTIONS *
1669              **************************/
1670
1671             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1672             {
1673
1674             r20              = _mm256_mul_ps(rsq20,rinv20);
1675             r20              = _mm256_andnot_ps(dummy_mask,r20);
1676
1677             /* Compute parameters for interactions between i and j atoms */
1678             qq20             = _mm256_mul_ps(iq2,jq0);
1679
1680             /* EWALD ELECTROSTATICS */
1681             
1682             /* Analytical PME correction */
1683             zeta2            = _mm256_mul_ps(beta2,rsq20);
1684             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1685             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1686             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1687             felec            = _mm256_mul_ps(qq20,felec);
1688             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1689             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1690             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1691             velec            = _mm256_mul_ps(qq20,velec);
1692             
1693             d                = _mm256_sub_ps(r20,rswitch);
1694             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1695             d2               = _mm256_mul_ps(d,d);
1696             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1697
1698             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1699
1700             /* Evaluate switch function */
1701             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1702             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1703             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1704
1705             fscal            = felec;
1706
1707             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1708
1709             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1710
1711             /* Calculate temporary vectorial force */
1712             tx               = _mm256_mul_ps(fscal,dx20);
1713             ty               = _mm256_mul_ps(fscal,dy20);
1714             tz               = _mm256_mul_ps(fscal,dz20);
1715
1716             /* Update vectorial force */
1717             fix2             = _mm256_add_ps(fix2,tx);
1718             fiy2             = _mm256_add_ps(fiy2,ty);
1719             fiz2             = _mm256_add_ps(fiz2,tz);
1720
1721             fjx0             = _mm256_add_ps(fjx0,tx);
1722             fjy0             = _mm256_add_ps(fjy0,ty);
1723             fjz0             = _mm256_add_ps(fjz0,tz);
1724
1725             }
1726
1727             /**************************
1728              * CALCULATE INTERACTIONS *
1729              **************************/
1730
1731             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1732             {
1733
1734             r30              = _mm256_mul_ps(rsq30,rinv30);
1735             r30              = _mm256_andnot_ps(dummy_mask,r30);
1736
1737             /* Compute parameters for interactions between i and j atoms */
1738             qq30             = _mm256_mul_ps(iq3,jq0);
1739
1740             /* EWALD ELECTROSTATICS */
1741             
1742             /* Analytical PME correction */
1743             zeta2            = _mm256_mul_ps(beta2,rsq30);
1744             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1745             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1746             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1747             felec            = _mm256_mul_ps(qq30,felec);
1748             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1749             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1750             velec            = _mm256_sub_ps(rinv30,pmecorrV);
1751             velec            = _mm256_mul_ps(qq30,velec);
1752             
1753             d                = _mm256_sub_ps(r30,rswitch);
1754             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1755             d2               = _mm256_mul_ps(d,d);
1756             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1757
1758             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1759
1760             /* Evaluate switch function */
1761             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1762             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv30,_mm256_mul_ps(velec,dsw)) );
1763             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1764
1765             fscal            = felec;
1766
1767             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1768
1769             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1770
1771             /* Calculate temporary vectorial force */
1772             tx               = _mm256_mul_ps(fscal,dx30);
1773             ty               = _mm256_mul_ps(fscal,dy30);
1774             tz               = _mm256_mul_ps(fscal,dz30);
1775
1776             /* Update vectorial force */
1777             fix3             = _mm256_add_ps(fix3,tx);
1778             fiy3             = _mm256_add_ps(fiy3,ty);
1779             fiz3             = _mm256_add_ps(fiz3,tz);
1780
1781             fjx0             = _mm256_add_ps(fjx0,tx);
1782             fjy0             = _mm256_add_ps(fjy0,ty);
1783             fjz0             = _mm256_add_ps(fjz0,tz);
1784
1785             }
1786
1787             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1788             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1789             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1790             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1791             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1792             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1793             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1794             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1795
1796             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1797
1798             /* Inner loop uses 378 flops */
1799         }
1800
1801         /* End of innermost loop */
1802
1803         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1804                                                  f+i_coord_offset,fshift+i_shift_offset);
1805
1806         /* Increment number of inner iterations */
1807         inneriter                  += j_index_end - j_index_start;
1808
1809         /* Outer loop uses 24 flops */
1810     }
1811
1812     /* Increment number of outer iterations */
1813     outeriter        += nri;
1814
1815     /* Update outer/inner flops */
1816
1817     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*378);
1818 }