386dd9be2de16cf75e60334f9488568133abda11
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256i          ewitab;
108     __m128i          ewitab_lo,ewitab_hi;
109     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
111     real             *ewtab;
112     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
113     real             rswitch_scalar,d_scalar;
114     __m256           dummy_mask,cutoff_mask;
115     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
116     __m256           one     = _mm256_set1_ps(1.0);
117     __m256           two     = _mm256_set1_ps(2.0);
118     x                = xx[0];
119     f                = ff[0];
120
121     nri              = nlist->nri;
122     iinr             = nlist->iinr;
123     jindex           = nlist->jindex;
124     jjnr             = nlist->jjnr;
125     shiftidx         = nlist->shift;
126     gid              = nlist->gid;
127     shiftvec         = fr->shift_vec[0];
128     fshift           = fr->fshift[0];
129     facel            = _mm256_set1_ps(fr->epsfac);
130     charge           = mdatoms->chargeA;
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134
135     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
136     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
137     beta2            = _mm256_mul_ps(beta,beta);
138     beta3            = _mm256_mul_ps(beta,beta2);
139
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
143
144     /* Setup water-specific parameters */
145     inr              = nlist->iinr[0];
146     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
147     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
148     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
149     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
150
151     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
152     rcutoff_scalar   = fr->rcoulomb;
153     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
154     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
155
156     rswitch_scalar   = fr->rcoulomb_switch;
157     rswitch          = _mm256_set1_ps(rswitch_scalar);
158     /* Setup switch parameters */
159     d_scalar         = rcutoff_scalar-rswitch_scalar;
160     d                = _mm256_set1_ps(d_scalar);
161     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
162     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
163     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
164     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
165     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
166     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
167
168     /* Avoid stupid compiler warnings */
169     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
170     j_coord_offsetA = 0;
171     j_coord_offsetB = 0;
172     j_coord_offsetC = 0;
173     j_coord_offsetD = 0;
174     j_coord_offsetE = 0;
175     j_coord_offsetF = 0;
176     j_coord_offsetG = 0;
177     j_coord_offsetH = 0;
178
179     outeriter        = 0;
180     inneriter        = 0;
181
182     for(iidx=0;iidx<4*DIM;iidx++)
183     {
184         scratch[iidx] = 0.0;
185     }
186
187     /* Start outer loop over neighborlists */
188     for(iidx=0; iidx<nri; iidx++)
189     {
190         /* Load shift vector for this list */
191         i_shift_offset   = DIM*shiftidx[iidx];
192
193         /* Load limits for loop over neighbors */
194         j_index_start    = jindex[iidx];
195         j_index_end      = jindex[iidx+1];
196
197         /* Get outer coordinate index */
198         inr              = iinr[iidx];
199         i_coord_offset   = DIM*inr;
200
201         /* Load i particle coords and add shift vector */
202         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
203                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
204
205         fix0             = _mm256_setzero_ps();
206         fiy0             = _mm256_setzero_ps();
207         fiz0             = _mm256_setzero_ps();
208         fix1             = _mm256_setzero_ps();
209         fiy1             = _mm256_setzero_ps();
210         fiz1             = _mm256_setzero_ps();
211         fix2             = _mm256_setzero_ps();
212         fiy2             = _mm256_setzero_ps();
213         fiz2             = _mm256_setzero_ps();
214
215         /* Reset potential sums */
216         velecsum         = _mm256_setzero_ps();
217         vvdwsum          = _mm256_setzero_ps();
218
219         /* Start inner kernel loop */
220         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
221         {
222
223             /* Get j neighbor index, and coordinate index */
224             jnrA             = jjnr[jidx];
225             jnrB             = jjnr[jidx+1];
226             jnrC             = jjnr[jidx+2];
227             jnrD             = jjnr[jidx+3];
228             jnrE             = jjnr[jidx+4];
229             jnrF             = jjnr[jidx+5];
230             jnrG             = jjnr[jidx+6];
231             jnrH             = jjnr[jidx+7];
232             j_coord_offsetA  = DIM*jnrA;
233             j_coord_offsetB  = DIM*jnrB;
234             j_coord_offsetC  = DIM*jnrC;
235             j_coord_offsetD  = DIM*jnrD;
236             j_coord_offsetE  = DIM*jnrE;
237             j_coord_offsetF  = DIM*jnrF;
238             j_coord_offsetG  = DIM*jnrG;
239             j_coord_offsetH  = DIM*jnrH;
240
241             /* load j atom coordinates */
242             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
243                                                  x+j_coord_offsetC,x+j_coord_offsetD,
244                                                  x+j_coord_offsetE,x+j_coord_offsetF,
245                                                  x+j_coord_offsetG,x+j_coord_offsetH,
246                                                  &jx0,&jy0,&jz0);
247
248             /* Calculate displacement vector */
249             dx00             = _mm256_sub_ps(ix0,jx0);
250             dy00             = _mm256_sub_ps(iy0,jy0);
251             dz00             = _mm256_sub_ps(iz0,jz0);
252             dx10             = _mm256_sub_ps(ix1,jx0);
253             dy10             = _mm256_sub_ps(iy1,jy0);
254             dz10             = _mm256_sub_ps(iz1,jz0);
255             dx20             = _mm256_sub_ps(ix2,jx0);
256             dy20             = _mm256_sub_ps(iy2,jy0);
257             dz20             = _mm256_sub_ps(iz2,jz0);
258
259             /* Calculate squared distance and things based on it */
260             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
261             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
262             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
263
264             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
265             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
266             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
267
268             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
269             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
270             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
271
272             /* Load parameters for j particles */
273             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
274                                                                  charge+jnrC+0,charge+jnrD+0,
275                                                                  charge+jnrE+0,charge+jnrF+0,
276                                                                  charge+jnrG+0,charge+jnrH+0);
277             vdwjidx0A        = 2*vdwtype[jnrA+0];
278             vdwjidx0B        = 2*vdwtype[jnrB+0];
279             vdwjidx0C        = 2*vdwtype[jnrC+0];
280             vdwjidx0D        = 2*vdwtype[jnrD+0];
281             vdwjidx0E        = 2*vdwtype[jnrE+0];
282             vdwjidx0F        = 2*vdwtype[jnrF+0];
283             vdwjidx0G        = 2*vdwtype[jnrG+0];
284             vdwjidx0H        = 2*vdwtype[jnrH+0];
285
286             fjx0             = _mm256_setzero_ps();
287             fjy0             = _mm256_setzero_ps();
288             fjz0             = _mm256_setzero_ps();
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             if (gmx_mm256_any_lt(rsq00,rcutoff2))
295             {
296
297             r00              = _mm256_mul_ps(rsq00,rinv00);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq00             = _mm256_mul_ps(iq0,jq0);
301             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
302                                             vdwioffsetptr0+vdwjidx0B,
303                                             vdwioffsetptr0+vdwjidx0C,
304                                             vdwioffsetptr0+vdwjidx0D,
305                                             vdwioffsetptr0+vdwjidx0E,
306                                             vdwioffsetptr0+vdwjidx0F,
307                                             vdwioffsetptr0+vdwjidx0G,
308                                             vdwioffsetptr0+vdwjidx0H,
309                                             &c6_00,&c12_00);
310
311             /* EWALD ELECTROSTATICS */
312             
313             /* Analytical PME correction */
314             zeta2            = _mm256_mul_ps(beta2,rsq00);
315             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
316             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
317             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
318             felec            = _mm256_mul_ps(qq00,felec);
319             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
320             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
321             velec            = _mm256_sub_ps(rinv00,pmecorrV);
322             velec            = _mm256_mul_ps(qq00,velec);
323             
324             /* LENNARD-JONES DISPERSION/REPULSION */
325
326             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
327             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
328             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
329             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
330             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
331
332             d                = _mm256_sub_ps(r00,rswitch);
333             d                = _mm256_max_ps(d,_mm256_setzero_ps());
334             d2               = _mm256_mul_ps(d,d);
335             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
336
337             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
338
339             /* Evaluate switch function */
340             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
341             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
342             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
343             velec            = _mm256_mul_ps(velec,sw);
344             vvdw             = _mm256_mul_ps(vvdw,sw);
345             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm256_and_ps(velec,cutoff_mask);
349             velecsum         = _mm256_add_ps(velecsum,velec);
350             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
351             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
352
353             fscal            = _mm256_add_ps(felec,fvdw);
354
355             fscal            = _mm256_and_ps(fscal,cutoff_mask);
356
357             /* Calculate temporary vectorial force */
358             tx               = _mm256_mul_ps(fscal,dx00);
359             ty               = _mm256_mul_ps(fscal,dy00);
360             tz               = _mm256_mul_ps(fscal,dz00);
361
362             /* Update vectorial force */
363             fix0             = _mm256_add_ps(fix0,tx);
364             fiy0             = _mm256_add_ps(fiy0,ty);
365             fiz0             = _mm256_add_ps(fiz0,tz);
366
367             fjx0             = _mm256_add_ps(fjx0,tx);
368             fjy0             = _mm256_add_ps(fjy0,ty);
369             fjz0             = _mm256_add_ps(fjz0,tz);
370
371             }
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             if (gmx_mm256_any_lt(rsq10,rcutoff2))
378             {
379
380             r10              = _mm256_mul_ps(rsq10,rinv10);
381
382             /* Compute parameters for interactions between i and j atoms */
383             qq10             = _mm256_mul_ps(iq1,jq0);
384
385             /* EWALD ELECTROSTATICS */
386             
387             /* Analytical PME correction */
388             zeta2            = _mm256_mul_ps(beta2,rsq10);
389             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
390             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
391             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
392             felec            = _mm256_mul_ps(qq10,felec);
393             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
394             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
395             velec            = _mm256_sub_ps(rinv10,pmecorrV);
396             velec            = _mm256_mul_ps(qq10,velec);
397             
398             d                = _mm256_sub_ps(r10,rswitch);
399             d                = _mm256_max_ps(d,_mm256_setzero_ps());
400             d2               = _mm256_mul_ps(d,d);
401             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
402
403             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
404
405             /* Evaluate switch function */
406             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
407             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
408             velec            = _mm256_mul_ps(velec,sw);
409             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velec            = _mm256_and_ps(velec,cutoff_mask);
413             velecsum         = _mm256_add_ps(velecsum,velec);
414
415             fscal            = felec;
416
417             fscal            = _mm256_and_ps(fscal,cutoff_mask);
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm256_mul_ps(fscal,dx10);
421             ty               = _mm256_mul_ps(fscal,dy10);
422             tz               = _mm256_mul_ps(fscal,dz10);
423
424             /* Update vectorial force */
425             fix1             = _mm256_add_ps(fix1,tx);
426             fiy1             = _mm256_add_ps(fiy1,ty);
427             fiz1             = _mm256_add_ps(fiz1,tz);
428
429             fjx0             = _mm256_add_ps(fjx0,tx);
430             fjy0             = _mm256_add_ps(fjy0,ty);
431             fjz0             = _mm256_add_ps(fjz0,tz);
432
433             }
434
435             /**************************
436              * CALCULATE INTERACTIONS *
437              **************************/
438
439             if (gmx_mm256_any_lt(rsq20,rcutoff2))
440             {
441
442             r20              = _mm256_mul_ps(rsq20,rinv20);
443
444             /* Compute parameters for interactions between i and j atoms */
445             qq20             = _mm256_mul_ps(iq2,jq0);
446
447             /* EWALD ELECTROSTATICS */
448             
449             /* Analytical PME correction */
450             zeta2            = _mm256_mul_ps(beta2,rsq20);
451             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
452             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
453             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
454             felec            = _mm256_mul_ps(qq20,felec);
455             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
456             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
457             velec            = _mm256_sub_ps(rinv20,pmecorrV);
458             velec            = _mm256_mul_ps(qq20,velec);
459             
460             d                = _mm256_sub_ps(r20,rswitch);
461             d                = _mm256_max_ps(d,_mm256_setzero_ps());
462             d2               = _mm256_mul_ps(d,d);
463             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
464
465             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
466
467             /* Evaluate switch function */
468             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
469             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
470             velec            = _mm256_mul_ps(velec,sw);
471             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velec            = _mm256_and_ps(velec,cutoff_mask);
475             velecsum         = _mm256_add_ps(velecsum,velec);
476
477             fscal            = felec;
478
479             fscal            = _mm256_and_ps(fscal,cutoff_mask);
480
481             /* Calculate temporary vectorial force */
482             tx               = _mm256_mul_ps(fscal,dx20);
483             ty               = _mm256_mul_ps(fscal,dy20);
484             tz               = _mm256_mul_ps(fscal,dz20);
485
486             /* Update vectorial force */
487             fix2             = _mm256_add_ps(fix2,tx);
488             fiy2             = _mm256_add_ps(fiy2,ty);
489             fiz2             = _mm256_add_ps(fiz2,tz);
490
491             fjx0             = _mm256_add_ps(fjx0,tx);
492             fjy0             = _mm256_add_ps(fjy0,ty);
493             fjz0             = _mm256_add_ps(fjz0,tz);
494
495             }
496
497             fjptrA             = f+j_coord_offsetA;
498             fjptrB             = f+j_coord_offsetB;
499             fjptrC             = f+j_coord_offsetC;
500             fjptrD             = f+j_coord_offsetD;
501             fjptrE             = f+j_coord_offsetE;
502             fjptrF             = f+j_coord_offsetF;
503             fjptrG             = f+j_coord_offsetG;
504             fjptrH             = f+j_coord_offsetH;
505
506             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
507
508             /* Inner loop uses 345 flops */
509         }
510
511         if(jidx<j_index_end)
512         {
513
514             /* Get j neighbor index, and coordinate index */
515             jnrlistA         = jjnr[jidx];
516             jnrlistB         = jjnr[jidx+1];
517             jnrlistC         = jjnr[jidx+2];
518             jnrlistD         = jjnr[jidx+3];
519             jnrlistE         = jjnr[jidx+4];
520             jnrlistF         = jjnr[jidx+5];
521             jnrlistG         = jjnr[jidx+6];
522             jnrlistH         = jjnr[jidx+7];
523             /* Sign of each element will be negative for non-real atoms.
524              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
525              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
526              */
527             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
528                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
529                                             
530             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
531             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
532             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
533             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
534             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
535             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
536             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
537             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
538             j_coord_offsetA  = DIM*jnrA;
539             j_coord_offsetB  = DIM*jnrB;
540             j_coord_offsetC  = DIM*jnrC;
541             j_coord_offsetD  = DIM*jnrD;
542             j_coord_offsetE  = DIM*jnrE;
543             j_coord_offsetF  = DIM*jnrF;
544             j_coord_offsetG  = DIM*jnrG;
545             j_coord_offsetH  = DIM*jnrH;
546
547             /* load j atom coordinates */
548             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
549                                                  x+j_coord_offsetC,x+j_coord_offsetD,
550                                                  x+j_coord_offsetE,x+j_coord_offsetF,
551                                                  x+j_coord_offsetG,x+j_coord_offsetH,
552                                                  &jx0,&jy0,&jz0);
553
554             /* Calculate displacement vector */
555             dx00             = _mm256_sub_ps(ix0,jx0);
556             dy00             = _mm256_sub_ps(iy0,jy0);
557             dz00             = _mm256_sub_ps(iz0,jz0);
558             dx10             = _mm256_sub_ps(ix1,jx0);
559             dy10             = _mm256_sub_ps(iy1,jy0);
560             dz10             = _mm256_sub_ps(iz1,jz0);
561             dx20             = _mm256_sub_ps(ix2,jx0);
562             dy20             = _mm256_sub_ps(iy2,jy0);
563             dz20             = _mm256_sub_ps(iz2,jz0);
564
565             /* Calculate squared distance and things based on it */
566             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
567             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
568             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
569
570             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
571             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
572             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
573
574             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
575             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
576             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
577
578             /* Load parameters for j particles */
579             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
580                                                                  charge+jnrC+0,charge+jnrD+0,
581                                                                  charge+jnrE+0,charge+jnrF+0,
582                                                                  charge+jnrG+0,charge+jnrH+0);
583             vdwjidx0A        = 2*vdwtype[jnrA+0];
584             vdwjidx0B        = 2*vdwtype[jnrB+0];
585             vdwjidx0C        = 2*vdwtype[jnrC+0];
586             vdwjidx0D        = 2*vdwtype[jnrD+0];
587             vdwjidx0E        = 2*vdwtype[jnrE+0];
588             vdwjidx0F        = 2*vdwtype[jnrF+0];
589             vdwjidx0G        = 2*vdwtype[jnrG+0];
590             vdwjidx0H        = 2*vdwtype[jnrH+0];
591
592             fjx0             = _mm256_setzero_ps();
593             fjy0             = _mm256_setzero_ps();
594             fjz0             = _mm256_setzero_ps();
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             if (gmx_mm256_any_lt(rsq00,rcutoff2))
601             {
602
603             r00              = _mm256_mul_ps(rsq00,rinv00);
604             r00              = _mm256_andnot_ps(dummy_mask,r00);
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq00             = _mm256_mul_ps(iq0,jq0);
608             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
609                                             vdwioffsetptr0+vdwjidx0B,
610                                             vdwioffsetptr0+vdwjidx0C,
611                                             vdwioffsetptr0+vdwjidx0D,
612                                             vdwioffsetptr0+vdwjidx0E,
613                                             vdwioffsetptr0+vdwjidx0F,
614                                             vdwioffsetptr0+vdwjidx0G,
615                                             vdwioffsetptr0+vdwjidx0H,
616                                             &c6_00,&c12_00);
617
618             /* EWALD ELECTROSTATICS */
619             
620             /* Analytical PME correction */
621             zeta2            = _mm256_mul_ps(beta2,rsq00);
622             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
623             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
624             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
625             felec            = _mm256_mul_ps(qq00,felec);
626             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
627             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
628             velec            = _mm256_sub_ps(rinv00,pmecorrV);
629             velec            = _mm256_mul_ps(qq00,velec);
630             
631             /* LENNARD-JONES DISPERSION/REPULSION */
632
633             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
634             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
635             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
636             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
637             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
638
639             d                = _mm256_sub_ps(r00,rswitch);
640             d                = _mm256_max_ps(d,_mm256_setzero_ps());
641             d2               = _mm256_mul_ps(d,d);
642             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
643
644             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
645
646             /* Evaluate switch function */
647             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
648             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
649             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
650             velec            = _mm256_mul_ps(velec,sw);
651             vvdw             = _mm256_mul_ps(vvdw,sw);
652             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
653
654             /* Update potential sum for this i atom from the interaction with this j atom. */
655             velec            = _mm256_and_ps(velec,cutoff_mask);
656             velec            = _mm256_andnot_ps(dummy_mask,velec);
657             velecsum         = _mm256_add_ps(velecsum,velec);
658             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
659             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
660             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
661
662             fscal            = _mm256_add_ps(felec,fvdw);
663
664             fscal            = _mm256_and_ps(fscal,cutoff_mask);
665
666             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
667
668             /* Calculate temporary vectorial force */
669             tx               = _mm256_mul_ps(fscal,dx00);
670             ty               = _mm256_mul_ps(fscal,dy00);
671             tz               = _mm256_mul_ps(fscal,dz00);
672
673             /* Update vectorial force */
674             fix0             = _mm256_add_ps(fix0,tx);
675             fiy0             = _mm256_add_ps(fiy0,ty);
676             fiz0             = _mm256_add_ps(fiz0,tz);
677
678             fjx0             = _mm256_add_ps(fjx0,tx);
679             fjy0             = _mm256_add_ps(fjy0,ty);
680             fjz0             = _mm256_add_ps(fjz0,tz);
681
682             }
683
684             /**************************
685              * CALCULATE INTERACTIONS *
686              **************************/
687
688             if (gmx_mm256_any_lt(rsq10,rcutoff2))
689             {
690
691             r10              = _mm256_mul_ps(rsq10,rinv10);
692             r10              = _mm256_andnot_ps(dummy_mask,r10);
693
694             /* Compute parameters for interactions between i and j atoms */
695             qq10             = _mm256_mul_ps(iq1,jq0);
696
697             /* EWALD ELECTROSTATICS */
698             
699             /* Analytical PME correction */
700             zeta2            = _mm256_mul_ps(beta2,rsq10);
701             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
702             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
703             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
704             felec            = _mm256_mul_ps(qq10,felec);
705             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
706             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
707             velec            = _mm256_sub_ps(rinv10,pmecorrV);
708             velec            = _mm256_mul_ps(qq10,velec);
709             
710             d                = _mm256_sub_ps(r10,rswitch);
711             d                = _mm256_max_ps(d,_mm256_setzero_ps());
712             d2               = _mm256_mul_ps(d,d);
713             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
714
715             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
716
717             /* Evaluate switch function */
718             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
719             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
720             velec            = _mm256_mul_ps(velec,sw);
721             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
722
723             /* Update potential sum for this i atom from the interaction with this j atom. */
724             velec            = _mm256_and_ps(velec,cutoff_mask);
725             velec            = _mm256_andnot_ps(dummy_mask,velec);
726             velecsum         = _mm256_add_ps(velecsum,velec);
727
728             fscal            = felec;
729
730             fscal            = _mm256_and_ps(fscal,cutoff_mask);
731
732             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
733
734             /* Calculate temporary vectorial force */
735             tx               = _mm256_mul_ps(fscal,dx10);
736             ty               = _mm256_mul_ps(fscal,dy10);
737             tz               = _mm256_mul_ps(fscal,dz10);
738
739             /* Update vectorial force */
740             fix1             = _mm256_add_ps(fix1,tx);
741             fiy1             = _mm256_add_ps(fiy1,ty);
742             fiz1             = _mm256_add_ps(fiz1,tz);
743
744             fjx0             = _mm256_add_ps(fjx0,tx);
745             fjy0             = _mm256_add_ps(fjy0,ty);
746             fjz0             = _mm256_add_ps(fjz0,tz);
747
748             }
749
750             /**************************
751              * CALCULATE INTERACTIONS *
752              **************************/
753
754             if (gmx_mm256_any_lt(rsq20,rcutoff2))
755             {
756
757             r20              = _mm256_mul_ps(rsq20,rinv20);
758             r20              = _mm256_andnot_ps(dummy_mask,r20);
759
760             /* Compute parameters for interactions between i and j atoms */
761             qq20             = _mm256_mul_ps(iq2,jq0);
762
763             /* EWALD ELECTROSTATICS */
764             
765             /* Analytical PME correction */
766             zeta2            = _mm256_mul_ps(beta2,rsq20);
767             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
768             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
769             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
770             felec            = _mm256_mul_ps(qq20,felec);
771             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
772             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
773             velec            = _mm256_sub_ps(rinv20,pmecorrV);
774             velec            = _mm256_mul_ps(qq20,velec);
775             
776             d                = _mm256_sub_ps(r20,rswitch);
777             d                = _mm256_max_ps(d,_mm256_setzero_ps());
778             d2               = _mm256_mul_ps(d,d);
779             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
780
781             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
782
783             /* Evaluate switch function */
784             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
785             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
786             velec            = _mm256_mul_ps(velec,sw);
787             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
788
789             /* Update potential sum for this i atom from the interaction with this j atom. */
790             velec            = _mm256_and_ps(velec,cutoff_mask);
791             velec            = _mm256_andnot_ps(dummy_mask,velec);
792             velecsum         = _mm256_add_ps(velecsum,velec);
793
794             fscal            = felec;
795
796             fscal            = _mm256_and_ps(fscal,cutoff_mask);
797
798             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
799
800             /* Calculate temporary vectorial force */
801             tx               = _mm256_mul_ps(fscal,dx20);
802             ty               = _mm256_mul_ps(fscal,dy20);
803             tz               = _mm256_mul_ps(fscal,dz20);
804
805             /* Update vectorial force */
806             fix2             = _mm256_add_ps(fix2,tx);
807             fiy2             = _mm256_add_ps(fiy2,ty);
808             fiz2             = _mm256_add_ps(fiz2,tz);
809
810             fjx0             = _mm256_add_ps(fjx0,tx);
811             fjy0             = _mm256_add_ps(fjy0,ty);
812             fjz0             = _mm256_add_ps(fjz0,tz);
813
814             }
815
816             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
817             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
818             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
819             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
820             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
821             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
822             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
823             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
824
825             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
826
827             /* Inner loop uses 348 flops */
828         }
829
830         /* End of innermost loop */
831
832         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
833                                                  f+i_coord_offset,fshift+i_shift_offset);
834
835         ggid                        = gid[iidx];
836         /* Update potential energies */
837         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
838         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
839
840         /* Increment number of inner iterations */
841         inneriter                  += j_index_end - j_index_start;
842
843         /* Outer loop uses 20 flops */
844     }
845
846     /* Increment number of outer iterations */
847     outeriter        += nri;
848
849     /* Update outer/inner flops */
850
851     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*348);
852 }
853 /*
854  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_256_single
855  * Electrostatics interaction: Ewald
856  * VdW interaction:            LennardJones
857  * Geometry:                   Water3-Particle
858  * Calculate force/pot:        Force
859  */
860 void
861 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_256_single
862                     (t_nblist                    * gmx_restrict       nlist,
863                      rvec                        * gmx_restrict          xx,
864                      rvec                        * gmx_restrict          ff,
865                      t_forcerec                  * gmx_restrict          fr,
866                      t_mdatoms                   * gmx_restrict     mdatoms,
867                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
868                      t_nrnb                      * gmx_restrict        nrnb)
869 {
870     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
871      * just 0 for non-waters.
872      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
873      * jnr indices corresponding to data put in the four positions in the SIMD register.
874      */
875     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
876     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
877     int              jnrA,jnrB,jnrC,jnrD;
878     int              jnrE,jnrF,jnrG,jnrH;
879     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
880     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
881     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
882     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
883     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
884     real             rcutoff_scalar;
885     real             *shiftvec,*fshift,*x,*f;
886     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
887     real             scratch[4*DIM];
888     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
889     real *           vdwioffsetptr0;
890     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
891     real *           vdwioffsetptr1;
892     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
893     real *           vdwioffsetptr2;
894     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
895     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
896     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
897     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
898     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
899     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
900     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
901     real             *charge;
902     int              nvdwtype;
903     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
904     int              *vdwtype;
905     real             *vdwparam;
906     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
907     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
908     __m256i          ewitab;
909     __m128i          ewitab_lo,ewitab_hi;
910     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
911     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
912     real             *ewtab;
913     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
914     real             rswitch_scalar,d_scalar;
915     __m256           dummy_mask,cutoff_mask;
916     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
917     __m256           one     = _mm256_set1_ps(1.0);
918     __m256           two     = _mm256_set1_ps(2.0);
919     x                = xx[0];
920     f                = ff[0];
921
922     nri              = nlist->nri;
923     iinr             = nlist->iinr;
924     jindex           = nlist->jindex;
925     jjnr             = nlist->jjnr;
926     shiftidx         = nlist->shift;
927     gid              = nlist->gid;
928     shiftvec         = fr->shift_vec[0];
929     fshift           = fr->fshift[0];
930     facel            = _mm256_set1_ps(fr->epsfac);
931     charge           = mdatoms->chargeA;
932     nvdwtype         = fr->ntype;
933     vdwparam         = fr->nbfp;
934     vdwtype          = mdatoms->typeA;
935
936     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
937     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
938     beta2            = _mm256_mul_ps(beta,beta);
939     beta3            = _mm256_mul_ps(beta,beta2);
940
941     ewtab            = fr->ic->tabq_coul_FDV0;
942     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
943     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
944
945     /* Setup water-specific parameters */
946     inr              = nlist->iinr[0];
947     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
948     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
949     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
950     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
951
952     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
953     rcutoff_scalar   = fr->rcoulomb;
954     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
955     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
956
957     rswitch_scalar   = fr->rcoulomb_switch;
958     rswitch          = _mm256_set1_ps(rswitch_scalar);
959     /* Setup switch parameters */
960     d_scalar         = rcutoff_scalar-rswitch_scalar;
961     d                = _mm256_set1_ps(d_scalar);
962     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
963     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
964     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
965     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
966     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
967     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
968
969     /* Avoid stupid compiler warnings */
970     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
971     j_coord_offsetA = 0;
972     j_coord_offsetB = 0;
973     j_coord_offsetC = 0;
974     j_coord_offsetD = 0;
975     j_coord_offsetE = 0;
976     j_coord_offsetF = 0;
977     j_coord_offsetG = 0;
978     j_coord_offsetH = 0;
979
980     outeriter        = 0;
981     inneriter        = 0;
982
983     for(iidx=0;iidx<4*DIM;iidx++)
984     {
985         scratch[iidx] = 0.0;
986     }
987
988     /* Start outer loop over neighborlists */
989     for(iidx=0; iidx<nri; iidx++)
990     {
991         /* Load shift vector for this list */
992         i_shift_offset   = DIM*shiftidx[iidx];
993
994         /* Load limits for loop over neighbors */
995         j_index_start    = jindex[iidx];
996         j_index_end      = jindex[iidx+1];
997
998         /* Get outer coordinate index */
999         inr              = iinr[iidx];
1000         i_coord_offset   = DIM*inr;
1001
1002         /* Load i particle coords and add shift vector */
1003         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1004                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1005
1006         fix0             = _mm256_setzero_ps();
1007         fiy0             = _mm256_setzero_ps();
1008         fiz0             = _mm256_setzero_ps();
1009         fix1             = _mm256_setzero_ps();
1010         fiy1             = _mm256_setzero_ps();
1011         fiz1             = _mm256_setzero_ps();
1012         fix2             = _mm256_setzero_ps();
1013         fiy2             = _mm256_setzero_ps();
1014         fiz2             = _mm256_setzero_ps();
1015
1016         /* Start inner kernel loop */
1017         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
1018         {
1019
1020             /* Get j neighbor index, and coordinate index */
1021             jnrA             = jjnr[jidx];
1022             jnrB             = jjnr[jidx+1];
1023             jnrC             = jjnr[jidx+2];
1024             jnrD             = jjnr[jidx+3];
1025             jnrE             = jjnr[jidx+4];
1026             jnrF             = jjnr[jidx+5];
1027             jnrG             = jjnr[jidx+6];
1028             jnrH             = jjnr[jidx+7];
1029             j_coord_offsetA  = DIM*jnrA;
1030             j_coord_offsetB  = DIM*jnrB;
1031             j_coord_offsetC  = DIM*jnrC;
1032             j_coord_offsetD  = DIM*jnrD;
1033             j_coord_offsetE  = DIM*jnrE;
1034             j_coord_offsetF  = DIM*jnrF;
1035             j_coord_offsetG  = DIM*jnrG;
1036             j_coord_offsetH  = DIM*jnrH;
1037
1038             /* load j atom coordinates */
1039             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1040                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1041                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1042                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1043                                                  &jx0,&jy0,&jz0);
1044
1045             /* Calculate displacement vector */
1046             dx00             = _mm256_sub_ps(ix0,jx0);
1047             dy00             = _mm256_sub_ps(iy0,jy0);
1048             dz00             = _mm256_sub_ps(iz0,jz0);
1049             dx10             = _mm256_sub_ps(ix1,jx0);
1050             dy10             = _mm256_sub_ps(iy1,jy0);
1051             dz10             = _mm256_sub_ps(iz1,jz0);
1052             dx20             = _mm256_sub_ps(ix2,jx0);
1053             dy20             = _mm256_sub_ps(iy2,jy0);
1054             dz20             = _mm256_sub_ps(iz2,jz0);
1055
1056             /* Calculate squared distance and things based on it */
1057             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1058             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1059             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1060
1061             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1062             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1063             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1064
1065             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1066             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1067             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1068
1069             /* Load parameters for j particles */
1070             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1071                                                                  charge+jnrC+0,charge+jnrD+0,
1072                                                                  charge+jnrE+0,charge+jnrF+0,
1073                                                                  charge+jnrG+0,charge+jnrH+0);
1074             vdwjidx0A        = 2*vdwtype[jnrA+0];
1075             vdwjidx0B        = 2*vdwtype[jnrB+0];
1076             vdwjidx0C        = 2*vdwtype[jnrC+0];
1077             vdwjidx0D        = 2*vdwtype[jnrD+0];
1078             vdwjidx0E        = 2*vdwtype[jnrE+0];
1079             vdwjidx0F        = 2*vdwtype[jnrF+0];
1080             vdwjidx0G        = 2*vdwtype[jnrG+0];
1081             vdwjidx0H        = 2*vdwtype[jnrH+0];
1082
1083             fjx0             = _mm256_setzero_ps();
1084             fjy0             = _mm256_setzero_ps();
1085             fjz0             = _mm256_setzero_ps();
1086
1087             /**************************
1088              * CALCULATE INTERACTIONS *
1089              **************************/
1090
1091             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1092             {
1093
1094             r00              = _mm256_mul_ps(rsq00,rinv00);
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             qq00             = _mm256_mul_ps(iq0,jq0);
1098             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1099                                             vdwioffsetptr0+vdwjidx0B,
1100                                             vdwioffsetptr0+vdwjidx0C,
1101                                             vdwioffsetptr0+vdwjidx0D,
1102                                             vdwioffsetptr0+vdwjidx0E,
1103                                             vdwioffsetptr0+vdwjidx0F,
1104                                             vdwioffsetptr0+vdwjidx0G,
1105                                             vdwioffsetptr0+vdwjidx0H,
1106                                             &c6_00,&c12_00);
1107
1108             /* EWALD ELECTROSTATICS */
1109             
1110             /* Analytical PME correction */
1111             zeta2            = _mm256_mul_ps(beta2,rsq00);
1112             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1113             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1114             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1115             felec            = _mm256_mul_ps(qq00,felec);
1116             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1117             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1118             velec            = _mm256_sub_ps(rinv00,pmecorrV);
1119             velec            = _mm256_mul_ps(qq00,velec);
1120             
1121             /* LENNARD-JONES DISPERSION/REPULSION */
1122
1123             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1124             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1125             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1126             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1127             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1128
1129             d                = _mm256_sub_ps(r00,rswitch);
1130             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1131             d2               = _mm256_mul_ps(d,d);
1132             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1133
1134             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1135
1136             /* Evaluate switch function */
1137             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1138             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
1139             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1140             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1141
1142             fscal            = _mm256_add_ps(felec,fvdw);
1143
1144             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1145
1146             /* Calculate temporary vectorial force */
1147             tx               = _mm256_mul_ps(fscal,dx00);
1148             ty               = _mm256_mul_ps(fscal,dy00);
1149             tz               = _mm256_mul_ps(fscal,dz00);
1150
1151             /* Update vectorial force */
1152             fix0             = _mm256_add_ps(fix0,tx);
1153             fiy0             = _mm256_add_ps(fiy0,ty);
1154             fiz0             = _mm256_add_ps(fiz0,tz);
1155
1156             fjx0             = _mm256_add_ps(fjx0,tx);
1157             fjy0             = _mm256_add_ps(fjy0,ty);
1158             fjz0             = _mm256_add_ps(fjz0,tz);
1159
1160             }
1161
1162             /**************************
1163              * CALCULATE INTERACTIONS *
1164              **************************/
1165
1166             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1167             {
1168
1169             r10              = _mm256_mul_ps(rsq10,rinv10);
1170
1171             /* Compute parameters for interactions between i and j atoms */
1172             qq10             = _mm256_mul_ps(iq1,jq0);
1173
1174             /* EWALD ELECTROSTATICS */
1175             
1176             /* Analytical PME correction */
1177             zeta2            = _mm256_mul_ps(beta2,rsq10);
1178             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1179             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1180             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1181             felec            = _mm256_mul_ps(qq10,felec);
1182             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1183             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1184             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1185             velec            = _mm256_mul_ps(qq10,velec);
1186             
1187             d                = _mm256_sub_ps(r10,rswitch);
1188             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1189             d2               = _mm256_mul_ps(d,d);
1190             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1191
1192             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1193
1194             /* Evaluate switch function */
1195             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1196             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1197             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1198
1199             fscal            = felec;
1200
1201             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1202
1203             /* Calculate temporary vectorial force */
1204             tx               = _mm256_mul_ps(fscal,dx10);
1205             ty               = _mm256_mul_ps(fscal,dy10);
1206             tz               = _mm256_mul_ps(fscal,dz10);
1207
1208             /* Update vectorial force */
1209             fix1             = _mm256_add_ps(fix1,tx);
1210             fiy1             = _mm256_add_ps(fiy1,ty);
1211             fiz1             = _mm256_add_ps(fiz1,tz);
1212
1213             fjx0             = _mm256_add_ps(fjx0,tx);
1214             fjy0             = _mm256_add_ps(fjy0,ty);
1215             fjz0             = _mm256_add_ps(fjz0,tz);
1216
1217             }
1218
1219             /**************************
1220              * CALCULATE INTERACTIONS *
1221              **************************/
1222
1223             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1224             {
1225
1226             r20              = _mm256_mul_ps(rsq20,rinv20);
1227
1228             /* Compute parameters for interactions between i and j atoms */
1229             qq20             = _mm256_mul_ps(iq2,jq0);
1230
1231             /* EWALD ELECTROSTATICS */
1232             
1233             /* Analytical PME correction */
1234             zeta2            = _mm256_mul_ps(beta2,rsq20);
1235             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1236             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1237             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1238             felec            = _mm256_mul_ps(qq20,felec);
1239             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1240             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1241             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1242             velec            = _mm256_mul_ps(qq20,velec);
1243             
1244             d                = _mm256_sub_ps(r20,rswitch);
1245             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1246             d2               = _mm256_mul_ps(d,d);
1247             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1248
1249             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1250
1251             /* Evaluate switch function */
1252             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1253             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1254             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1255
1256             fscal            = felec;
1257
1258             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1259
1260             /* Calculate temporary vectorial force */
1261             tx               = _mm256_mul_ps(fscal,dx20);
1262             ty               = _mm256_mul_ps(fscal,dy20);
1263             tz               = _mm256_mul_ps(fscal,dz20);
1264
1265             /* Update vectorial force */
1266             fix2             = _mm256_add_ps(fix2,tx);
1267             fiy2             = _mm256_add_ps(fiy2,ty);
1268             fiz2             = _mm256_add_ps(fiz2,tz);
1269
1270             fjx0             = _mm256_add_ps(fjx0,tx);
1271             fjy0             = _mm256_add_ps(fjy0,ty);
1272             fjz0             = _mm256_add_ps(fjz0,tz);
1273
1274             }
1275
1276             fjptrA             = f+j_coord_offsetA;
1277             fjptrB             = f+j_coord_offsetB;
1278             fjptrC             = f+j_coord_offsetC;
1279             fjptrD             = f+j_coord_offsetD;
1280             fjptrE             = f+j_coord_offsetE;
1281             fjptrF             = f+j_coord_offsetF;
1282             fjptrG             = f+j_coord_offsetG;
1283             fjptrH             = f+j_coord_offsetH;
1284
1285             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1286
1287             /* Inner loop uses 333 flops */
1288         }
1289
1290         if(jidx<j_index_end)
1291         {
1292
1293             /* Get j neighbor index, and coordinate index */
1294             jnrlistA         = jjnr[jidx];
1295             jnrlistB         = jjnr[jidx+1];
1296             jnrlistC         = jjnr[jidx+2];
1297             jnrlistD         = jjnr[jidx+3];
1298             jnrlistE         = jjnr[jidx+4];
1299             jnrlistF         = jjnr[jidx+5];
1300             jnrlistG         = jjnr[jidx+6];
1301             jnrlistH         = jjnr[jidx+7];
1302             /* Sign of each element will be negative for non-real atoms.
1303              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1304              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1305              */
1306             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1307                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1308                                             
1309             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1310             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1311             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1312             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1313             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1314             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1315             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1316             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1317             j_coord_offsetA  = DIM*jnrA;
1318             j_coord_offsetB  = DIM*jnrB;
1319             j_coord_offsetC  = DIM*jnrC;
1320             j_coord_offsetD  = DIM*jnrD;
1321             j_coord_offsetE  = DIM*jnrE;
1322             j_coord_offsetF  = DIM*jnrF;
1323             j_coord_offsetG  = DIM*jnrG;
1324             j_coord_offsetH  = DIM*jnrH;
1325
1326             /* load j atom coordinates */
1327             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1328                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1329                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1330                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1331                                                  &jx0,&jy0,&jz0);
1332
1333             /* Calculate displacement vector */
1334             dx00             = _mm256_sub_ps(ix0,jx0);
1335             dy00             = _mm256_sub_ps(iy0,jy0);
1336             dz00             = _mm256_sub_ps(iz0,jz0);
1337             dx10             = _mm256_sub_ps(ix1,jx0);
1338             dy10             = _mm256_sub_ps(iy1,jy0);
1339             dz10             = _mm256_sub_ps(iz1,jz0);
1340             dx20             = _mm256_sub_ps(ix2,jx0);
1341             dy20             = _mm256_sub_ps(iy2,jy0);
1342             dz20             = _mm256_sub_ps(iz2,jz0);
1343
1344             /* Calculate squared distance and things based on it */
1345             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1346             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1347             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1348
1349             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1350             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1351             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1352
1353             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1354             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1355             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1356
1357             /* Load parameters for j particles */
1358             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1359                                                                  charge+jnrC+0,charge+jnrD+0,
1360                                                                  charge+jnrE+0,charge+jnrF+0,
1361                                                                  charge+jnrG+0,charge+jnrH+0);
1362             vdwjidx0A        = 2*vdwtype[jnrA+0];
1363             vdwjidx0B        = 2*vdwtype[jnrB+0];
1364             vdwjidx0C        = 2*vdwtype[jnrC+0];
1365             vdwjidx0D        = 2*vdwtype[jnrD+0];
1366             vdwjidx0E        = 2*vdwtype[jnrE+0];
1367             vdwjidx0F        = 2*vdwtype[jnrF+0];
1368             vdwjidx0G        = 2*vdwtype[jnrG+0];
1369             vdwjidx0H        = 2*vdwtype[jnrH+0];
1370
1371             fjx0             = _mm256_setzero_ps();
1372             fjy0             = _mm256_setzero_ps();
1373             fjz0             = _mm256_setzero_ps();
1374
1375             /**************************
1376              * CALCULATE INTERACTIONS *
1377              **************************/
1378
1379             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1380             {
1381
1382             r00              = _mm256_mul_ps(rsq00,rinv00);
1383             r00              = _mm256_andnot_ps(dummy_mask,r00);
1384
1385             /* Compute parameters for interactions between i and j atoms */
1386             qq00             = _mm256_mul_ps(iq0,jq0);
1387             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1388                                             vdwioffsetptr0+vdwjidx0B,
1389                                             vdwioffsetptr0+vdwjidx0C,
1390                                             vdwioffsetptr0+vdwjidx0D,
1391                                             vdwioffsetptr0+vdwjidx0E,
1392                                             vdwioffsetptr0+vdwjidx0F,
1393                                             vdwioffsetptr0+vdwjidx0G,
1394                                             vdwioffsetptr0+vdwjidx0H,
1395                                             &c6_00,&c12_00);
1396
1397             /* EWALD ELECTROSTATICS */
1398             
1399             /* Analytical PME correction */
1400             zeta2            = _mm256_mul_ps(beta2,rsq00);
1401             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1402             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1403             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1404             felec            = _mm256_mul_ps(qq00,felec);
1405             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1406             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1407             velec            = _mm256_sub_ps(rinv00,pmecorrV);
1408             velec            = _mm256_mul_ps(qq00,velec);
1409             
1410             /* LENNARD-JONES DISPERSION/REPULSION */
1411
1412             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1413             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1414             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1415             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1416             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1417
1418             d                = _mm256_sub_ps(r00,rswitch);
1419             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1420             d2               = _mm256_mul_ps(d,d);
1421             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1422
1423             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1424
1425             /* Evaluate switch function */
1426             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1427             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
1428             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1429             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1430
1431             fscal            = _mm256_add_ps(felec,fvdw);
1432
1433             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1434
1435             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1436
1437             /* Calculate temporary vectorial force */
1438             tx               = _mm256_mul_ps(fscal,dx00);
1439             ty               = _mm256_mul_ps(fscal,dy00);
1440             tz               = _mm256_mul_ps(fscal,dz00);
1441
1442             /* Update vectorial force */
1443             fix0             = _mm256_add_ps(fix0,tx);
1444             fiy0             = _mm256_add_ps(fiy0,ty);
1445             fiz0             = _mm256_add_ps(fiz0,tz);
1446
1447             fjx0             = _mm256_add_ps(fjx0,tx);
1448             fjy0             = _mm256_add_ps(fjy0,ty);
1449             fjz0             = _mm256_add_ps(fjz0,tz);
1450
1451             }
1452
1453             /**************************
1454              * CALCULATE INTERACTIONS *
1455              **************************/
1456
1457             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1458             {
1459
1460             r10              = _mm256_mul_ps(rsq10,rinv10);
1461             r10              = _mm256_andnot_ps(dummy_mask,r10);
1462
1463             /* Compute parameters for interactions between i and j atoms */
1464             qq10             = _mm256_mul_ps(iq1,jq0);
1465
1466             /* EWALD ELECTROSTATICS */
1467             
1468             /* Analytical PME correction */
1469             zeta2            = _mm256_mul_ps(beta2,rsq10);
1470             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1471             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1472             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1473             felec            = _mm256_mul_ps(qq10,felec);
1474             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1475             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1476             velec            = _mm256_sub_ps(rinv10,pmecorrV);
1477             velec            = _mm256_mul_ps(qq10,velec);
1478             
1479             d                = _mm256_sub_ps(r10,rswitch);
1480             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1481             d2               = _mm256_mul_ps(d,d);
1482             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1483
1484             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1485
1486             /* Evaluate switch function */
1487             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1488             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv10,_mm256_mul_ps(velec,dsw)) );
1489             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1490
1491             fscal            = felec;
1492
1493             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1494
1495             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1496
1497             /* Calculate temporary vectorial force */
1498             tx               = _mm256_mul_ps(fscal,dx10);
1499             ty               = _mm256_mul_ps(fscal,dy10);
1500             tz               = _mm256_mul_ps(fscal,dz10);
1501
1502             /* Update vectorial force */
1503             fix1             = _mm256_add_ps(fix1,tx);
1504             fiy1             = _mm256_add_ps(fiy1,ty);
1505             fiz1             = _mm256_add_ps(fiz1,tz);
1506
1507             fjx0             = _mm256_add_ps(fjx0,tx);
1508             fjy0             = _mm256_add_ps(fjy0,ty);
1509             fjz0             = _mm256_add_ps(fjz0,tz);
1510
1511             }
1512
1513             /**************************
1514              * CALCULATE INTERACTIONS *
1515              **************************/
1516
1517             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1518             {
1519
1520             r20              = _mm256_mul_ps(rsq20,rinv20);
1521             r20              = _mm256_andnot_ps(dummy_mask,r20);
1522
1523             /* Compute parameters for interactions between i and j atoms */
1524             qq20             = _mm256_mul_ps(iq2,jq0);
1525
1526             /* EWALD ELECTROSTATICS */
1527             
1528             /* Analytical PME correction */
1529             zeta2            = _mm256_mul_ps(beta2,rsq20);
1530             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1531             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1532             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1533             felec            = _mm256_mul_ps(qq20,felec);
1534             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
1535             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
1536             velec            = _mm256_sub_ps(rinv20,pmecorrV);
1537             velec            = _mm256_mul_ps(qq20,velec);
1538             
1539             d                = _mm256_sub_ps(r20,rswitch);
1540             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1541             d2               = _mm256_mul_ps(d,d);
1542             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1543
1544             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1545
1546             /* Evaluate switch function */
1547             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1548             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv20,_mm256_mul_ps(velec,dsw)) );
1549             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1550
1551             fscal            = felec;
1552
1553             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1554
1555             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1556
1557             /* Calculate temporary vectorial force */
1558             tx               = _mm256_mul_ps(fscal,dx20);
1559             ty               = _mm256_mul_ps(fscal,dy20);
1560             tz               = _mm256_mul_ps(fscal,dz20);
1561
1562             /* Update vectorial force */
1563             fix2             = _mm256_add_ps(fix2,tx);
1564             fiy2             = _mm256_add_ps(fiy2,ty);
1565             fiz2             = _mm256_add_ps(fiz2,tz);
1566
1567             fjx0             = _mm256_add_ps(fjx0,tx);
1568             fjy0             = _mm256_add_ps(fjy0,ty);
1569             fjz0             = _mm256_add_ps(fjz0,tz);
1570
1571             }
1572
1573             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1574             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1575             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1576             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1577             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1578             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1579             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1580             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1581
1582             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1583
1584             /* Inner loop uses 336 flops */
1585         }
1586
1587         /* End of innermost loop */
1588
1589         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1590                                                  f+i_coord_offset,fshift+i_shift_offset);
1591
1592         /* Increment number of inner iterations */
1593         inneriter                  += j_index_end - j_index_start;
1594
1595         /* Outer loop uses 18 flops */
1596     }
1597
1598     /* Increment number of outer iterations */
1599     outeriter        += nri;
1600
1601     /* Update outer/inner flops */
1602
1603     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*336);
1604 }