9f9b13296a0aa31cb9e2a6adc2c318494dcb1a62
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256i          ewitab;
100     __m128i          ewitab_lo,ewitab_hi;
101     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105     real             rswitch_scalar,d_scalar;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
128     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
129     beta2            = _mm256_mul_ps(beta,beta);
130     beta3            = _mm256_mul_ps(beta,beta2);
131
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->rcoulomb;
138     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
139     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
140
141     rswitch_scalar   = fr->rcoulomb_switch;
142     rswitch          = _mm256_set1_ps(rswitch_scalar);
143     /* Setup switch parameters */
144     d_scalar         = rcutoff_scalar-rswitch_scalar;
145     d                = _mm256_set1_ps(d_scalar);
146     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
147     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
148     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
149     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
150     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157     j_coord_offsetC = 0;
158     j_coord_offsetD = 0;
159     j_coord_offsetE = 0;
160     j_coord_offsetF = 0;
161     j_coord_offsetG = 0;
162     j_coord_offsetH = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     for(iidx=0;iidx<4*DIM;iidx++)
168     {
169         scratch[iidx] = 0.0;
170     }
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177
178         /* Load limits for loop over neighbors */
179         j_index_start    = jindex[iidx];
180         j_index_end      = jindex[iidx+1];
181
182         /* Get outer coordinate index */
183         inr              = iinr[iidx];
184         i_coord_offset   = DIM*inr;
185
186         /* Load i particle coords and add shift vector */
187         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
188
189         fix0             = _mm256_setzero_ps();
190         fiy0             = _mm256_setzero_ps();
191         fiz0             = _mm256_setzero_ps();
192
193         /* Load parameters for i particles */
194         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
195         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
196
197         /* Reset potential sums */
198         velecsum         = _mm256_setzero_ps();
199         vvdwsum          = _mm256_setzero_ps();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             jnrC             = jjnr[jidx+2];
209             jnrD             = jjnr[jidx+3];
210             jnrE             = jjnr[jidx+4];
211             jnrF             = jjnr[jidx+5];
212             jnrG             = jjnr[jidx+6];
213             jnrH             = jjnr[jidx+7];
214             j_coord_offsetA  = DIM*jnrA;
215             j_coord_offsetB  = DIM*jnrB;
216             j_coord_offsetC  = DIM*jnrC;
217             j_coord_offsetD  = DIM*jnrD;
218             j_coord_offsetE  = DIM*jnrE;
219             j_coord_offsetF  = DIM*jnrF;
220             j_coord_offsetG  = DIM*jnrG;
221             j_coord_offsetH  = DIM*jnrH;
222
223             /* load j atom coordinates */
224             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
225                                                  x+j_coord_offsetC,x+j_coord_offsetD,
226                                                  x+j_coord_offsetE,x+j_coord_offsetF,
227                                                  x+j_coord_offsetG,x+j_coord_offsetH,
228                                                  &jx0,&jy0,&jz0);
229
230             /* Calculate displacement vector */
231             dx00             = _mm256_sub_ps(ix0,jx0);
232             dy00             = _mm256_sub_ps(iy0,jy0);
233             dz00             = _mm256_sub_ps(iz0,jz0);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
237
238             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
239
240             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
244                                                                  charge+jnrC+0,charge+jnrD+0,
245                                                                  charge+jnrE+0,charge+jnrF+0,
246                                                                  charge+jnrG+0,charge+jnrH+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249             vdwjidx0C        = 2*vdwtype[jnrC+0];
250             vdwjidx0D        = 2*vdwtype[jnrD+0];
251             vdwjidx0E        = 2*vdwtype[jnrE+0];
252             vdwjidx0F        = 2*vdwtype[jnrF+0];
253             vdwjidx0G        = 2*vdwtype[jnrG+0];
254             vdwjidx0H        = 2*vdwtype[jnrH+0];
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm256_any_lt(rsq00,rcutoff2))
261             {
262
263             r00              = _mm256_mul_ps(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             qq00             = _mm256_mul_ps(iq0,jq0);
267             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
268                                             vdwioffsetptr0+vdwjidx0B,
269                                             vdwioffsetptr0+vdwjidx0C,
270                                             vdwioffsetptr0+vdwjidx0D,
271                                             vdwioffsetptr0+vdwjidx0E,
272                                             vdwioffsetptr0+vdwjidx0F,
273                                             vdwioffsetptr0+vdwjidx0G,
274                                             vdwioffsetptr0+vdwjidx0H,
275                                             &c6_00,&c12_00);
276
277             /* EWALD ELECTROSTATICS */
278             
279             /* Analytical PME correction */
280             zeta2            = _mm256_mul_ps(beta2,rsq00);
281             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
282             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
283             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
284             felec            = _mm256_mul_ps(qq00,felec);
285             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
286             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
287             velec            = _mm256_sub_ps(rinv00,pmecorrV);
288             velec            = _mm256_mul_ps(qq00,velec);
289             
290             /* LENNARD-JONES DISPERSION/REPULSION */
291
292             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
293             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
294             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
295             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
296             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
297
298             d                = _mm256_sub_ps(r00,rswitch);
299             d                = _mm256_max_ps(d,_mm256_setzero_ps());
300             d2               = _mm256_mul_ps(d,d);
301             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
302
303             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
304
305             /* Evaluate switch function */
306             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
307             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
308             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
309             velec            = _mm256_mul_ps(velec,sw);
310             vvdw             = _mm256_mul_ps(vvdw,sw);
311             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velec            = _mm256_and_ps(velec,cutoff_mask);
315             velecsum         = _mm256_add_ps(velecsum,velec);
316             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
317             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
318
319             fscal            = _mm256_add_ps(felec,fvdw);
320
321             fscal            = _mm256_and_ps(fscal,cutoff_mask);
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm256_mul_ps(fscal,dx00);
325             ty               = _mm256_mul_ps(fscal,dy00);
326             tz               = _mm256_mul_ps(fscal,dz00);
327
328             /* Update vectorial force */
329             fix0             = _mm256_add_ps(fix0,tx);
330             fiy0             = _mm256_add_ps(fiy0,ty);
331             fiz0             = _mm256_add_ps(fiz0,tz);
332
333             fjptrA             = f+j_coord_offsetA;
334             fjptrB             = f+j_coord_offsetB;
335             fjptrC             = f+j_coord_offsetC;
336             fjptrD             = f+j_coord_offsetD;
337             fjptrE             = f+j_coord_offsetE;
338             fjptrF             = f+j_coord_offsetF;
339             fjptrG             = f+j_coord_offsetG;
340             fjptrH             = f+j_coord_offsetH;
341             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
342
343             }
344
345             /* Inner loop uses 126 flops */
346         }
347
348         if(jidx<j_index_end)
349         {
350
351             /* Get j neighbor index, and coordinate index */
352             jnrlistA         = jjnr[jidx];
353             jnrlistB         = jjnr[jidx+1];
354             jnrlistC         = jjnr[jidx+2];
355             jnrlistD         = jjnr[jidx+3];
356             jnrlistE         = jjnr[jidx+4];
357             jnrlistF         = jjnr[jidx+5];
358             jnrlistG         = jjnr[jidx+6];
359             jnrlistH         = jjnr[jidx+7];
360             /* Sign of each element will be negative for non-real atoms.
361              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
362              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
363              */
364             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
365                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
366                                             
367             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
368             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
369             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
370             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
371             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
372             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
373             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
374             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
375             j_coord_offsetA  = DIM*jnrA;
376             j_coord_offsetB  = DIM*jnrB;
377             j_coord_offsetC  = DIM*jnrC;
378             j_coord_offsetD  = DIM*jnrD;
379             j_coord_offsetE  = DIM*jnrE;
380             j_coord_offsetF  = DIM*jnrF;
381             j_coord_offsetG  = DIM*jnrG;
382             j_coord_offsetH  = DIM*jnrH;
383
384             /* load j atom coordinates */
385             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
386                                                  x+j_coord_offsetC,x+j_coord_offsetD,
387                                                  x+j_coord_offsetE,x+j_coord_offsetF,
388                                                  x+j_coord_offsetG,x+j_coord_offsetH,
389                                                  &jx0,&jy0,&jz0);
390
391             /* Calculate displacement vector */
392             dx00             = _mm256_sub_ps(ix0,jx0);
393             dy00             = _mm256_sub_ps(iy0,jy0);
394             dz00             = _mm256_sub_ps(iz0,jz0);
395
396             /* Calculate squared distance and things based on it */
397             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
398
399             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
400
401             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
402
403             /* Load parameters for j particles */
404             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
405                                                                  charge+jnrC+0,charge+jnrD+0,
406                                                                  charge+jnrE+0,charge+jnrF+0,
407                                                                  charge+jnrG+0,charge+jnrH+0);
408             vdwjidx0A        = 2*vdwtype[jnrA+0];
409             vdwjidx0B        = 2*vdwtype[jnrB+0];
410             vdwjidx0C        = 2*vdwtype[jnrC+0];
411             vdwjidx0D        = 2*vdwtype[jnrD+0];
412             vdwjidx0E        = 2*vdwtype[jnrE+0];
413             vdwjidx0F        = 2*vdwtype[jnrF+0];
414             vdwjidx0G        = 2*vdwtype[jnrG+0];
415             vdwjidx0H        = 2*vdwtype[jnrH+0];
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             if (gmx_mm256_any_lt(rsq00,rcutoff2))
422             {
423
424             r00              = _mm256_mul_ps(rsq00,rinv00);
425             r00              = _mm256_andnot_ps(dummy_mask,r00);
426
427             /* Compute parameters for interactions between i and j atoms */
428             qq00             = _mm256_mul_ps(iq0,jq0);
429             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
430                                             vdwioffsetptr0+vdwjidx0B,
431                                             vdwioffsetptr0+vdwjidx0C,
432                                             vdwioffsetptr0+vdwjidx0D,
433                                             vdwioffsetptr0+vdwjidx0E,
434                                             vdwioffsetptr0+vdwjidx0F,
435                                             vdwioffsetptr0+vdwjidx0G,
436                                             vdwioffsetptr0+vdwjidx0H,
437                                             &c6_00,&c12_00);
438
439             /* EWALD ELECTROSTATICS */
440             
441             /* Analytical PME correction */
442             zeta2            = _mm256_mul_ps(beta2,rsq00);
443             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
444             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
445             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
446             felec            = _mm256_mul_ps(qq00,felec);
447             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
448             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
449             velec            = _mm256_sub_ps(rinv00,pmecorrV);
450             velec            = _mm256_mul_ps(qq00,velec);
451             
452             /* LENNARD-JONES DISPERSION/REPULSION */
453
454             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
455             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
456             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
457             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
458             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
459
460             d                = _mm256_sub_ps(r00,rswitch);
461             d                = _mm256_max_ps(d,_mm256_setzero_ps());
462             d2               = _mm256_mul_ps(d,d);
463             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
464
465             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
466
467             /* Evaluate switch function */
468             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
469             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
470             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
471             velec            = _mm256_mul_ps(velec,sw);
472             vvdw             = _mm256_mul_ps(vvdw,sw);
473             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm256_and_ps(velec,cutoff_mask);
477             velec            = _mm256_andnot_ps(dummy_mask,velec);
478             velecsum         = _mm256_add_ps(velecsum,velec);
479             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
480             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
481             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
482
483             fscal            = _mm256_add_ps(felec,fvdw);
484
485             fscal            = _mm256_and_ps(fscal,cutoff_mask);
486
487             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
488
489             /* Calculate temporary vectorial force */
490             tx               = _mm256_mul_ps(fscal,dx00);
491             ty               = _mm256_mul_ps(fscal,dy00);
492             tz               = _mm256_mul_ps(fscal,dz00);
493
494             /* Update vectorial force */
495             fix0             = _mm256_add_ps(fix0,tx);
496             fiy0             = _mm256_add_ps(fiy0,ty);
497             fiz0             = _mm256_add_ps(fiz0,tz);
498
499             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
500             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
501             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
502             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
503             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
504             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
505             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
506             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
507             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
508
509             }
510
511             /* Inner loop uses 127 flops */
512         }
513
514         /* End of innermost loop */
515
516         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
517                                                  f+i_coord_offset,fshift+i_shift_offset);
518
519         ggid                        = gid[iidx];
520         /* Update potential energies */
521         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
522         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
523
524         /* Increment number of inner iterations */
525         inneriter                  += j_index_end - j_index_start;
526
527         /* Outer loop uses 9 flops */
528     }
529
530     /* Increment number of outer iterations */
531     outeriter        += nri;
532
533     /* Update outer/inner flops */
534
535     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*127);
536 }
537 /*
538  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_single
539  * Electrostatics interaction: Ewald
540  * VdW interaction:            LennardJones
541  * Geometry:                   Particle-Particle
542  * Calculate force/pot:        Force
543  */
544 void
545 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_single
546                     (t_nblist                    * gmx_restrict       nlist,
547                      rvec                        * gmx_restrict          xx,
548                      rvec                        * gmx_restrict          ff,
549                      t_forcerec                  * gmx_restrict          fr,
550                      t_mdatoms                   * gmx_restrict     mdatoms,
551                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
552                      t_nrnb                      * gmx_restrict        nrnb)
553 {
554     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
555      * just 0 for non-waters.
556      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
557      * jnr indices corresponding to data put in the four positions in the SIMD register.
558      */
559     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
560     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
561     int              jnrA,jnrB,jnrC,jnrD;
562     int              jnrE,jnrF,jnrG,jnrH;
563     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
564     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
565     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
566     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
567     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
568     real             rcutoff_scalar;
569     real             *shiftvec,*fshift,*x,*f;
570     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
571     real             scratch[4*DIM];
572     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
573     real *           vdwioffsetptr0;
574     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
575     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
576     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
577     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
578     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
579     real             *charge;
580     int              nvdwtype;
581     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
582     int              *vdwtype;
583     real             *vdwparam;
584     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
585     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
586     __m256i          ewitab;
587     __m128i          ewitab_lo,ewitab_hi;
588     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
589     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
590     real             *ewtab;
591     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
592     real             rswitch_scalar,d_scalar;
593     __m256           dummy_mask,cutoff_mask;
594     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
595     __m256           one     = _mm256_set1_ps(1.0);
596     __m256           two     = _mm256_set1_ps(2.0);
597     x                = xx[0];
598     f                = ff[0];
599
600     nri              = nlist->nri;
601     iinr             = nlist->iinr;
602     jindex           = nlist->jindex;
603     jjnr             = nlist->jjnr;
604     shiftidx         = nlist->shift;
605     gid              = nlist->gid;
606     shiftvec         = fr->shift_vec[0];
607     fshift           = fr->fshift[0];
608     facel            = _mm256_set1_ps(fr->epsfac);
609     charge           = mdatoms->chargeA;
610     nvdwtype         = fr->ntype;
611     vdwparam         = fr->nbfp;
612     vdwtype          = mdatoms->typeA;
613
614     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
615     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
616     beta2            = _mm256_mul_ps(beta,beta);
617     beta3            = _mm256_mul_ps(beta,beta2);
618
619     ewtab            = fr->ic->tabq_coul_FDV0;
620     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
621     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
622
623     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
624     rcutoff_scalar   = fr->rcoulomb;
625     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
626     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
627
628     rswitch_scalar   = fr->rcoulomb_switch;
629     rswitch          = _mm256_set1_ps(rswitch_scalar);
630     /* Setup switch parameters */
631     d_scalar         = rcutoff_scalar-rswitch_scalar;
632     d                = _mm256_set1_ps(d_scalar);
633     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
634     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
635     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
636     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
637     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
638     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
639
640     /* Avoid stupid compiler warnings */
641     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
642     j_coord_offsetA = 0;
643     j_coord_offsetB = 0;
644     j_coord_offsetC = 0;
645     j_coord_offsetD = 0;
646     j_coord_offsetE = 0;
647     j_coord_offsetF = 0;
648     j_coord_offsetG = 0;
649     j_coord_offsetH = 0;
650
651     outeriter        = 0;
652     inneriter        = 0;
653
654     for(iidx=0;iidx<4*DIM;iidx++)
655     {
656         scratch[iidx] = 0.0;
657     }
658
659     /* Start outer loop over neighborlists */
660     for(iidx=0; iidx<nri; iidx++)
661     {
662         /* Load shift vector for this list */
663         i_shift_offset   = DIM*shiftidx[iidx];
664
665         /* Load limits for loop over neighbors */
666         j_index_start    = jindex[iidx];
667         j_index_end      = jindex[iidx+1];
668
669         /* Get outer coordinate index */
670         inr              = iinr[iidx];
671         i_coord_offset   = DIM*inr;
672
673         /* Load i particle coords and add shift vector */
674         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
675
676         fix0             = _mm256_setzero_ps();
677         fiy0             = _mm256_setzero_ps();
678         fiz0             = _mm256_setzero_ps();
679
680         /* Load parameters for i particles */
681         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
682         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
683
684         /* Start inner kernel loop */
685         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
686         {
687
688             /* Get j neighbor index, and coordinate index */
689             jnrA             = jjnr[jidx];
690             jnrB             = jjnr[jidx+1];
691             jnrC             = jjnr[jidx+2];
692             jnrD             = jjnr[jidx+3];
693             jnrE             = jjnr[jidx+4];
694             jnrF             = jjnr[jidx+5];
695             jnrG             = jjnr[jidx+6];
696             jnrH             = jjnr[jidx+7];
697             j_coord_offsetA  = DIM*jnrA;
698             j_coord_offsetB  = DIM*jnrB;
699             j_coord_offsetC  = DIM*jnrC;
700             j_coord_offsetD  = DIM*jnrD;
701             j_coord_offsetE  = DIM*jnrE;
702             j_coord_offsetF  = DIM*jnrF;
703             j_coord_offsetG  = DIM*jnrG;
704             j_coord_offsetH  = DIM*jnrH;
705
706             /* load j atom coordinates */
707             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
708                                                  x+j_coord_offsetC,x+j_coord_offsetD,
709                                                  x+j_coord_offsetE,x+j_coord_offsetF,
710                                                  x+j_coord_offsetG,x+j_coord_offsetH,
711                                                  &jx0,&jy0,&jz0);
712
713             /* Calculate displacement vector */
714             dx00             = _mm256_sub_ps(ix0,jx0);
715             dy00             = _mm256_sub_ps(iy0,jy0);
716             dz00             = _mm256_sub_ps(iz0,jz0);
717
718             /* Calculate squared distance and things based on it */
719             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
720
721             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
722
723             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
724
725             /* Load parameters for j particles */
726             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
727                                                                  charge+jnrC+0,charge+jnrD+0,
728                                                                  charge+jnrE+0,charge+jnrF+0,
729                                                                  charge+jnrG+0,charge+jnrH+0);
730             vdwjidx0A        = 2*vdwtype[jnrA+0];
731             vdwjidx0B        = 2*vdwtype[jnrB+0];
732             vdwjidx0C        = 2*vdwtype[jnrC+0];
733             vdwjidx0D        = 2*vdwtype[jnrD+0];
734             vdwjidx0E        = 2*vdwtype[jnrE+0];
735             vdwjidx0F        = 2*vdwtype[jnrF+0];
736             vdwjidx0G        = 2*vdwtype[jnrG+0];
737             vdwjidx0H        = 2*vdwtype[jnrH+0];
738
739             /**************************
740              * CALCULATE INTERACTIONS *
741              **************************/
742
743             if (gmx_mm256_any_lt(rsq00,rcutoff2))
744             {
745
746             r00              = _mm256_mul_ps(rsq00,rinv00);
747
748             /* Compute parameters for interactions between i and j atoms */
749             qq00             = _mm256_mul_ps(iq0,jq0);
750             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
751                                             vdwioffsetptr0+vdwjidx0B,
752                                             vdwioffsetptr0+vdwjidx0C,
753                                             vdwioffsetptr0+vdwjidx0D,
754                                             vdwioffsetptr0+vdwjidx0E,
755                                             vdwioffsetptr0+vdwjidx0F,
756                                             vdwioffsetptr0+vdwjidx0G,
757                                             vdwioffsetptr0+vdwjidx0H,
758                                             &c6_00,&c12_00);
759
760             /* EWALD ELECTROSTATICS */
761             
762             /* Analytical PME correction */
763             zeta2            = _mm256_mul_ps(beta2,rsq00);
764             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
765             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
766             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
767             felec            = _mm256_mul_ps(qq00,felec);
768             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
769             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
770             velec            = _mm256_sub_ps(rinv00,pmecorrV);
771             velec            = _mm256_mul_ps(qq00,velec);
772             
773             /* LENNARD-JONES DISPERSION/REPULSION */
774
775             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
776             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
777             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
778             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
779             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
780
781             d                = _mm256_sub_ps(r00,rswitch);
782             d                = _mm256_max_ps(d,_mm256_setzero_ps());
783             d2               = _mm256_mul_ps(d,d);
784             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
785
786             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
787
788             /* Evaluate switch function */
789             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
790             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
791             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
792             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
793
794             fscal            = _mm256_add_ps(felec,fvdw);
795
796             fscal            = _mm256_and_ps(fscal,cutoff_mask);
797
798             /* Calculate temporary vectorial force */
799             tx               = _mm256_mul_ps(fscal,dx00);
800             ty               = _mm256_mul_ps(fscal,dy00);
801             tz               = _mm256_mul_ps(fscal,dz00);
802
803             /* Update vectorial force */
804             fix0             = _mm256_add_ps(fix0,tx);
805             fiy0             = _mm256_add_ps(fiy0,ty);
806             fiz0             = _mm256_add_ps(fiz0,tz);
807
808             fjptrA             = f+j_coord_offsetA;
809             fjptrB             = f+j_coord_offsetB;
810             fjptrC             = f+j_coord_offsetC;
811             fjptrD             = f+j_coord_offsetD;
812             fjptrE             = f+j_coord_offsetE;
813             fjptrF             = f+j_coord_offsetF;
814             fjptrG             = f+j_coord_offsetG;
815             fjptrH             = f+j_coord_offsetH;
816             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
817
818             }
819
820             /* Inner loop uses 120 flops */
821         }
822
823         if(jidx<j_index_end)
824         {
825
826             /* Get j neighbor index, and coordinate index */
827             jnrlistA         = jjnr[jidx];
828             jnrlistB         = jjnr[jidx+1];
829             jnrlistC         = jjnr[jidx+2];
830             jnrlistD         = jjnr[jidx+3];
831             jnrlistE         = jjnr[jidx+4];
832             jnrlistF         = jjnr[jidx+5];
833             jnrlistG         = jjnr[jidx+6];
834             jnrlistH         = jjnr[jidx+7];
835             /* Sign of each element will be negative for non-real atoms.
836              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
837              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
838              */
839             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
840                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
841                                             
842             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
843             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
844             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
845             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
846             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
847             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
848             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
849             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
850             j_coord_offsetA  = DIM*jnrA;
851             j_coord_offsetB  = DIM*jnrB;
852             j_coord_offsetC  = DIM*jnrC;
853             j_coord_offsetD  = DIM*jnrD;
854             j_coord_offsetE  = DIM*jnrE;
855             j_coord_offsetF  = DIM*jnrF;
856             j_coord_offsetG  = DIM*jnrG;
857             j_coord_offsetH  = DIM*jnrH;
858
859             /* load j atom coordinates */
860             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
861                                                  x+j_coord_offsetC,x+j_coord_offsetD,
862                                                  x+j_coord_offsetE,x+j_coord_offsetF,
863                                                  x+j_coord_offsetG,x+j_coord_offsetH,
864                                                  &jx0,&jy0,&jz0);
865
866             /* Calculate displacement vector */
867             dx00             = _mm256_sub_ps(ix0,jx0);
868             dy00             = _mm256_sub_ps(iy0,jy0);
869             dz00             = _mm256_sub_ps(iz0,jz0);
870
871             /* Calculate squared distance and things based on it */
872             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
873
874             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
875
876             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
877
878             /* Load parameters for j particles */
879             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
880                                                                  charge+jnrC+0,charge+jnrD+0,
881                                                                  charge+jnrE+0,charge+jnrF+0,
882                                                                  charge+jnrG+0,charge+jnrH+0);
883             vdwjidx0A        = 2*vdwtype[jnrA+0];
884             vdwjidx0B        = 2*vdwtype[jnrB+0];
885             vdwjidx0C        = 2*vdwtype[jnrC+0];
886             vdwjidx0D        = 2*vdwtype[jnrD+0];
887             vdwjidx0E        = 2*vdwtype[jnrE+0];
888             vdwjidx0F        = 2*vdwtype[jnrF+0];
889             vdwjidx0G        = 2*vdwtype[jnrG+0];
890             vdwjidx0H        = 2*vdwtype[jnrH+0];
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             if (gmx_mm256_any_lt(rsq00,rcutoff2))
897             {
898
899             r00              = _mm256_mul_ps(rsq00,rinv00);
900             r00              = _mm256_andnot_ps(dummy_mask,r00);
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq00             = _mm256_mul_ps(iq0,jq0);
904             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
905                                             vdwioffsetptr0+vdwjidx0B,
906                                             vdwioffsetptr0+vdwjidx0C,
907                                             vdwioffsetptr0+vdwjidx0D,
908                                             vdwioffsetptr0+vdwjidx0E,
909                                             vdwioffsetptr0+vdwjidx0F,
910                                             vdwioffsetptr0+vdwjidx0G,
911                                             vdwioffsetptr0+vdwjidx0H,
912                                             &c6_00,&c12_00);
913
914             /* EWALD ELECTROSTATICS */
915             
916             /* Analytical PME correction */
917             zeta2            = _mm256_mul_ps(beta2,rsq00);
918             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
919             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
920             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
921             felec            = _mm256_mul_ps(qq00,felec);
922             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
923             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
924             velec            = _mm256_sub_ps(rinv00,pmecorrV);
925             velec            = _mm256_mul_ps(qq00,velec);
926             
927             /* LENNARD-JONES DISPERSION/REPULSION */
928
929             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
930             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
931             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
932             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
933             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
934
935             d                = _mm256_sub_ps(r00,rswitch);
936             d                = _mm256_max_ps(d,_mm256_setzero_ps());
937             d2               = _mm256_mul_ps(d,d);
938             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
939
940             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
941
942             /* Evaluate switch function */
943             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
944             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
945             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
946             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
947
948             fscal            = _mm256_add_ps(felec,fvdw);
949
950             fscal            = _mm256_and_ps(fscal,cutoff_mask);
951
952             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
953
954             /* Calculate temporary vectorial force */
955             tx               = _mm256_mul_ps(fscal,dx00);
956             ty               = _mm256_mul_ps(fscal,dy00);
957             tz               = _mm256_mul_ps(fscal,dz00);
958
959             /* Update vectorial force */
960             fix0             = _mm256_add_ps(fix0,tx);
961             fiy0             = _mm256_add_ps(fiy0,ty);
962             fiz0             = _mm256_add_ps(fiz0,tz);
963
964             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
965             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
966             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
967             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
968             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
969             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
970             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
971             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
972             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
973
974             }
975
976             /* Inner loop uses 121 flops */
977         }
978
979         /* End of innermost loop */
980
981         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
982                                                  f+i_coord_offset,fshift+i_shift_offset);
983
984         /* Increment number of inner iterations */
985         inneriter                  += j_index_end - j_index_start;
986
987         /* Outer loop uses 7 flops */
988     }
989
990     /* Increment number of outer iterations */
991     outeriter        += nri;
992
993     /* Update outer/inner flops */
994
995     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*121);
996 }