Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
100     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
101     __m256i          ewitab;
102     __m128i          ewitab_lo,ewitab_hi;
103     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
107     real             rswitch_scalar,d_scalar;
108     __m256           dummy_mask,cutoff_mask;
109     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
110     __m256           one     = _mm256_set1_ps(1.0);
111     __m256           two     = _mm256_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
130     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
131     beta2            = _mm256_mul_ps(beta,beta);
132     beta3            = _mm256_mul_ps(beta,beta2);
133
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->rcoulomb;
140     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
141     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
142
143     rswitch_scalar   = fr->rcoulomb_switch;
144     rswitch          = _mm256_set1_ps(rswitch_scalar);
145     /* Setup switch parameters */
146     d_scalar         = rcutoff_scalar-rswitch_scalar;
147     d                = _mm256_set1_ps(d_scalar);
148     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
149     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
150     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
151     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
152     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
153     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159     j_coord_offsetC = 0;
160     j_coord_offsetD = 0;
161     j_coord_offsetE = 0;
162     j_coord_offsetF = 0;
163     j_coord_offsetG = 0;
164     j_coord_offsetH = 0;
165
166     outeriter        = 0;
167     inneriter        = 0;
168
169     for(iidx=0;iidx<4*DIM;iidx++)
170     {
171         scratch[iidx] = 0.0;
172     }
173
174     /* Start outer loop over neighborlists */
175     for(iidx=0; iidx<nri; iidx++)
176     {
177         /* Load shift vector for this list */
178         i_shift_offset   = DIM*shiftidx[iidx];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
190
191         fix0             = _mm256_setzero_ps();
192         fiy0             = _mm256_setzero_ps();
193         fiz0             = _mm256_setzero_ps();
194
195         /* Load parameters for i particles */
196         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
197         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
198
199         /* Reset potential sums */
200         velecsum         = _mm256_setzero_ps();
201         vvdwsum          = _mm256_setzero_ps();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             jnrC             = jjnr[jidx+2];
211             jnrD             = jjnr[jidx+3];
212             jnrE             = jjnr[jidx+4];
213             jnrF             = jjnr[jidx+5];
214             jnrG             = jjnr[jidx+6];
215             jnrH             = jjnr[jidx+7];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218             j_coord_offsetC  = DIM*jnrC;
219             j_coord_offsetD  = DIM*jnrD;
220             j_coord_offsetE  = DIM*jnrE;
221             j_coord_offsetF  = DIM*jnrF;
222             j_coord_offsetG  = DIM*jnrG;
223             j_coord_offsetH  = DIM*jnrH;
224
225             /* load j atom coordinates */
226             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
227                                                  x+j_coord_offsetC,x+j_coord_offsetD,
228                                                  x+j_coord_offsetE,x+j_coord_offsetF,
229                                                  x+j_coord_offsetG,x+j_coord_offsetH,
230                                                  &jx0,&jy0,&jz0);
231
232             /* Calculate displacement vector */
233             dx00             = _mm256_sub_ps(ix0,jx0);
234             dy00             = _mm256_sub_ps(iy0,jy0);
235             dz00             = _mm256_sub_ps(iz0,jz0);
236
237             /* Calculate squared distance and things based on it */
238             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
239
240             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
241
242             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
246                                                                  charge+jnrC+0,charge+jnrD+0,
247                                                                  charge+jnrE+0,charge+jnrF+0,
248                                                                  charge+jnrG+0,charge+jnrH+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253             vdwjidx0E        = 2*vdwtype[jnrE+0];
254             vdwjidx0F        = 2*vdwtype[jnrF+0];
255             vdwjidx0G        = 2*vdwtype[jnrG+0];
256             vdwjidx0H        = 2*vdwtype[jnrH+0];
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             if (gmx_mm256_any_lt(rsq00,rcutoff2))
263             {
264
265             r00              = _mm256_mul_ps(rsq00,rinv00);
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq00             = _mm256_mul_ps(iq0,jq0);
269             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
270                                             vdwioffsetptr0+vdwjidx0B,
271                                             vdwioffsetptr0+vdwjidx0C,
272                                             vdwioffsetptr0+vdwjidx0D,
273                                             vdwioffsetptr0+vdwjidx0E,
274                                             vdwioffsetptr0+vdwjidx0F,
275                                             vdwioffsetptr0+vdwjidx0G,
276                                             vdwioffsetptr0+vdwjidx0H,
277                                             &c6_00,&c12_00);
278
279             /* EWALD ELECTROSTATICS */
280             
281             /* Analytical PME correction */
282             zeta2            = _mm256_mul_ps(beta2,rsq00);
283             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
284             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
285             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
286             felec            = _mm256_mul_ps(qq00,felec);
287             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
288             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
289             velec            = _mm256_sub_ps(rinv00,pmecorrV);
290             velec            = _mm256_mul_ps(qq00,velec);
291             
292             /* LENNARD-JONES DISPERSION/REPULSION */
293
294             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
295             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
296             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
297             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
298             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
299
300             d                = _mm256_sub_ps(r00,rswitch);
301             d                = _mm256_max_ps(d,_mm256_setzero_ps());
302             d2               = _mm256_mul_ps(d,d);
303             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
304
305             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
306
307             /* Evaluate switch function */
308             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
309             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
310             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
311             velec            = _mm256_mul_ps(velec,sw);
312             vvdw             = _mm256_mul_ps(vvdw,sw);
313             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velec            = _mm256_and_ps(velec,cutoff_mask);
317             velecsum         = _mm256_add_ps(velecsum,velec);
318             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
319             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
320
321             fscal            = _mm256_add_ps(felec,fvdw);
322
323             fscal            = _mm256_and_ps(fscal,cutoff_mask);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm256_mul_ps(fscal,dx00);
327             ty               = _mm256_mul_ps(fscal,dy00);
328             tz               = _mm256_mul_ps(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm256_add_ps(fix0,tx);
332             fiy0             = _mm256_add_ps(fiy0,ty);
333             fiz0             = _mm256_add_ps(fiz0,tz);
334
335             fjptrA             = f+j_coord_offsetA;
336             fjptrB             = f+j_coord_offsetB;
337             fjptrC             = f+j_coord_offsetC;
338             fjptrD             = f+j_coord_offsetD;
339             fjptrE             = f+j_coord_offsetE;
340             fjptrF             = f+j_coord_offsetF;
341             fjptrG             = f+j_coord_offsetG;
342             fjptrH             = f+j_coord_offsetH;
343             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
344
345             }
346
347             /* Inner loop uses 126 flops */
348         }
349
350         if(jidx<j_index_end)
351         {
352
353             /* Get j neighbor index, and coordinate index */
354             jnrlistA         = jjnr[jidx];
355             jnrlistB         = jjnr[jidx+1];
356             jnrlistC         = jjnr[jidx+2];
357             jnrlistD         = jjnr[jidx+3];
358             jnrlistE         = jjnr[jidx+4];
359             jnrlistF         = jjnr[jidx+5];
360             jnrlistG         = jjnr[jidx+6];
361             jnrlistH         = jjnr[jidx+7];
362             /* Sign of each element will be negative for non-real atoms.
363              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
364              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
365              */
366             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
367                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
368                                             
369             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
370             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
371             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
372             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
373             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
374             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
375             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
376             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
377             j_coord_offsetA  = DIM*jnrA;
378             j_coord_offsetB  = DIM*jnrB;
379             j_coord_offsetC  = DIM*jnrC;
380             j_coord_offsetD  = DIM*jnrD;
381             j_coord_offsetE  = DIM*jnrE;
382             j_coord_offsetF  = DIM*jnrF;
383             j_coord_offsetG  = DIM*jnrG;
384             j_coord_offsetH  = DIM*jnrH;
385
386             /* load j atom coordinates */
387             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
388                                                  x+j_coord_offsetC,x+j_coord_offsetD,
389                                                  x+j_coord_offsetE,x+j_coord_offsetF,
390                                                  x+j_coord_offsetG,x+j_coord_offsetH,
391                                                  &jx0,&jy0,&jz0);
392
393             /* Calculate displacement vector */
394             dx00             = _mm256_sub_ps(ix0,jx0);
395             dy00             = _mm256_sub_ps(iy0,jy0);
396             dz00             = _mm256_sub_ps(iz0,jz0);
397
398             /* Calculate squared distance and things based on it */
399             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
400
401             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
402
403             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
404
405             /* Load parameters for j particles */
406             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
407                                                                  charge+jnrC+0,charge+jnrD+0,
408                                                                  charge+jnrE+0,charge+jnrF+0,
409                                                                  charge+jnrG+0,charge+jnrH+0);
410             vdwjidx0A        = 2*vdwtype[jnrA+0];
411             vdwjidx0B        = 2*vdwtype[jnrB+0];
412             vdwjidx0C        = 2*vdwtype[jnrC+0];
413             vdwjidx0D        = 2*vdwtype[jnrD+0];
414             vdwjidx0E        = 2*vdwtype[jnrE+0];
415             vdwjidx0F        = 2*vdwtype[jnrF+0];
416             vdwjidx0G        = 2*vdwtype[jnrG+0];
417             vdwjidx0H        = 2*vdwtype[jnrH+0];
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             if (gmx_mm256_any_lt(rsq00,rcutoff2))
424             {
425
426             r00              = _mm256_mul_ps(rsq00,rinv00);
427             r00              = _mm256_andnot_ps(dummy_mask,r00);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq00             = _mm256_mul_ps(iq0,jq0);
431             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
432                                             vdwioffsetptr0+vdwjidx0B,
433                                             vdwioffsetptr0+vdwjidx0C,
434                                             vdwioffsetptr0+vdwjidx0D,
435                                             vdwioffsetptr0+vdwjidx0E,
436                                             vdwioffsetptr0+vdwjidx0F,
437                                             vdwioffsetptr0+vdwjidx0G,
438                                             vdwioffsetptr0+vdwjidx0H,
439                                             &c6_00,&c12_00);
440
441             /* EWALD ELECTROSTATICS */
442             
443             /* Analytical PME correction */
444             zeta2            = _mm256_mul_ps(beta2,rsq00);
445             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
446             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
447             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
448             felec            = _mm256_mul_ps(qq00,felec);
449             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
450             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
451             velec            = _mm256_sub_ps(rinv00,pmecorrV);
452             velec            = _mm256_mul_ps(qq00,velec);
453             
454             /* LENNARD-JONES DISPERSION/REPULSION */
455
456             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
457             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
458             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
459             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
460             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
461
462             d                = _mm256_sub_ps(r00,rswitch);
463             d                = _mm256_max_ps(d,_mm256_setzero_ps());
464             d2               = _mm256_mul_ps(d,d);
465             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
466
467             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
468
469             /* Evaluate switch function */
470             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
471             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
472             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
473             velec            = _mm256_mul_ps(velec,sw);
474             vvdw             = _mm256_mul_ps(vvdw,sw);
475             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
476
477             /* Update potential sum for this i atom from the interaction with this j atom. */
478             velec            = _mm256_and_ps(velec,cutoff_mask);
479             velec            = _mm256_andnot_ps(dummy_mask,velec);
480             velecsum         = _mm256_add_ps(velecsum,velec);
481             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
482             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
483             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
484
485             fscal            = _mm256_add_ps(felec,fvdw);
486
487             fscal            = _mm256_and_ps(fscal,cutoff_mask);
488
489             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
490
491             /* Calculate temporary vectorial force */
492             tx               = _mm256_mul_ps(fscal,dx00);
493             ty               = _mm256_mul_ps(fscal,dy00);
494             tz               = _mm256_mul_ps(fscal,dz00);
495
496             /* Update vectorial force */
497             fix0             = _mm256_add_ps(fix0,tx);
498             fiy0             = _mm256_add_ps(fiy0,ty);
499             fiz0             = _mm256_add_ps(fiz0,tz);
500
501             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
502             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
503             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
504             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
505             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
506             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
507             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
508             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
509             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
510
511             }
512
513             /* Inner loop uses 127 flops */
514         }
515
516         /* End of innermost loop */
517
518         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
519                                                  f+i_coord_offset,fshift+i_shift_offset);
520
521         ggid                        = gid[iidx];
522         /* Update potential energies */
523         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
524         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
525
526         /* Increment number of inner iterations */
527         inneriter                  += j_index_end - j_index_start;
528
529         /* Outer loop uses 9 flops */
530     }
531
532     /* Increment number of outer iterations */
533     outeriter        += nri;
534
535     /* Update outer/inner flops */
536
537     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*127);
538 }
539 /*
540  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_single
541  * Electrostatics interaction: Ewald
542  * VdW interaction:            LennardJones
543  * Geometry:                   Particle-Particle
544  * Calculate force/pot:        Force
545  */
546 void
547 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_single
548                     (t_nblist                    * gmx_restrict       nlist,
549                      rvec                        * gmx_restrict          xx,
550                      rvec                        * gmx_restrict          ff,
551                      t_forcerec                  * gmx_restrict          fr,
552                      t_mdatoms                   * gmx_restrict     mdatoms,
553                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
554                      t_nrnb                      * gmx_restrict        nrnb)
555 {
556     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
557      * just 0 for non-waters.
558      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
559      * jnr indices corresponding to data put in the four positions in the SIMD register.
560      */
561     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
562     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
563     int              jnrA,jnrB,jnrC,jnrD;
564     int              jnrE,jnrF,jnrG,jnrH;
565     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
566     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
567     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
568     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
569     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
570     real             rcutoff_scalar;
571     real             *shiftvec,*fshift,*x,*f;
572     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
573     real             scratch[4*DIM];
574     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
575     real *           vdwioffsetptr0;
576     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
577     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
578     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
579     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
580     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
581     real             *charge;
582     int              nvdwtype;
583     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
584     int              *vdwtype;
585     real             *vdwparam;
586     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
587     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
588     __m256i          ewitab;
589     __m128i          ewitab_lo,ewitab_hi;
590     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
591     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
592     real             *ewtab;
593     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
594     real             rswitch_scalar,d_scalar;
595     __m256           dummy_mask,cutoff_mask;
596     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
597     __m256           one     = _mm256_set1_ps(1.0);
598     __m256           two     = _mm256_set1_ps(2.0);
599     x                = xx[0];
600     f                = ff[0];
601
602     nri              = nlist->nri;
603     iinr             = nlist->iinr;
604     jindex           = nlist->jindex;
605     jjnr             = nlist->jjnr;
606     shiftidx         = nlist->shift;
607     gid              = nlist->gid;
608     shiftvec         = fr->shift_vec[0];
609     fshift           = fr->fshift[0];
610     facel            = _mm256_set1_ps(fr->epsfac);
611     charge           = mdatoms->chargeA;
612     nvdwtype         = fr->ntype;
613     vdwparam         = fr->nbfp;
614     vdwtype          = mdatoms->typeA;
615
616     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
617     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
618     beta2            = _mm256_mul_ps(beta,beta);
619     beta3            = _mm256_mul_ps(beta,beta2);
620
621     ewtab            = fr->ic->tabq_coul_FDV0;
622     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
623     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
624
625     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
626     rcutoff_scalar   = fr->rcoulomb;
627     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
628     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
629
630     rswitch_scalar   = fr->rcoulomb_switch;
631     rswitch          = _mm256_set1_ps(rswitch_scalar);
632     /* Setup switch parameters */
633     d_scalar         = rcutoff_scalar-rswitch_scalar;
634     d                = _mm256_set1_ps(d_scalar);
635     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
636     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
637     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
638     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
639     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
640     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
641
642     /* Avoid stupid compiler warnings */
643     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
644     j_coord_offsetA = 0;
645     j_coord_offsetB = 0;
646     j_coord_offsetC = 0;
647     j_coord_offsetD = 0;
648     j_coord_offsetE = 0;
649     j_coord_offsetF = 0;
650     j_coord_offsetG = 0;
651     j_coord_offsetH = 0;
652
653     outeriter        = 0;
654     inneriter        = 0;
655
656     for(iidx=0;iidx<4*DIM;iidx++)
657     {
658         scratch[iidx] = 0.0;
659     }
660
661     /* Start outer loop over neighborlists */
662     for(iidx=0; iidx<nri; iidx++)
663     {
664         /* Load shift vector for this list */
665         i_shift_offset   = DIM*shiftidx[iidx];
666
667         /* Load limits for loop over neighbors */
668         j_index_start    = jindex[iidx];
669         j_index_end      = jindex[iidx+1];
670
671         /* Get outer coordinate index */
672         inr              = iinr[iidx];
673         i_coord_offset   = DIM*inr;
674
675         /* Load i particle coords and add shift vector */
676         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
677
678         fix0             = _mm256_setzero_ps();
679         fiy0             = _mm256_setzero_ps();
680         fiz0             = _mm256_setzero_ps();
681
682         /* Load parameters for i particles */
683         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
684         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
685
686         /* Start inner kernel loop */
687         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
688         {
689
690             /* Get j neighbor index, and coordinate index */
691             jnrA             = jjnr[jidx];
692             jnrB             = jjnr[jidx+1];
693             jnrC             = jjnr[jidx+2];
694             jnrD             = jjnr[jidx+3];
695             jnrE             = jjnr[jidx+4];
696             jnrF             = jjnr[jidx+5];
697             jnrG             = jjnr[jidx+6];
698             jnrH             = jjnr[jidx+7];
699             j_coord_offsetA  = DIM*jnrA;
700             j_coord_offsetB  = DIM*jnrB;
701             j_coord_offsetC  = DIM*jnrC;
702             j_coord_offsetD  = DIM*jnrD;
703             j_coord_offsetE  = DIM*jnrE;
704             j_coord_offsetF  = DIM*jnrF;
705             j_coord_offsetG  = DIM*jnrG;
706             j_coord_offsetH  = DIM*jnrH;
707
708             /* load j atom coordinates */
709             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
710                                                  x+j_coord_offsetC,x+j_coord_offsetD,
711                                                  x+j_coord_offsetE,x+j_coord_offsetF,
712                                                  x+j_coord_offsetG,x+j_coord_offsetH,
713                                                  &jx0,&jy0,&jz0);
714
715             /* Calculate displacement vector */
716             dx00             = _mm256_sub_ps(ix0,jx0);
717             dy00             = _mm256_sub_ps(iy0,jy0);
718             dz00             = _mm256_sub_ps(iz0,jz0);
719
720             /* Calculate squared distance and things based on it */
721             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
722
723             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
724
725             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
726
727             /* Load parameters for j particles */
728             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
729                                                                  charge+jnrC+0,charge+jnrD+0,
730                                                                  charge+jnrE+0,charge+jnrF+0,
731                                                                  charge+jnrG+0,charge+jnrH+0);
732             vdwjidx0A        = 2*vdwtype[jnrA+0];
733             vdwjidx0B        = 2*vdwtype[jnrB+0];
734             vdwjidx0C        = 2*vdwtype[jnrC+0];
735             vdwjidx0D        = 2*vdwtype[jnrD+0];
736             vdwjidx0E        = 2*vdwtype[jnrE+0];
737             vdwjidx0F        = 2*vdwtype[jnrF+0];
738             vdwjidx0G        = 2*vdwtype[jnrG+0];
739             vdwjidx0H        = 2*vdwtype[jnrH+0];
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             if (gmx_mm256_any_lt(rsq00,rcutoff2))
746             {
747
748             r00              = _mm256_mul_ps(rsq00,rinv00);
749
750             /* Compute parameters for interactions between i and j atoms */
751             qq00             = _mm256_mul_ps(iq0,jq0);
752             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
753                                             vdwioffsetptr0+vdwjidx0B,
754                                             vdwioffsetptr0+vdwjidx0C,
755                                             vdwioffsetptr0+vdwjidx0D,
756                                             vdwioffsetptr0+vdwjidx0E,
757                                             vdwioffsetptr0+vdwjidx0F,
758                                             vdwioffsetptr0+vdwjidx0G,
759                                             vdwioffsetptr0+vdwjidx0H,
760                                             &c6_00,&c12_00);
761
762             /* EWALD ELECTROSTATICS */
763             
764             /* Analytical PME correction */
765             zeta2            = _mm256_mul_ps(beta2,rsq00);
766             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
767             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
768             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
769             felec            = _mm256_mul_ps(qq00,felec);
770             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
771             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
772             velec            = _mm256_sub_ps(rinv00,pmecorrV);
773             velec            = _mm256_mul_ps(qq00,velec);
774             
775             /* LENNARD-JONES DISPERSION/REPULSION */
776
777             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
778             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
779             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
780             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
781             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
782
783             d                = _mm256_sub_ps(r00,rswitch);
784             d                = _mm256_max_ps(d,_mm256_setzero_ps());
785             d2               = _mm256_mul_ps(d,d);
786             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
787
788             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
789
790             /* Evaluate switch function */
791             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
792             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
793             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
794             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
795
796             fscal            = _mm256_add_ps(felec,fvdw);
797
798             fscal            = _mm256_and_ps(fscal,cutoff_mask);
799
800             /* Calculate temporary vectorial force */
801             tx               = _mm256_mul_ps(fscal,dx00);
802             ty               = _mm256_mul_ps(fscal,dy00);
803             tz               = _mm256_mul_ps(fscal,dz00);
804
805             /* Update vectorial force */
806             fix0             = _mm256_add_ps(fix0,tx);
807             fiy0             = _mm256_add_ps(fiy0,ty);
808             fiz0             = _mm256_add_ps(fiz0,tz);
809
810             fjptrA             = f+j_coord_offsetA;
811             fjptrB             = f+j_coord_offsetB;
812             fjptrC             = f+j_coord_offsetC;
813             fjptrD             = f+j_coord_offsetD;
814             fjptrE             = f+j_coord_offsetE;
815             fjptrF             = f+j_coord_offsetF;
816             fjptrG             = f+j_coord_offsetG;
817             fjptrH             = f+j_coord_offsetH;
818             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
819
820             }
821
822             /* Inner loop uses 120 flops */
823         }
824
825         if(jidx<j_index_end)
826         {
827
828             /* Get j neighbor index, and coordinate index */
829             jnrlistA         = jjnr[jidx];
830             jnrlistB         = jjnr[jidx+1];
831             jnrlistC         = jjnr[jidx+2];
832             jnrlistD         = jjnr[jidx+3];
833             jnrlistE         = jjnr[jidx+4];
834             jnrlistF         = jjnr[jidx+5];
835             jnrlistG         = jjnr[jidx+6];
836             jnrlistH         = jjnr[jidx+7];
837             /* Sign of each element will be negative for non-real atoms.
838              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
839              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
840              */
841             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
842                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
843                                             
844             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
845             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
846             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
847             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
848             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
849             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
850             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
851             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
852             j_coord_offsetA  = DIM*jnrA;
853             j_coord_offsetB  = DIM*jnrB;
854             j_coord_offsetC  = DIM*jnrC;
855             j_coord_offsetD  = DIM*jnrD;
856             j_coord_offsetE  = DIM*jnrE;
857             j_coord_offsetF  = DIM*jnrF;
858             j_coord_offsetG  = DIM*jnrG;
859             j_coord_offsetH  = DIM*jnrH;
860
861             /* load j atom coordinates */
862             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
863                                                  x+j_coord_offsetC,x+j_coord_offsetD,
864                                                  x+j_coord_offsetE,x+j_coord_offsetF,
865                                                  x+j_coord_offsetG,x+j_coord_offsetH,
866                                                  &jx0,&jy0,&jz0);
867
868             /* Calculate displacement vector */
869             dx00             = _mm256_sub_ps(ix0,jx0);
870             dy00             = _mm256_sub_ps(iy0,jy0);
871             dz00             = _mm256_sub_ps(iz0,jz0);
872
873             /* Calculate squared distance and things based on it */
874             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
875
876             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
877
878             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
879
880             /* Load parameters for j particles */
881             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
882                                                                  charge+jnrC+0,charge+jnrD+0,
883                                                                  charge+jnrE+0,charge+jnrF+0,
884                                                                  charge+jnrG+0,charge+jnrH+0);
885             vdwjidx0A        = 2*vdwtype[jnrA+0];
886             vdwjidx0B        = 2*vdwtype[jnrB+0];
887             vdwjidx0C        = 2*vdwtype[jnrC+0];
888             vdwjidx0D        = 2*vdwtype[jnrD+0];
889             vdwjidx0E        = 2*vdwtype[jnrE+0];
890             vdwjidx0F        = 2*vdwtype[jnrF+0];
891             vdwjidx0G        = 2*vdwtype[jnrG+0];
892             vdwjidx0H        = 2*vdwtype[jnrH+0];
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             if (gmx_mm256_any_lt(rsq00,rcutoff2))
899             {
900
901             r00              = _mm256_mul_ps(rsq00,rinv00);
902             r00              = _mm256_andnot_ps(dummy_mask,r00);
903
904             /* Compute parameters for interactions between i and j atoms */
905             qq00             = _mm256_mul_ps(iq0,jq0);
906             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
907                                             vdwioffsetptr0+vdwjidx0B,
908                                             vdwioffsetptr0+vdwjidx0C,
909                                             vdwioffsetptr0+vdwjidx0D,
910                                             vdwioffsetptr0+vdwjidx0E,
911                                             vdwioffsetptr0+vdwjidx0F,
912                                             vdwioffsetptr0+vdwjidx0G,
913                                             vdwioffsetptr0+vdwjidx0H,
914                                             &c6_00,&c12_00);
915
916             /* EWALD ELECTROSTATICS */
917             
918             /* Analytical PME correction */
919             zeta2            = _mm256_mul_ps(beta2,rsq00);
920             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
921             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
922             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
923             felec            = _mm256_mul_ps(qq00,felec);
924             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
925             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
926             velec            = _mm256_sub_ps(rinv00,pmecorrV);
927             velec            = _mm256_mul_ps(qq00,velec);
928             
929             /* LENNARD-JONES DISPERSION/REPULSION */
930
931             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
932             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
933             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
934             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
935             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
936
937             d                = _mm256_sub_ps(r00,rswitch);
938             d                = _mm256_max_ps(d,_mm256_setzero_ps());
939             d2               = _mm256_mul_ps(d,d);
940             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
941
942             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
943
944             /* Evaluate switch function */
945             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
946             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
947             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
948             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
949
950             fscal            = _mm256_add_ps(felec,fvdw);
951
952             fscal            = _mm256_and_ps(fscal,cutoff_mask);
953
954             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
955
956             /* Calculate temporary vectorial force */
957             tx               = _mm256_mul_ps(fscal,dx00);
958             ty               = _mm256_mul_ps(fscal,dy00);
959             tz               = _mm256_mul_ps(fscal,dz00);
960
961             /* Update vectorial force */
962             fix0             = _mm256_add_ps(fix0,tx);
963             fiy0             = _mm256_add_ps(fiy0,ty);
964             fiz0             = _mm256_add_ps(fiz0,tz);
965
966             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
967             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
968             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
969             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
970             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
971             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
972             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
973             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
974             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
975
976             }
977
978             /* Inner loop uses 121 flops */
979         }
980
981         /* End of innermost loop */
982
983         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
984                                                  f+i_coord_offset,fshift+i_shift_offset);
985
986         /* Increment number of inner iterations */
987         inneriter                  += j_index_end - j_index_start;
988
989         /* Outer loop uses 7 flops */
990     }
991
992     /* Increment number of outer iterations */
993     outeriter        += nri;
994
995     /* Update outer/inner flops */
996
997     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*121);
998 }