Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     __m256i          ewitab;
102     __m128i          ewitab_lo,ewitab_hi;
103     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123
124     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
125     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
126     beta2            = _mm256_mul_ps(beta,beta);
127     beta3            = _mm256_mul_ps(beta,beta2);
128
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
136     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
137     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->rcoulomb;
141     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
142     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150     j_coord_offsetE = 0;
151     j_coord_offsetF = 0;
152     j_coord_offsetG = 0;
153     j_coord_offsetH = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
179                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
180
181         fix1             = _mm256_setzero_ps();
182         fiy1             = _mm256_setzero_ps();
183         fiz1             = _mm256_setzero_ps();
184         fix2             = _mm256_setzero_ps();
185         fiy2             = _mm256_setzero_ps();
186         fiz2             = _mm256_setzero_ps();
187         fix3             = _mm256_setzero_ps();
188         fiy3             = _mm256_setzero_ps();
189         fiz3             = _mm256_setzero_ps();
190
191         /* Reset potential sums */
192         velecsum         = _mm256_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             jnrE             = jjnr[jidx+4];
204             jnrF             = jjnr[jidx+5];
205             jnrG             = jjnr[jidx+6];
206             jnrH             = jjnr[jidx+7];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211             j_coord_offsetE  = DIM*jnrE;
212             j_coord_offsetF  = DIM*jnrF;
213             j_coord_offsetG  = DIM*jnrG;
214             j_coord_offsetH  = DIM*jnrH;
215
216             /* load j atom coordinates */
217             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
218                                                  x+j_coord_offsetC,x+j_coord_offsetD,
219                                                  x+j_coord_offsetE,x+j_coord_offsetF,
220                                                  x+j_coord_offsetG,x+j_coord_offsetH,
221                                                  &jx0,&jy0,&jz0);
222
223             /* Calculate displacement vector */
224             dx10             = _mm256_sub_ps(ix1,jx0);
225             dy10             = _mm256_sub_ps(iy1,jy0);
226             dz10             = _mm256_sub_ps(iz1,jz0);
227             dx20             = _mm256_sub_ps(ix2,jx0);
228             dy20             = _mm256_sub_ps(iy2,jy0);
229             dz20             = _mm256_sub_ps(iz2,jz0);
230             dx30             = _mm256_sub_ps(ix3,jx0);
231             dy30             = _mm256_sub_ps(iy3,jy0);
232             dz30             = _mm256_sub_ps(iz3,jz0);
233
234             /* Calculate squared distance and things based on it */
235             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
236             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
237             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
238
239             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
240             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
241             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
242
243             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
244             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
245             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
249                                                                  charge+jnrC+0,charge+jnrD+0,
250                                                                  charge+jnrE+0,charge+jnrF+0,
251                                                                  charge+jnrG+0,charge+jnrH+0);
252
253             fjx0             = _mm256_setzero_ps();
254             fjy0             = _mm256_setzero_ps();
255             fjz0             = _mm256_setzero_ps();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             if (gmx_mm256_any_lt(rsq10,rcutoff2))
262             {
263
264             r10              = _mm256_mul_ps(rsq10,rinv10);
265
266             /* Compute parameters for interactions between i and j atoms */
267             qq10             = _mm256_mul_ps(iq1,jq0);
268
269             /* EWALD ELECTROSTATICS */
270             
271             /* Analytical PME correction */
272             zeta2            = _mm256_mul_ps(beta2,rsq10);
273             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
274             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
275             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
276             felec            = _mm256_mul_ps(qq10,felec);
277             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
278             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
279             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
280             velec            = _mm256_mul_ps(qq10,velec);
281             
282             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velec            = _mm256_and_ps(velec,cutoff_mask);
286             velecsum         = _mm256_add_ps(velecsum,velec);
287
288             fscal            = felec;
289
290             fscal            = _mm256_and_ps(fscal,cutoff_mask);
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm256_mul_ps(fscal,dx10);
294             ty               = _mm256_mul_ps(fscal,dy10);
295             tz               = _mm256_mul_ps(fscal,dz10);
296
297             /* Update vectorial force */
298             fix1             = _mm256_add_ps(fix1,tx);
299             fiy1             = _mm256_add_ps(fiy1,ty);
300             fiz1             = _mm256_add_ps(fiz1,tz);
301
302             fjx0             = _mm256_add_ps(fjx0,tx);
303             fjy0             = _mm256_add_ps(fjy0,ty);
304             fjz0             = _mm256_add_ps(fjz0,tz);
305
306             }
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_mm256_any_lt(rsq20,rcutoff2))
313             {
314
315             r20              = _mm256_mul_ps(rsq20,rinv20);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq20             = _mm256_mul_ps(iq2,jq0);
319
320             /* EWALD ELECTROSTATICS */
321             
322             /* Analytical PME correction */
323             zeta2            = _mm256_mul_ps(beta2,rsq20);
324             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
325             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
326             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
327             felec            = _mm256_mul_ps(qq20,felec);
328             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
329             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
330             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
331             velec            = _mm256_mul_ps(qq20,velec);
332             
333             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velec            = _mm256_and_ps(velec,cutoff_mask);
337             velecsum         = _mm256_add_ps(velecsum,velec);
338
339             fscal            = felec;
340
341             fscal            = _mm256_and_ps(fscal,cutoff_mask);
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm256_mul_ps(fscal,dx20);
345             ty               = _mm256_mul_ps(fscal,dy20);
346             tz               = _mm256_mul_ps(fscal,dz20);
347
348             /* Update vectorial force */
349             fix2             = _mm256_add_ps(fix2,tx);
350             fiy2             = _mm256_add_ps(fiy2,ty);
351             fiz2             = _mm256_add_ps(fiz2,tz);
352
353             fjx0             = _mm256_add_ps(fjx0,tx);
354             fjy0             = _mm256_add_ps(fjy0,ty);
355             fjz0             = _mm256_add_ps(fjz0,tz);
356
357             }
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             if (gmx_mm256_any_lt(rsq30,rcutoff2))
364             {
365
366             r30              = _mm256_mul_ps(rsq30,rinv30);
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq30             = _mm256_mul_ps(iq3,jq0);
370
371             /* EWALD ELECTROSTATICS */
372             
373             /* Analytical PME correction */
374             zeta2            = _mm256_mul_ps(beta2,rsq30);
375             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
376             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
377             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
378             felec            = _mm256_mul_ps(qq30,felec);
379             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
380             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
381             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
382             velec            = _mm256_mul_ps(qq30,velec);
383             
384             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velec            = _mm256_and_ps(velec,cutoff_mask);
388             velecsum         = _mm256_add_ps(velecsum,velec);
389
390             fscal            = felec;
391
392             fscal            = _mm256_and_ps(fscal,cutoff_mask);
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm256_mul_ps(fscal,dx30);
396             ty               = _mm256_mul_ps(fscal,dy30);
397             tz               = _mm256_mul_ps(fscal,dz30);
398
399             /* Update vectorial force */
400             fix3             = _mm256_add_ps(fix3,tx);
401             fiy3             = _mm256_add_ps(fiy3,ty);
402             fiz3             = _mm256_add_ps(fiz3,tz);
403
404             fjx0             = _mm256_add_ps(fjx0,tx);
405             fjy0             = _mm256_add_ps(fjy0,ty);
406             fjz0             = _mm256_add_ps(fjz0,tz);
407
408             }
409
410             fjptrA             = f+j_coord_offsetA;
411             fjptrB             = f+j_coord_offsetB;
412             fjptrC             = f+j_coord_offsetC;
413             fjptrD             = f+j_coord_offsetD;
414             fjptrE             = f+j_coord_offsetE;
415             fjptrF             = f+j_coord_offsetF;
416             fjptrG             = f+j_coord_offsetG;
417             fjptrH             = f+j_coord_offsetH;
418
419             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
420
421             /* Inner loop uses 330 flops */
422         }
423
424         if(jidx<j_index_end)
425         {
426
427             /* Get j neighbor index, and coordinate index */
428             jnrlistA         = jjnr[jidx];
429             jnrlistB         = jjnr[jidx+1];
430             jnrlistC         = jjnr[jidx+2];
431             jnrlistD         = jjnr[jidx+3];
432             jnrlistE         = jjnr[jidx+4];
433             jnrlistF         = jjnr[jidx+5];
434             jnrlistG         = jjnr[jidx+6];
435             jnrlistH         = jjnr[jidx+7];
436             /* Sign of each element will be negative for non-real atoms.
437              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
438              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
439              */
440             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
441                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
442                                             
443             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
444             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
445             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
446             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
447             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
448             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
449             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
450             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
451             j_coord_offsetA  = DIM*jnrA;
452             j_coord_offsetB  = DIM*jnrB;
453             j_coord_offsetC  = DIM*jnrC;
454             j_coord_offsetD  = DIM*jnrD;
455             j_coord_offsetE  = DIM*jnrE;
456             j_coord_offsetF  = DIM*jnrF;
457             j_coord_offsetG  = DIM*jnrG;
458             j_coord_offsetH  = DIM*jnrH;
459
460             /* load j atom coordinates */
461             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
462                                                  x+j_coord_offsetC,x+j_coord_offsetD,
463                                                  x+j_coord_offsetE,x+j_coord_offsetF,
464                                                  x+j_coord_offsetG,x+j_coord_offsetH,
465                                                  &jx0,&jy0,&jz0);
466
467             /* Calculate displacement vector */
468             dx10             = _mm256_sub_ps(ix1,jx0);
469             dy10             = _mm256_sub_ps(iy1,jy0);
470             dz10             = _mm256_sub_ps(iz1,jz0);
471             dx20             = _mm256_sub_ps(ix2,jx0);
472             dy20             = _mm256_sub_ps(iy2,jy0);
473             dz20             = _mm256_sub_ps(iz2,jz0);
474             dx30             = _mm256_sub_ps(ix3,jx0);
475             dy30             = _mm256_sub_ps(iy3,jy0);
476             dz30             = _mm256_sub_ps(iz3,jz0);
477
478             /* Calculate squared distance and things based on it */
479             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
480             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
481             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
482
483             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
484             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
485             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
486
487             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
488             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
489             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
490
491             /* Load parameters for j particles */
492             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
493                                                                  charge+jnrC+0,charge+jnrD+0,
494                                                                  charge+jnrE+0,charge+jnrF+0,
495                                                                  charge+jnrG+0,charge+jnrH+0);
496
497             fjx0             = _mm256_setzero_ps();
498             fjy0             = _mm256_setzero_ps();
499             fjz0             = _mm256_setzero_ps();
500
501             /**************************
502              * CALCULATE INTERACTIONS *
503              **************************/
504
505             if (gmx_mm256_any_lt(rsq10,rcutoff2))
506             {
507
508             r10              = _mm256_mul_ps(rsq10,rinv10);
509             r10              = _mm256_andnot_ps(dummy_mask,r10);
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq10             = _mm256_mul_ps(iq1,jq0);
513
514             /* EWALD ELECTROSTATICS */
515             
516             /* Analytical PME correction */
517             zeta2            = _mm256_mul_ps(beta2,rsq10);
518             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
519             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
520             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
521             felec            = _mm256_mul_ps(qq10,felec);
522             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
523             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
524             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
525             velec            = _mm256_mul_ps(qq10,velec);
526             
527             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velec            = _mm256_and_ps(velec,cutoff_mask);
531             velec            = _mm256_andnot_ps(dummy_mask,velec);
532             velecsum         = _mm256_add_ps(velecsum,velec);
533
534             fscal            = felec;
535
536             fscal            = _mm256_and_ps(fscal,cutoff_mask);
537
538             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
539
540             /* Calculate temporary vectorial force */
541             tx               = _mm256_mul_ps(fscal,dx10);
542             ty               = _mm256_mul_ps(fscal,dy10);
543             tz               = _mm256_mul_ps(fscal,dz10);
544
545             /* Update vectorial force */
546             fix1             = _mm256_add_ps(fix1,tx);
547             fiy1             = _mm256_add_ps(fiy1,ty);
548             fiz1             = _mm256_add_ps(fiz1,tz);
549
550             fjx0             = _mm256_add_ps(fjx0,tx);
551             fjy0             = _mm256_add_ps(fjy0,ty);
552             fjz0             = _mm256_add_ps(fjz0,tz);
553
554             }
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             if (gmx_mm256_any_lt(rsq20,rcutoff2))
561             {
562
563             r20              = _mm256_mul_ps(rsq20,rinv20);
564             r20              = _mm256_andnot_ps(dummy_mask,r20);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq20             = _mm256_mul_ps(iq2,jq0);
568
569             /* EWALD ELECTROSTATICS */
570             
571             /* Analytical PME correction */
572             zeta2            = _mm256_mul_ps(beta2,rsq20);
573             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
574             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
575             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
576             felec            = _mm256_mul_ps(qq20,felec);
577             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
578             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
579             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
580             velec            = _mm256_mul_ps(qq20,velec);
581             
582             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm256_and_ps(velec,cutoff_mask);
586             velec            = _mm256_andnot_ps(dummy_mask,velec);
587             velecsum         = _mm256_add_ps(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm256_and_ps(fscal,cutoff_mask);
592
593             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm256_mul_ps(fscal,dx20);
597             ty               = _mm256_mul_ps(fscal,dy20);
598             tz               = _mm256_mul_ps(fscal,dz20);
599
600             /* Update vectorial force */
601             fix2             = _mm256_add_ps(fix2,tx);
602             fiy2             = _mm256_add_ps(fiy2,ty);
603             fiz2             = _mm256_add_ps(fiz2,tz);
604
605             fjx0             = _mm256_add_ps(fjx0,tx);
606             fjy0             = _mm256_add_ps(fjy0,ty);
607             fjz0             = _mm256_add_ps(fjz0,tz);
608
609             }
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (gmx_mm256_any_lt(rsq30,rcutoff2))
616             {
617
618             r30              = _mm256_mul_ps(rsq30,rinv30);
619             r30              = _mm256_andnot_ps(dummy_mask,r30);
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq30             = _mm256_mul_ps(iq3,jq0);
623
624             /* EWALD ELECTROSTATICS */
625             
626             /* Analytical PME correction */
627             zeta2            = _mm256_mul_ps(beta2,rsq30);
628             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
629             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
630             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
631             felec            = _mm256_mul_ps(qq30,felec);
632             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
633             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
634             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
635             velec            = _mm256_mul_ps(qq30,velec);
636             
637             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm256_and_ps(velec,cutoff_mask);
641             velec            = _mm256_andnot_ps(dummy_mask,velec);
642             velecsum         = _mm256_add_ps(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm256_and_ps(fscal,cutoff_mask);
647
648             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm256_mul_ps(fscal,dx30);
652             ty               = _mm256_mul_ps(fscal,dy30);
653             tz               = _mm256_mul_ps(fscal,dz30);
654
655             /* Update vectorial force */
656             fix3             = _mm256_add_ps(fix3,tx);
657             fiy3             = _mm256_add_ps(fiy3,ty);
658             fiz3             = _mm256_add_ps(fiz3,tz);
659
660             fjx0             = _mm256_add_ps(fjx0,tx);
661             fjy0             = _mm256_add_ps(fjy0,ty);
662             fjz0             = _mm256_add_ps(fjz0,tz);
663
664             }
665
666             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
667             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
668             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
669             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
670             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
671             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
672             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
673             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
674
675             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
676
677             /* Inner loop uses 333 flops */
678         }
679
680         /* End of innermost loop */
681
682         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
683                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
684
685         ggid                        = gid[iidx];
686         /* Update potential energies */
687         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
688
689         /* Increment number of inner iterations */
690         inneriter                  += j_index_end - j_index_start;
691
692         /* Outer loop uses 19 flops */
693     }
694
695     /* Increment number of outer iterations */
696     outeriter        += nri;
697
698     /* Update outer/inner flops */
699
700     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*333);
701 }
702 /*
703  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_avx_256_single
704  * Electrostatics interaction: Ewald
705  * VdW interaction:            None
706  * Geometry:                   Water4-Particle
707  * Calculate force/pot:        Force
708  */
709 void
710 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_avx_256_single
711                     (t_nblist                    * gmx_restrict       nlist,
712                      rvec                        * gmx_restrict          xx,
713                      rvec                        * gmx_restrict          ff,
714                      t_forcerec                  * gmx_restrict          fr,
715                      t_mdatoms                   * gmx_restrict     mdatoms,
716                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
717                      t_nrnb                      * gmx_restrict        nrnb)
718 {
719     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
720      * just 0 for non-waters.
721      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
722      * jnr indices corresponding to data put in the four positions in the SIMD register.
723      */
724     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
725     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
726     int              jnrA,jnrB,jnrC,jnrD;
727     int              jnrE,jnrF,jnrG,jnrH;
728     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
729     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
730     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
731     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
732     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
733     real             rcutoff_scalar;
734     real             *shiftvec,*fshift,*x,*f;
735     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
736     real             scratch[4*DIM];
737     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
738     real *           vdwioffsetptr1;
739     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
740     real *           vdwioffsetptr2;
741     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
742     real *           vdwioffsetptr3;
743     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
744     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
745     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
746     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
747     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
748     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
749     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
750     real             *charge;
751     __m256i          ewitab;
752     __m128i          ewitab_lo,ewitab_hi;
753     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
754     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
755     real             *ewtab;
756     __m256           dummy_mask,cutoff_mask;
757     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
758     __m256           one     = _mm256_set1_ps(1.0);
759     __m256           two     = _mm256_set1_ps(2.0);
760     x                = xx[0];
761     f                = ff[0];
762
763     nri              = nlist->nri;
764     iinr             = nlist->iinr;
765     jindex           = nlist->jindex;
766     jjnr             = nlist->jjnr;
767     shiftidx         = nlist->shift;
768     gid              = nlist->gid;
769     shiftvec         = fr->shift_vec[0];
770     fshift           = fr->fshift[0];
771     facel            = _mm256_set1_ps(fr->epsfac);
772     charge           = mdatoms->chargeA;
773
774     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
775     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
776     beta2            = _mm256_mul_ps(beta,beta);
777     beta3            = _mm256_mul_ps(beta,beta2);
778
779     ewtab            = fr->ic->tabq_coul_F;
780     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
781     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
782
783     /* Setup water-specific parameters */
784     inr              = nlist->iinr[0];
785     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
786     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
787     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
788
789     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
790     rcutoff_scalar   = fr->rcoulomb;
791     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
792     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
793
794     /* Avoid stupid compiler warnings */
795     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
796     j_coord_offsetA = 0;
797     j_coord_offsetB = 0;
798     j_coord_offsetC = 0;
799     j_coord_offsetD = 0;
800     j_coord_offsetE = 0;
801     j_coord_offsetF = 0;
802     j_coord_offsetG = 0;
803     j_coord_offsetH = 0;
804
805     outeriter        = 0;
806     inneriter        = 0;
807
808     for(iidx=0;iidx<4*DIM;iidx++)
809     {
810         scratch[iidx] = 0.0;
811     }
812
813     /* Start outer loop over neighborlists */
814     for(iidx=0; iidx<nri; iidx++)
815     {
816         /* Load shift vector for this list */
817         i_shift_offset   = DIM*shiftidx[iidx];
818
819         /* Load limits for loop over neighbors */
820         j_index_start    = jindex[iidx];
821         j_index_end      = jindex[iidx+1];
822
823         /* Get outer coordinate index */
824         inr              = iinr[iidx];
825         i_coord_offset   = DIM*inr;
826
827         /* Load i particle coords and add shift vector */
828         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
829                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
830
831         fix1             = _mm256_setzero_ps();
832         fiy1             = _mm256_setzero_ps();
833         fiz1             = _mm256_setzero_ps();
834         fix2             = _mm256_setzero_ps();
835         fiy2             = _mm256_setzero_ps();
836         fiz2             = _mm256_setzero_ps();
837         fix3             = _mm256_setzero_ps();
838         fiy3             = _mm256_setzero_ps();
839         fiz3             = _mm256_setzero_ps();
840
841         /* Start inner kernel loop */
842         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
843         {
844
845             /* Get j neighbor index, and coordinate index */
846             jnrA             = jjnr[jidx];
847             jnrB             = jjnr[jidx+1];
848             jnrC             = jjnr[jidx+2];
849             jnrD             = jjnr[jidx+3];
850             jnrE             = jjnr[jidx+4];
851             jnrF             = jjnr[jidx+5];
852             jnrG             = jjnr[jidx+6];
853             jnrH             = jjnr[jidx+7];
854             j_coord_offsetA  = DIM*jnrA;
855             j_coord_offsetB  = DIM*jnrB;
856             j_coord_offsetC  = DIM*jnrC;
857             j_coord_offsetD  = DIM*jnrD;
858             j_coord_offsetE  = DIM*jnrE;
859             j_coord_offsetF  = DIM*jnrF;
860             j_coord_offsetG  = DIM*jnrG;
861             j_coord_offsetH  = DIM*jnrH;
862
863             /* load j atom coordinates */
864             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
865                                                  x+j_coord_offsetC,x+j_coord_offsetD,
866                                                  x+j_coord_offsetE,x+j_coord_offsetF,
867                                                  x+j_coord_offsetG,x+j_coord_offsetH,
868                                                  &jx0,&jy0,&jz0);
869
870             /* Calculate displacement vector */
871             dx10             = _mm256_sub_ps(ix1,jx0);
872             dy10             = _mm256_sub_ps(iy1,jy0);
873             dz10             = _mm256_sub_ps(iz1,jz0);
874             dx20             = _mm256_sub_ps(ix2,jx0);
875             dy20             = _mm256_sub_ps(iy2,jy0);
876             dz20             = _mm256_sub_ps(iz2,jz0);
877             dx30             = _mm256_sub_ps(ix3,jx0);
878             dy30             = _mm256_sub_ps(iy3,jy0);
879             dz30             = _mm256_sub_ps(iz3,jz0);
880
881             /* Calculate squared distance and things based on it */
882             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
883             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
884             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
885
886             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
887             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
888             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
889
890             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
891             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
892             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
893
894             /* Load parameters for j particles */
895             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
896                                                                  charge+jnrC+0,charge+jnrD+0,
897                                                                  charge+jnrE+0,charge+jnrF+0,
898                                                                  charge+jnrG+0,charge+jnrH+0);
899
900             fjx0             = _mm256_setzero_ps();
901             fjy0             = _mm256_setzero_ps();
902             fjz0             = _mm256_setzero_ps();
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             if (gmx_mm256_any_lt(rsq10,rcutoff2))
909             {
910
911             r10              = _mm256_mul_ps(rsq10,rinv10);
912
913             /* Compute parameters for interactions between i and j atoms */
914             qq10             = _mm256_mul_ps(iq1,jq0);
915
916             /* EWALD ELECTROSTATICS */
917             
918             /* Analytical PME correction */
919             zeta2            = _mm256_mul_ps(beta2,rsq10);
920             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
921             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
922             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
923             felec            = _mm256_mul_ps(qq10,felec);
924             
925             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
926
927             fscal            = felec;
928
929             fscal            = _mm256_and_ps(fscal,cutoff_mask);
930
931             /* Calculate temporary vectorial force */
932             tx               = _mm256_mul_ps(fscal,dx10);
933             ty               = _mm256_mul_ps(fscal,dy10);
934             tz               = _mm256_mul_ps(fscal,dz10);
935
936             /* Update vectorial force */
937             fix1             = _mm256_add_ps(fix1,tx);
938             fiy1             = _mm256_add_ps(fiy1,ty);
939             fiz1             = _mm256_add_ps(fiz1,tz);
940
941             fjx0             = _mm256_add_ps(fjx0,tx);
942             fjy0             = _mm256_add_ps(fjy0,ty);
943             fjz0             = _mm256_add_ps(fjz0,tz);
944
945             }
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             if (gmx_mm256_any_lt(rsq20,rcutoff2))
952             {
953
954             r20              = _mm256_mul_ps(rsq20,rinv20);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq20             = _mm256_mul_ps(iq2,jq0);
958
959             /* EWALD ELECTROSTATICS */
960             
961             /* Analytical PME correction */
962             zeta2            = _mm256_mul_ps(beta2,rsq20);
963             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
964             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
965             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
966             felec            = _mm256_mul_ps(qq20,felec);
967             
968             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
969
970             fscal            = felec;
971
972             fscal            = _mm256_and_ps(fscal,cutoff_mask);
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm256_mul_ps(fscal,dx20);
976             ty               = _mm256_mul_ps(fscal,dy20);
977             tz               = _mm256_mul_ps(fscal,dz20);
978
979             /* Update vectorial force */
980             fix2             = _mm256_add_ps(fix2,tx);
981             fiy2             = _mm256_add_ps(fiy2,ty);
982             fiz2             = _mm256_add_ps(fiz2,tz);
983
984             fjx0             = _mm256_add_ps(fjx0,tx);
985             fjy0             = _mm256_add_ps(fjy0,ty);
986             fjz0             = _mm256_add_ps(fjz0,tz);
987
988             }
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             if (gmx_mm256_any_lt(rsq30,rcutoff2))
995             {
996
997             r30              = _mm256_mul_ps(rsq30,rinv30);
998
999             /* Compute parameters for interactions between i and j atoms */
1000             qq30             = _mm256_mul_ps(iq3,jq0);
1001
1002             /* EWALD ELECTROSTATICS */
1003             
1004             /* Analytical PME correction */
1005             zeta2            = _mm256_mul_ps(beta2,rsq30);
1006             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1007             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1008             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1009             felec            = _mm256_mul_ps(qq30,felec);
1010             
1011             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1012
1013             fscal            = felec;
1014
1015             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1016
1017             /* Calculate temporary vectorial force */
1018             tx               = _mm256_mul_ps(fscal,dx30);
1019             ty               = _mm256_mul_ps(fscal,dy30);
1020             tz               = _mm256_mul_ps(fscal,dz30);
1021
1022             /* Update vectorial force */
1023             fix3             = _mm256_add_ps(fix3,tx);
1024             fiy3             = _mm256_add_ps(fiy3,ty);
1025             fiz3             = _mm256_add_ps(fiz3,tz);
1026
1027             fjx0             = _mm256_add_ps(fjx0,tx);
1028             fjy0             = _mm256_add_ps(fjy0,ty);
1029             fjz0             = _mm256_add_ps(fjz0,tz);
1030
1031             }
1032
1033             fjptrA             = f+j_coord_offsetA;
1034             fjptrB             = f+j_coord_offsetB;
1035             fjptrC             = f+j_coord_offsetC;
1036             fjptrD             = f+j_coord_offsetD;
1037             fjptrE             = f+j_coord_offsetE;
1038             fjptrF             = f+j_coord_offsetF;
1039             fjptrG             = f+j_coord_offsetG;
1040             fjptrH             = f+j_coord_offsetH;
1041
1042             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1043
1044             /* Inner loop uses 180 flops */
1045         }
1046
1047         if(jidx<j_index_end)
1048         {
1049
1050             /* Get j neighbor index, and coordinate index */
1051             jnrlistA         = jjnr[jidx];
1052             jnrlistB         = jjnr[jidx+1];
1053             jnrlistC         = jjnr[jidx+2];
1054             jnrlistD         = jjnr[jidx+3];
1055             jnrlistE         = jjnr[jidx+4];
1056             jnrlistF         = jjnr[jidx+5];
1057             jnrlistG         = jjnr[jidx+6];
1058             jnrlistH         = jjnr[jidx+7];
1059             /* Sign of each element will be negative for non-real atoms.
1060              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1061              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1062              */
1063             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1064                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1065                                             
1066             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1067             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1068             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1069             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1070             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1071             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1072             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1073             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1074             j_coord_offsetA  = DIM*jnrA;
1075             j_coord_offsetB  = DIM*jnrB;
1076             j_coord_offsetC  = DIM*jnrC;
1077             j_coord_offsetD  = DIM*jnrD;
1078             j_coord_offsetE  = DIM*jnrE;
1079             j_coord_offsetF  = DIM*jnrF;
1080             j_coord_offsetG  = DIM*jnrG;
1081             j_coord_offsetH  = DIM*jnrH;
1082
1083             /* load j atom coordinates */
1084             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1085                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1086                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1087                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1088                                                  &jx0,&jy0,&jz0);
1089
1090             /* Calculate displacement vector */
1091             dx10             = _mm256_sub_ps(ix1,jx0);
1092             dy10             = _mm256_sub_ps(iy1,jy0);
1093             dz10             = _mm256_sub_ps(iz1,jz0);
1094             dx20             = _mm256_sub_ps(ix2,jx0);
1095             dy20             = _mm256_sub_ps(iy2,jy0);
1096             dz20             = _mm256_sub_ps(iz2,jz0);
1097             dx30             = _mm256_sub_ps(ix3,jx0);
1098             dy30             = _mm256_sub_ps(iy3,jy0);
1099             dz30             = _mm256_sub_ps(iz3,jz0);
1100
1101             /* Calculate squared distance and things based on it */
1102             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1103             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1104             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1105
1106             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1107             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1108             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1109
1110             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1111             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1112             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1113
1114             /* Load parameters for j particles */
1115             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1116                                                                  charge+jnrC+0,charge+jnrD+0,
1117                                                                  charge+jnrE+0,charge+jnrF+0,
1118                                                                  charge+jnrG+0,charge+jnrH+0);
1119
1120             fjx0             = _mm256_setzero_ps();
1121             fjy0             = _mm256_setzero_ps();
1122             fjz0             = _mm256_setzero_ps();
1123
1124             /**************************
1125              * CALCULATE INTERACTIONS *
1126              **************************/
1127
1128             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1129             {
1130
1131             r10              = _mm256_mul_ps(rsq10,rinv10);
1132             r10              = _mm256_andnot_ps(dummy_mask,r10);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq10             = _mm256_mul_ps(iq1,jq0);
1136
1137             /* EWALD ELECTROSTATICS */
1138             
1139             /* Analytical PME correction */
1140             zeta2            = _mm256_mul_ps(beta2,rsq10);
1141             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1142             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1143             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1144             felec            = _mm256_mul_ps(qq10,felec);
1145             
1146             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1147
1148             fscal            = felec;
1149
1150             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1151
1152             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm256_mul_ps(fscal,dx10);
1156             ty               = _mm256_mul_ps(fscal,dy10);
1157             tz               = _mm256_mul_ps(fscal,dz10);
1158
1159             /* Update vectorial force */
1160             fix1             = _mm256_add_ps(fix1,tx);
1161             fiy1             = _mm256_add_ps(fiy1,ty);
1162             fiz1             = _mm256_add_ps(fiz1,tz);
1163
1164             fjx0             = _mm256_add_ps(fjx0,tx);
1165             fjy0             = _mm256_add_ps(fjy0,ty);
1166             fjz0             = _mm256_add_ps(fjz0,tz);
1167
1168             }
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1175             {
1176
1177             r20              = _mm256_mul_ps(rsq20,rinv20);
1178             r20              = _mm256_andnot_ps(dummy_mask,r20);
1179
1180             /* Compute parameters for interactions between i and j atoms */
1181             qq20             = _mm256_mul_ps(iq2,jq0);
1182
1183             /* EWALD ELECTROSTATICS */
1184             
1185             /* Analytical PME correction */
1186             zeta2            = _mm256_mul_ps(beta2,rsq20);
1187             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1188             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1189             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1190             felec            = _mm256_mul_ps(qq20,felec);
1191             
1192             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1193
1194             fscal            = felec;
1195
1196             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1197
1198             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1199
1200             /* Calculate temporary vectorial force */
1201             tx               = _mm256_mul_ps(fscal,dx20);
1202             ty               = _mm256_mul_ps(fscal,dy20);
1203             tz               = _mm256_mul_ps(fscal,dz20);
1204
1205             /* Update vectorial force */
1206             fix2             = _mm256_add_ps(fix2,tx);
1207             fiy2             = _mm256_add_ps(fiy2,ty);
1208             fiz2             = _mm256_add_ps(fiz2,tz);
1209
1210             fjx0             = _mm256_add_ps(fjx0,tx);
1211             fjy0             = _mm256_add_ps(fjy0,ty);
1212             fjz0             = _mm256_add_ps(fjz0,tz);
1213
1214             }
1215
1216             /**************************
1217              * CALCULATE INTERACTIONS *
1218              **************************/
1219
1220             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1221             {
1222
1223             r30              = _mm256_mul_ps(rsq30,rinv30);
1224             r30              = _mm256_andnot_ps(dummy_mask,r30);
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             qq30             = _mm256_mul_ps(iq3,jq0);
1228
1229             /* EWALD ELECTROSTATICS */
1230             
1231             /* Analytical PME correction */
1232             zeta2            = _mm256_mul_ps(beta2,rsq30);
1233             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1234             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1235             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1236             felec            = _mm256_mul_ps(qq30,felec);
1237             
1238             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1239
1240             fscal            = felec;
1241
1242             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1243
1244             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1245
1246             /* Calculate temporary vectorial force */
1247             tx               = _mm256_mul_ps(fscal,dx30);
1248             ty               = _mm256_mul_ps(fscal,dy30);
1249             tz               = _mm256_mul_ps(fscal,dz30);
1250
1251             /* Update vectorial force */
1252             fix3             = _mm256_add_ps(fix3,tx);
1253             fiy3             = _mm256_add_ps(fiy3,ty);
1254             fiz3             = _mm256_add_ps(fiz3,tz);
1255
1256             fjx0             = _mm256_add_ps(fjx0,tx);
1257             fjy0             = _mm256_add_ps(fjy0,ty);
1258             fjz0             = _mm256_add_ps(fjz0,tz);
1259
1260             }
1261
1262             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1263             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1264             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1265             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1266             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1267             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1268             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1269             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1270
1271             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1272
1273             /* Inner loop uses 183 flops */
1274         }
1275
1276         /* End of innermost loop */
1277
1278         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1279                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1280
1281         /* Increment number of inner iterations */
1282         inneriter                  += j_index_end - j_index_start;
1283
1284         /* Outer loop uses 18 flops */
1285     }
1286
1287     /* Increment number of outer iterations */
1288     outeriter        += nri;
1289
1290     /* Update outer/inner flops */
1291
1292     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*183);
1293 }