Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwNone_GeomW3P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     __m256i          ewitab;
99     __m128i          ewitab_lo,ewitab_hi;
100     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
102     real             *ewtab;
103     __m256           dummy_mask,cutoff_mask;
104     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
105     __m256           one     = _mm256_set1_ps(1.0);
106     __m256           two     = _mm256_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm256_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120
121     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
122     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
123     beta2            = _mm256_mul_ps(beta,beta);
124     beta3            = _mm256_mul_ps(beta,beta2);
125
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
133     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
134     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->ic->rcoulomb;
138     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
139     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147     j_coord_offsetE = 0;
148     j_coord_offsetF = 0;
149     j_coord_offsetG = 0;
150     j_coord_offsetH = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm256_setzero_ps();
179         fiy0             = _mm256_setzero_ps();
180         fiz0             = _mm256_setzero_ps();
181         fix1             = _mm256_setzero_ps();
182         fiy1             = _mm256_setzero_ps();
183         fiz1             = _mm256_setzero_ps();
184         fix2             = _mm256_setzero_ps();
185         fiy2             = _mm256_setzero_ps();
186         fiz2             = _mm256_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_ps();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             jnrE             = jjnr[jidx+4];
201             jnrF             = jjnr[jidx+5];
202             jnrG             = jjnr[jidx+6];
203             jnrH             = jjnr[jidx+7];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208             j_coord_offsetE  = DIM*jnrE;
209             j_coord_offsetF  = DIM*jnrF;
210             j_coord_offsetG  = DIM*jnrG;
211             j_coord_offsetH  = DIM*jnrH;
212
213             /* load j atom coordinates */
214             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
215                                                  x+j_coord_offsetC,x+j_coord_offsetD,
216                                                  x+j_coord_offsetE,x+j_coord_offsetF,
217                                                  x+j_coord_offsetG,x+j_coord_offsetH,
218                                                  &jx0,&jy0,&jz0);
219
220             /* Calculate displacement vector */
221             dx00             = _mm256_sub_ps(ix0,jx0);
222             dy00             = _mm256_sub_ps(iy0,jy0);
223             dz00             = _mm256_sub_ps(iz0,jz0);
224             dx10             = _mm256_sub_ps(ix1,jx0);
225             dy10             = _mm256_sub_ps(iy1,jy0);
226             dz10             = _mm256_sub_ps(iz1,jz0);
227             dx20             = _mm256_sub_ps(ix2,jx0);
228             dy20             = _mm256_sub_ps(iy2,jy0);
229             dz20             = _mm256_sub_ps(iz2,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
233             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
234             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
235
236             rinv00           = avx256_invsqrt_f(rsq00);
237             rinv10           = avx256_invsqrt_f(rsq10);
238             rinv20           = avx256_invsqrt_f(rsq20);
239
240             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
241             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
242             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
246                                                                  charge+jnrC+0,charge+jnrD+0,
247                                                                  charge+jnrE+0,charge+jnrF+0,
248                                                                  charge+jnrG+0,charge+jnrH+0);
249
250             fjx0             = _mm256_setzero_ps();
251             fjy0             = _mm256_setzero_ps();
252             fjz0             = _mm256_setzero_ps();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_mm256_any_lt(rsq00,rcutoff2))
259             {
260
261             r00              = _mm256_mul_ps(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             qq00             = _mm256_mul_ps(iq0,jq0);
265
266             /* EWALD ELECTROSTATICS */
267             
268             /* Analytical PME correction */
269             zeta2            = _mm256_mul_ps(beta2,rsq00);
270             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
271             pmecorrF         = avx256_pmecorrF_f(zeta2);
272             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
273             felec            = _mm256_mul_ps(qq00,felec);
274             pmecorrV         = avx256_pmecorrV_f(zeta2);
275             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
276             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
277             velec            = _mm256_mul_ps(qq00,velec);
278             
279             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velec            = _mm256_and_ps(velec,cutoff_mask);
283             velecsum         = _mm256_add_ps(velecsum,velec);
284
285             fscal            = felec;
286
287             fscal            = _mm256_and_ps(fscal,cutoff_mask);
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm256_mul_ps(fscal,dx00);
291             ty               = _mm256_mul_ps(fscal,dy00);
292             tz               = _mm256_mul_ps(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm256_add_ps(fix0,tx);
296             fiy0             = _mm256_add_ps(fiy0,ty);
297             fiz0             = _mm256_add_ps(fiz0,tz);
298
299             fjx0             = _mm256_add_ps(fjx0,tx);
300             fjy0             = _mm256_add_ps(fjy0,ty);
301             fjz0             = _mm256_add_ps(fjz0,tz);
302
303             }
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm256_any_lt(rsq10,rcutoff2))
310             {
311
312             r10              = _mm256_mul_ps(rsq10,rinv10);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm256_mul_ps(iq1,jq0);
316
317             /* EWALD ELECTROSTATICS */
318             
319             /* Analytical PME correction */
320             zeta2            = _mm256_mul_ps(beta2,rsq10);
321             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
322             pmecorrF         = avx256_pmecorrF_f(zeta2);
323             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
324             felec            = _mm256_mul_ps(qq10,felec);
325             pmecorrV         = avx256_pmecorrV_f(zeta2);
326             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
327             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
328             velec            = _mm256_mul_ps(qq10,velec);
329             
330             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velec            = _mm256_and_ps(velec,cutoff_mask);
334             velecsum         = _mm256_add_ps(velecsum,velec);
335
336             fscal            = felec;
337
338             fscal            = _mm256_and_ps(fscal,cutoff_mask);
339
340             /* Calculate temporary vectorial force */
341             tx               = _mm256_mul_ps(fscal,dx10);
342             ty               = _mm256_mul_ps(fscal,dy10);
343             tz               = _mm256_mul_ps(fscal,dz10);
344
345             /* Update vectorial force */
346             fix1             = _mm256_add_ps(fix1,tx);
347             fiy1             = _mm256_add_ps(fiy1,ty);
348             fiz1             = _mm256_add_ps(fiz1,tz);
349
350             fjx0             = _mm256_add_ps(fjx0,tx);
351             fjy0             = _mm256_add_ps(fjy0,ty);
352             fjz0             = _mm256_add_ps(fjz0,tz);
353
354             }
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             if (gmx_mm256_any_lt(rsq20,rcutoff2))
361             {
362
363             r20              = _mm256_mul_ps(rsq20,rinv20);
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq20             = _mm256_mul_ps(iq2,jq0);
367
368             /* EWALD ELECTROSTATICS */
369             
370             /* Analytical PME correction */
371             zeta2            = _mm256_mul_ps(beta2,rsq20);
372             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
373             pmecorrF         = avx256_pmecorrF_f(zeta2);
374             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
375             felec            = _mm256_mul_ps(qq20,felec);
376             pmecorrV         = avx256_pmecorrV_f(zeta2);
377             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
378             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
379             velec            = _mm256_mul_ps(qq20,velec);
380             
381             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm256_and_ps(velec,cutoff_mask);
385             velecsum         = _mm256_add_ps(velecsum,velec);
386
387             fscal            = felec;
388
389             fscal            = _mm256_and_ps(fscal,cutoff_mask);
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm256_mul_ps(fscal,dx20);
393             ty               = _mm256_mul_ps(fscal,dy20);
394             tz               = _mm256_mul_ps(fscal,dz20);
395
396             /* Update vectorial force */
397             fix2             = _mm256_add_ps(fix2,tx);
398             fiy2             = _mm256_add_ps(fiy2,ty);
399             fiz2             = _mm256_add_ps(fiz2,tz);
400
401             fjx0             = _mm256_add_ps(fjx0,tx);
402             fjy0             = _mm256_add_ps(fjy0,ty);
403             fjz0             = _mm256_add_ps(fjz0,tz);
404
405             }
406
407             fjptrA             = f+j_coord_offsetA;
408             fjptrB             = f+j_coord_offsetB;
409             fjptrC             = f+j_coord_offsetC;
410             fjptrD             = f+j_coord_offsetD;
411             fjptrE             = f+j_coord_offsetE;
412             fjptrF             = f+j_coord_offsetF;
413             fjptrG             = f+j_coord_offsetG;
414             fjptrH             = f+j_coord_offsetH;
415
416             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
417
418             /* Inner loop uses 330 flops */
419         }
420
421         if(jidx<j_index_end)
422         {
423
424             /* Get j neighbor index, and coordinate index */
425             jnrlistA         = jjnr[jidx];
426             jnrlistB         = jjnr[jidx+1];
427             jnrlistC         = jjnr[jidx+2];
428             jnrlistD         = jjnr[jidx+3];
429             jnrlistE         = jjnr[jidx+4];
430             jnrlistF         = jjnr[jidx+5];
431             jnrlistG         = jjnr[jidx+6];
432             jnrlistH         = jjnr[jidx+7];
433             /* Sign of each element will be negative for non-real atoms.
434              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
435              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
436              */
437             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
438                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
439                                             
440             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
441             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
442             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
443             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
444             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
445             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
446             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
447             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
448             j_coord_offsetA  = DIM*jnrA;
449             j_coord_offsetB  = DIM*jnrB;
450             j_coord_offsetC  = DIM*jnrC;
451             j_coord_offsetD  = DIM*jnrD;
452             j_coord_offsetE  = DIM*jnrE;
453             j_coord_offsetF  = DIM*jnrF;
454             j_coord_offsetG  = DIM*jnrG;
455             j_coord_offsetH  = DIM*jnrH;
456
457             /* load j atom coordinates */
458             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
459                                                  x+j_coord_offsetC,x+j_coord_offsetD,
460                                                  x+j_coord_offsetE,x+j_coord_offsetF,
461                                                  x+j_coord_offsetG,x+j_coord_offsetH,
462                                                  &jx0,&jy0,&jz0);
463
464             /* Calculate displacement vector */
465             dx00             = _mm256_sub_ps(ix0,jx0);
466             dy00             = _mm256_sub_ps(iy0,jy0);
467             dz00             = _mm256_sub_ps(iz0,jz0);
468             dx10             = _mm256_sub_ps(ix1,jx0);
469             dy10             = _mm256_sub_ps(iy1,jy0);
470             dz10             = _mm256_sub_ps(iz1,jz0);
471             dx20             = _mm256_sub_ps(ix2,jx0);
472             dy20             = _mm256_sub_ps(iy2,jy0);
473             dz20             = _mm256_sub_ps(iz2,jz0);
474
475             /* Calculate squared distance and things based on it */
476             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
477             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
478             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
479
480             rinv00           = avx256_invsqrt_f(rsq00);
481             rinv10           = avx256_invsqrt_f(rsq10);
482             rinv20           = avx256_invsqrt_f(rsq20);
483
484             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
485             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
486             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
487
488             /* Load parameters for j particles */
489             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
490                                                                  charge+jnrC+0,charge+jnrD+0,
491                                                                  charge+jnrE+0,charge+jnrF+0,
492                                                                  charge+jnrG+0,charge+jnrH+0);
493
494             fjx0             = _mm256_setzero_ps();
495             fjy0             = _mm256_setzero_ps();
496             fjz0             = _mm256_setzero_ps();
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             if (gmx_mm256_any_lt(rsq00,rcutoff2))
503             {
504
505             r00              = _mm256_mul_ps(rsq00,rinv00);
506             r00              = _mm256_andnot_ps(dummy_mask,r00);
507
508             /* Compute parameters for interactions between i and j atoms */
509             qq00             = _mm256_mul_ps(iq0,jq0);
510
511             /* EWALD ELECTROSTATICS */
512             
513             /* Analytical PME correction */
514             zeta2            = _mm256_mul_ps(beta2,rsq00);
515             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
516             pmecorrF         = avx256_pmecorrF_f(zeta2);
517             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
518             felec            = _mm256_mul_ps(qq00,felec);
519             pmecorrV         = avx256_pmecorrV_f(zeta2);
520             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
521             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
522             velec            = _mm256_mul_ps(qq00,velec);
523             
524             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
525
526             /* Update potential sum for this i atom from the interaction with this j atom. */
527             velec            = _mm256_and_ps(velec,cutoff_mask);
528             velec            = _mm256_andnot_ps(dummy_mask,velec);
529             velecsum         = _mm256_add_ps(velecsum,velec);
530
531             fscal            = felec;
532
533             fscal            = _mm256_and_ps(fscal,cutoff_mask);
534
535             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
536
537             /* Calculate temporary vectorial force */
538             tx               = _mm256_mul_ps(fscal,dx00);
539             ty               = _mm256_mul_ps(fscal,dy00);
540             tz               = _mm256_mul_ps(fscal,dz00);
541
542             /* Update vectorial force */
543             fix0             = _mm256_add_ps(fix0,tx);
544             fiy0             = _mm256_add_ps(fiy0,ty);
545             fiz0             = _mm256_add_ps(fiz0,tz);
546
547             fjx0             = _mm256_add_ps(fjx0,tx);
548             fjy0             = _mm256_add_ps(fjy0,ty);
549             fjz0             = _mm256_add_ps(fjz0,tz);
550
551             }
552
553             /**************************
554              * CALCULATE INTERACTIONS *
555              **************************/
556
557             if (gmx_mm256_any_lt(rsq10,rcutoff2))
558             {
559
560             r10              = _mm256_mul_ps(rsq10,rinv10);
561             r10              = _mm256_andnot_ps(dummy_mask,r10);
562
563             /* Compute parameters for interactions between i and j atoms */
564             qq10             = _mm256_mul_ps(iq1,jq0);
565
566             /* EWALD ELECTROSTATICS */
567             
568             /* Analytical PME correction */
569             zeta2            = _mm256_mul_ps(beta2,rsq10);
570             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
571             pmecorrF         = avx256_pmecorrF_f(zeta2);
572             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
573             felec            = _mm256_mul_ps(qq10,felec);
574             pmecorrV         = avx256_pmecorrV_f(zeta2);
575             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
576             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
577             velec            = _mm256_mul_ps(qq10,velec);
578             
579             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm256_and_ps(velec,cutoff_mask);
583             velec            = _mm256_andnot_ps(dummy_mask,velec);
584             velecsum         = _mm256_add_ps(velecsum,velec);
585
586             fscal            = felec;
587
588             fscal            = _mm256_and_ps(fscal,cutoff_mask);
589
590             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
591
592             /* Calculate temporary vectorial force */
593             tx               = _mm256_mul_ps(fscal,dx10);
594             ty               = _mm256_mul_ps(fscal,dy10);
595             tz               = _mm256_mul_ps(fscal,dz10);
596
597             /* Update vectorial force */
598             fix1             = _mm256_add_ps(fix1,tx);
599             fiy1             = _mm256_add_ps(fiy1,ty);
600             fiz1             = _mm256_add_ps(fiz1,tz);
601
602             fjx0             = _mm256_add_ps(fjx0,tx);
603             fjy0             = _mm256_add_ps(fjy0,ty);
604             fjz0             = _mm256_add_ps(fjz0,tz);
605
606             }
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             if (gmx_mm256_any_lt(rsq20,rcutoff2))
613             {
614
615             r20              = _mm256_mul_ps(rsq20,rinv20);
616             r20              = _mm256_andnot_ps(dummy_mask,r20);
617
618             /* Compute parameters for interactions between i and j atoms */
619             qq20             = _mm256_mul_ps(iq2,jq0);
620
621             /* EWALD ELECTROSTATICS */
622             
623             /* Analytical PME correction */
624             zeta2            = _mm256_mul_ps(beta2,rsq20);
625             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
626             pmecorrF         = avx256_pmecorrF_f(zeta2);
627             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
628             felec            = _mm256_mul_ps(qq20,felec);
629             pmecorrV         = avx256_pmecorrV_f(zeta2);
630             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
631             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
632             velec            = _mm256_mul_ps(qq20,velec);
633             
634             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
635
636             /* Update potential sum for this i atom from the interaction with this j atom. */
637             velec            = _mm256_and_ps(velec,cutoff_mask);
638             velec            = _mm256_andnot_ps(dummy_mask,velec);
639             velecsum         = _mm256_add_ps(velecsum,velec);
640
641             fscal            = felec;
642
643             fscal            = _mm256_and_ps(fscal,cutoff_mask);
644
645             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
646
647             /* Calculate temporary vectorial force */
648             tx               = _mm256_mul_ps(fscal,dx20);
649             ty               = _mm256_mul_ps(fscal,dy20);
650             tz               = _mm256_mul_ps(fscal,dz20);
651
652             /* Update vectorial force */
653             fix2             = _mm256_add_ps(fix2,tx);
654             fiy2             = _mm256_add_ps(fiy2,ty);
655             fiz2             = _mm256_add_ps(fiz2,tz);
656
657             fjx0             = _mm256_add_ps(fjx0,tx);
658             fjy0             = _mm256_add_ps(fjy0,ty);
659             fjz0             = _mm256_add_ps(fjz0,tz);
660
661             }
662
663             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
664             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
665             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
666             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
667             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
668             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
669             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
670             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
671
672             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
673
674             /* Inner loop uses 333 flops */
675         }
676
677         /* End of innermost loop */
678
679         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
680                                                  f+i_coord_offset,fshift+i_shift_offset);
681
682         ggid                        = gid[iidx];
683         /* Update potential energies */
684         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
685
686         /* Increment number of inner iterations */
687         inneriter                  += j_index_end - j_index_start;
688
689         /* Outer loop uses 19 flops */
690     }
691
692     /* Increment number of outer iterations */
693     outeriter        += nri;
694
695     /* Update outer/inner flops */
696
697     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*333);
698 }
699 /*
700  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_avx_256_single
701  * Electrostatics interaction: Ewald
702  * VdW interaction:            None
703  * Geometry:                   Water3-Particle
704  * Calculate force/pot:        Force
705  */
706 void
707 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_avx_256_single
708                     (t_nblist                    * gmx_restrict       nlist,
709                      rvec                        * gmx_restrict          xx,
710                      rvec                        * gmx_restrict          ff,
711                      struct t_forcerec           * gmx_restrict          fr,
712                      t_mdatoms                   * gmx_restrict     mdatoms,
713                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
714                      t_nrnb                      * gmx_restrict        nrnb)
715 {
716     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
717      * just 0 for non-waters.
718      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
719      * jnr indices corresponding to data put in the four positions in the SIMD register.
720      */
721     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
722     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
723     int              jnrA,jnrB,jnrC,jnrD;
724     int              jnrE,jnrF,jnrG,jnrH;
725     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
726     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
727     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
728     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
729     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
730     real             rcutoff_scalar;
731     real             *shiftvec,*fshift,*x,*f;
732     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
733     real             scratch[4*DIM];
734     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
735     real *           vdwioffsetptr0;
736     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
737     real *           vdwioffsetptr1;
738     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
739     real *           vdwioffsetptr2;
740     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
741     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
742     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
743     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
744     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
745     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
746     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
747     real             *charge;
748     __m256i          ewitab;
749     __m128i          ewitab_lo,ewitab_hi;
750     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
751     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
752     real             *ewtab;
753     __m256           dummy_mask,cutoff_mask;
754     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
755     __m256           one     = _mm256_set1_ps(1.0);
756     __m256           two     = _mm256_set1_ps(2.0);
757     x                = xx[0];
758     f                = ff[0];
759
760     nri              = nlist->nri;
761     iinr             = nlist->iinr;
762     jindex           = nlist->jindex;
763     jjnr             = nlist->jjnr;
764     shiftidx         = nlist->shift;
765     gid              = nlist->gid;
766     shiftvec         = fr->shift_vec[0];
767     fshift           = fr->fshift[0];
768     facel            = _mm256_set1_ps(fr->ic->epsfac);
769     charge           = mdatoms->chargeA;
770
771     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
772     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
773     beta2            = _mm256_mul_ps(beta,beta);
774     beta3            = _mm256_mul_ps(beta,beta2);
775
776     ewtab            = fr->ic->tabq_coul_F;
777     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
778     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
779
780     /* Setup water-specific parameters */
781     inr              = nlist->iinr[0];
782     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
783     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
784     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
785
786     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
787     rcutoff_scalar   = fr->ic->rcoulomb;
788     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
789     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
790
791     /* Avoid stupid compiler warnings */
792     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
793     j_coord_offsetA = 0;
794     j_coord_offsetB = 0;
795     j_coord_offsetC = 0;
796     j_coord_offsetD = 0;
797     j_coord_offsetE = 0;
798     j_coord_offsetF = 0;
799     j_coord_offsetG = 0;
800     j_coord_offsetH = 0;
801
802     outeriter        = 0;
803     inneriter        = 0;
804
805     for(iidx=0;iidx<4*DIM;iidx++)
806     {
807         scratch[iidx] = 0.0;
808     }
809
810     /* Start outer loop over neighborlists */
811     for(iidx=0; iidx<nri; iidx++)
812     {
813         /* Load shift vector for this list */
814         i_shift_offset   = DIM*shiftidx[iidx];
815
816         /* Load limits for loop over neighbors */
817         j_index_start    = jindex[iidx];
818         j_index_end      = jindex[iidx+1];
819
820         /* Get outer coordinate index */
821         inr              = iinr[iidx];
822         i_coord_offset   = DIM*inr;
823
824         /* Load i particle coords and add shift vector */
825         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
826                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
827
828         fix0             = _mm256_setzero_ps();
829         fiy0             = _mm256_setzero_ps();
830         fiz0             = _mm256_setzero_ps();
831         fix1             = _mm256_setzero_ps();
832         fiy1             = _mm256_setzero_ps();
833         fiz1             = _mm256_setzero_ps();
834         fix2             = _mm256_setzero_ps();
835         fiy2             = _mm256_setzero_ps();
836         fiz2             = _mm256_setzero_ps();
837
838         /* Start inner kernel loop */
839         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
840         {
841
842             /* Get j neighbor index, and coordinate index */
843             jnrA             = jjnr[jidx];
844             jnrB             = jjnr[jidx+1];
845             jnrC             = jjnr[jidx+2];
846             jnrD             = jjnr[jidx+3];
847             jnrE             = jjnr[jidx+4];
848             jnrF             = jjnr[jidx+5];
849             jnrG             = jjnr[jidx+6];
850             jnrH             = jjnr[jidx+7];
851             j_coord_offsetA  = DIM*jnrA;
852             j_coord_offsetB  = DIM*jnrB;
853             j_coord_offsetC  = DIM*jnrC;
854             j_coord_offsetD  = DIM*jnrD;
855             j_coord_offsetE  = DIM*jnrE;
856             j_coord_offsetF  = DIM*jnrF;
857             j_coord_offsetG  = DIM*jnrG;
858             j_coord_offsetH  = DIM*jnrH;
859
860             /* load j atom coordinates */
861             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
862                                                  x+j_coord_offsetC,x+j_coord_offsetD,
863                                                  x+j_coord_offsetE,x+j_coord_offsetF,
864                                                  x+j_coord_offsetG,x+j_coord_offsetH,
865                                                  &jx0,&jy0,&jz0);
866
867             /* Calculate displacement vector */
868             dx00             = _mm256_sub_ps(ix0,jx0);
869             dy00             = _mm256_sub_ps(iy0,jy0);
870             dz00             = _mm256_sub_ps(iz0,jz0);
871             dx10             = _mm256_sub_ps(ix1,jx0);
872             dy10             = _mm256_sub_ps(iy1,jy0);
873             dz10             = _mm256_sub_ps(iz1,jz0);
874             dx20             = _mm256_sub_ps(ix2,jx0);
875             dy20             = _mm256_sub_ps(iy2,jy0);
876             dz20             = _mm256_sub_ps(iz2,jz0);
877
878             /* Calculate squared distance and things based on it */
879             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
880             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
881             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
882
883             rinv00           = avx256_invsqrt_f(rsq00);
884             rinv10           = avx256_invsqrt_f(rsq10);
885             rinv20           = avx256_invsqrt_f(rsq20);
886
887             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
888             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
889             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
890
891             /* Load parameters for j particles */
892             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
893                                                                  charge+jnrC+0,charge+jnrD+0,
894                                                                  charge+jnrE+0,charge+jnrF+0,
895                                                                  charge+jnrG+0,charge+jnrH+0);
896
897             fjx0             = _mm256_setzero_ps();
898             fjy0             = _mm256_setzero_ps();
899             fjz0             = _mm256_setzero_ps();
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             if (gmx_mm256_any_lt(rsq00,rcutoff2))
906             {
907
908             r00              = _mm256_mul_ps(rsq00,rinv00);
909
910             /* Compute parameters for interactions between i and j atoms */
911             qq00             = _mm256_mul_ps(iq0,jq0);
912
913             /* EWALD ELECTROSTATICS */
914             
915             /* Analytical PME correction */
916             zeta2            = _mm256_mul_ps(beta2,rsq00);
917             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
918             pmecorrF         = avx256_pmecorrF_f(zeta2);
919             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
920             felec            = _mm256_mul_ps(qq00,felec);
921             
922             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
923
924             fscal            = felec;
925
926             fscal            = _mm256_and_ps(fscal,cutoff_mask);
927
928             /* Calculate temporary vectorial force */
929             tx               = _mm256_mul_ps(fscal,dx00);
930             ty               = _mm256_mul_ps(fscal,dy00);
931             tz               = _mm256_mul_ps(fscal,dz00);
932
933             /* Update vectorial force */
934             fix0             = _mm256_add_ps(fix0,tx);
935             fiy0             = _mm256_add_ps(fiy0,ty);
936             fiz0             = _mm256_add_ps(fiz0,tz);
937
938             fjx0             = _mm256_add_ps(fjx0,tx);
939             fjy0             = _mm256_add_ps(fjy0,ty);
940             fjz0             = _mm256_add_ps(fjz0,tz);
941
942             }
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             if (gmx_mm256_any_lt(rsq10,rcutoff2))
949             {
950
951             r10              = _mm256_mul_ps(rsq10,rinv10);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq10             = _mm256_mul_ps(iq1,jq0);
955
956             /* EWALD ELECTROSTATICS */
957             
958             /* Analytical PME correction */
959             zeta2            = _mm256_mul_ps(beta2,rsq10);
960             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
961             pmecorrF         = avx256_pmecorrF_f(zeta2);
962             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
963             felec            = _mm256_mul_ps(qq10,felec);
964             
965             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
966
967             fscal            = felec;
968
969             fscal            = _mm256_and_ps(fscal,cutoff_mask);
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm256_mul_ps(fscal,dx10);
973             ty               = _mm256_mul_ps(fscal,dy10);
974             tz               = _mm256_mul_ps(fscal,dz10);
975
976             /* Update vectorial force */
977             fix1             = _mm256_add_ps(fix1,tx);
978             fiy1             = _mm256_add_ps(fiy1,ty);
979             fiz1             = _mm256_add_ps(fiz1,tz);
980
981             fjx0             = _mm256_add_ps(fjx0,tx);
982             fjy0             = _mm256_add_ps(fjy0,ty);
983             fjz0             = _mm256_add_ps(fjz0,tz);
984
985             }
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             if (gmx_mm256_any_lt(rsq20,rcutoff2))
992             {
993
994             r20              = _mm256_mul_ps(rsq20,rinv20);
995
996             /* Compute parameters for interactions between i and j atoms */
997             qq20             = _mm256_mul_ps(iq2,jq0);
998
999             /* EWALD ELECTROSTATICS */
1000             
1001             /* Analytical PME correction */
1002             zeta2            = _mm256_mul_ps(beta2,rsq20);
1003             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1004             pmecorrF         = avx256_pmecorrF_f(zeta2);
1005             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1006             felec            = _mm256_mul_ps(qq20,felec);
1007             
1008             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1009
1010             fscal            = felec;
1011
1012             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm256_mul_ps(fscal,dx20);
1016             ty               = _mm256_mul_ps(fscal,dy20);
1017             tz               = _mm256_mul_ps(fscal,dz20);
1018
1019             /* Update vectorial force */
1020             fix2             = _mm256_add_ps(fix2,tx);
1021             fiy2             = _mm256_add_ps(fiy2,ty);
1022             fiz2             = _mm256_add_ps(fiz2,tz);
1023
1024             fjx0             = _mm256_add_ps(fjx0,tx);
1025             fjy0             = _mm256_add_ps(fjy0,ty);
1026             fjz0             = _mm256_add_ps(fjz0,tz);
1027
1028             }
1029
1030             fjptrA             = f+j_coord_offsetA;
1031             fjptrB             = f+j_coord_offsetB;
1032             fjptrC             = f+j_coord_offsetC;
1033             fjptrD             = f+j_coord_offsetD;
1034             fjptrE             = f+j_coord_offsetE;
1035             fjptrF             = f+j_coord_offsetF;
1036             fjptrG             = f+j_coord_offsetG;
1037             fjptrH             = f+j_coord_offsetH;
1038
1039             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1040
1041             /* Inner loop uses 180 flops */
1042         }
1043
1044         if(jidx<j_index_end)
1045         {
1046
1047             /* Get j neighbor index, and coordinate index */
1048             jnrlistA         = jjnr[jidx];
1049             jnrlistB         = jjnr[jidx+1];
1050             jnrlistC         = jjnr[jidx+2];
1051             jnrlistD         = jjnr[jidx+3];
1052             jnrlistE         = jjnr[jidx+4];
1053             jnrlistF         = jjnr[jidx+5];
1054             jnrlistG         = jjnr[jidx+6];
1055             jnrlistH         = jjnr[jidx+7];
1056             /* Sign of each element will be negative for non-real atoms.
1057              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1058              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1059              */
1060             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1061                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1062                                             
1063             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1064             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1065             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1066             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1067             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1068             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1069             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1070             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1071             j_coord_offsetA  = DIM*jnrA;
1072             j_coord_offsetB  = DIM*jnrB;
1073             j_coord_offsetC  = DIM*jnrC;
1074             j_coord_offsetD  = DIM*jnrD;
1075             j_coord_offsetE  = DIM*jnrE;
1076             j_coord_offsetF  = DIM*jnrF;
1077             j_coord_offsetG  = DIM*jnrG;
1078             j_coord_offsetH  = DIM*jnrH;
1079
1080             /* load j atom coordinates */
1081             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1082                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1083                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1084                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1085                                                  &jx0,&jy0,&jz0);
1086
1087             /* Calculate displacement vector */
1088             dx00             = _mm256_sub_ps(ix0,jx0);
1089             dy00             = _mm256_sub_ps(iy0,jy0);
1090             dz00             = _mm256_sub_ps(iz0,jz0);
1091             dx10             = _mm256_sub_ps(ix1,jx0);
1092             dy10             = _mm256_sub_ps(iy1,jy0);
1093             dz10             = _mm256_sub_ps(iz1,jz0);
1094             dx20             = _mm256_sub_ps(ix2,jx0);
1095             dy20             = _mm256_sub_ps(iy2,jy0);
1096             dz20             = _mm256_sub_ps(iz2,jz0);
1097
1098             /* Calculate squared distance and things based on it */
1099             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1100             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1101             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1102
1103             rinv00           = avx256_invsqrt_f(rsq00);
1104             rinv10           = avx256_invsqrt_f(rsq10);
1105             rinv20           = avx256_invsqrt_f(rsq20);
1106
1107             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1108             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1109             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1110
1111             /* Load parameters for j particles */
1112             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1113                                                                  charge+jnrC+0,charge+jnrD+0,
1114                                                                  charge+jnrE+0,charge+jnrF+0,
1115                                                                  charge+jnrG+0,charge+jnrH+0);
1116
1117             fjx0             = _mm256_setzero_ps();
1118             fjy0             = _mm256_setzero_ps();
1119             fjz0             = _mm256_setzero_ps();
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1126             {
1127
1128             r00              = _mm256_mul_ps(rsq00,rinv00);
1129             r00              = _mm256_andnot_ps(dummy_mask,r00);
1130
1131             /* Compute parameters for interactions between i and j atoms */
1132             qq00             = _mm256_mul_ps(iq0,jq0);
1133
1134             /* EWALD ELECTROSTATICS */
1135             
1136             /* Analytical PME correction */
1137             zeta2            = _mm256_mul_ps(beta2,rsq00);
1138             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1139             pmecorrF         = avx256_pmecorrF_f(zeta2);
1140             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1141             felec            = _mm256_mul_ps(qq00,felec);
1142             
1143             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1144
1145             fscal            = felec;
1146
1147             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1148
1149             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1150
1151             /* Calculate temporary vectorial force */
1152             tx               = _mm256_mul_ps(fscal,dx00);
1153             ty               = _mm256_mul_ps(fscal,dy00);
1154             tz               = _mm256_mul_ps(fscal,dz00);
1155
1156             /* Update vectorial force */
1157             fix0             = _mm256_add_ps(fix0,tx);
1158             fiy0             = _mm256_add_ps(fiy0,ty);
1159             fiz0             = _mm256_add_ps(fiz0,tz);
1160
1161             fjx0             = _mm256_add_ps(fjx0,tx);
1162             fjy0             = _mm256_add_ps(fjy0,ty);
1163             fjz0             = _mm256_add_ps(fjz0,tz);
1164
1165             }
1166
1167             /**************************
1168              * CALCULATE INTERACTIONS *
1169              **************************/
1170
1171             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1172             {
1173
1174             r10              = _mm256_mul_ps(rsq10,rinv10);
1175             r10              = _mm256_andnot_ps(dummy_mask,r10);
1176
1177             /* Compute parameters for interactions between i and j atoms */
1178             qq10             = _mm256_mul_ps(iq1,jq0);
1179
1180             /* EWALD ELECTROSTATICS */
1181             
1182             /* Analytical PME correction */
1183             zeta2            = _mm256_mul_ps(beta2,rsq10);
1184             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1185             pmecorrF         = avx256_pmecorrF_f(zeta2);
1186             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1187             felec            = _mm256_mul_ps(qq10,felec);
1188             
1189             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1190
1191             fscal            = felec;
1192
1193             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1194
1195             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1196
1197             /* Calculate temporary vectorial force */
1198             tx               = _mm256_mul_ps(fscal,dx10);
1199             ty               = _mm256_mul_ps(fscal,dy10);
1200             tz               = _mm256_mul_ps(fscal,dz10);
1201
1202             /* Update vectorial force */
1203             fix1             = _mm256_add_ps(fix1,tx);
1204             fiy1             = _mm256_add_ps(fiy1,ty);
1205             fiz1             = _mm256_add_ps(fiz1,tz);
1206
1207             fjx0             = _mm256_add_ps(fjx0,tx);
1208             fjy0             = _mm256_add_ps(fjy0,ty);
1209             fjz0             = _mm256_add_ps(fjz0,tz);
1210
1211             }
1212
1213             /**************************
1214              * CALCULATE INTERACTIONS *
1215              **************************/
1216
1217             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1218             {
1219
1220             r20              = _mm256_mul_ps(rsq20,rinv20);
1221             r20              = _mm256_andnot_ps(dummy_mask,r20);
1222
1223             /* Compute parameters for interactions between i and j atoms */
1224             qq20             = _mm256_mul_ps(iq2,jq0);
1225
1226             /* EWALD ELECTROSTATICS */
1227             
1228             /* Analytical PME correction */
1229             zeta2            = _mm256_mul_ps(beta2,rsq20);
1230             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1231             pmecorrF         = avx256_pmecorrF_f(zeta2);
1232             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1233             felec            = _mm256_mul_ps(qq20,felec);
1234             
1235             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1240
1241             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1242
1243             /* Calculate temporary vectorial force */
1244             tx               = _mm256_mul_ps(fscal,dx20);
1245             ty               = _mm256_mul_ps(fscal,dy20);
1246             tz               = _mm256_mul_ps(fscal,dz20);
1247
1248             /* Update vectorial force */
1249             fix2             = _mm256_add_ps(fix2,tx);
1250             fiy2             = _mm256_add_ps(fiy2,ty);
1251             fiz2             = _mm256_add_ps(fiz2,tz);
1252
1253             fjx0             = _mm256_add_ps(fjx0,tx);
1254             fjy0             = _mm256_add_ps(fjy0,ty);
1255             fjz0             = _mm256_add_ps(fjz0,tz);
1256
1257             }
1258
1259             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1260             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1261             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1262             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1263             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1264             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1265             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1266             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1267
1268             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1269
1270             /* Inner loop uses 183 flops */
1271         }
1272
1273         /* End of innermost loop */
1274
1275         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1276                                                  f+i_coord_offset,fshift+i_shift_offset);
1277
1278         /* Increment number of inner iterations */
1279         inneriter                  += j_index_end - j_index_start;
1280
1281         /* Outer loop uses 18 flops */
1282     }
1283
1284     /* Increment number of outer iterations */
1285     outeriter        += nri;
1286
1287     /* Update outer/inner flops */
1288
1289     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*183);
1290 }