3dd0103a57275b71d8bb6c0209c1f8274bc5d595
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwNone_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256i          ewitab;
100     __m128i          ewitab_lo,ewitab_hi;
101     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121
122     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
123     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
124     beta2            = _mm256_mul_ps(beta,beta);
125     beta3            = _mm256_mul_ps(beta,beta2);
126
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
134     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
135     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
140     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148     j_coord_offsetE = 0;
149     j_coord_offsetF = 0;
150     j_coord_offsetG = 0;
151     j_coord_offsetH = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
178
179         fix0             = _mm256_setzero_ps();
180         fiy0             = _mm256_setzero_ps();
181         fiz0             = _mm256_setzero_ps();
182         fix1             = _mm256_setzero_ps();
183         fiy1             = _mm256_setzero_ps();
184         fiz1             = _mm256_setzero_ps();
185         fix2             = _mm256_setzero_ps();
186         fiy2             = _mm256_setzero_ps();
187         fiz2             = _mm256_setzero_ps();
188
189         /* Reset potential sums */
190         velecsum         = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225             dx10             = _mm256_sub_ps(ix1,jx0);
226             dy10             = _mm256_sub_ps(iy1,jy0);
227             dz10             = _mm256_sub_ps(iz1,jz0);
228             dx20             = _mm256_sub_ps(ix2,jx0);
229             dy20             = _mm256_sub_ps(iy2,jy0);
230             dz20             = _mm256_sub_ps(iz2,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
234             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
235             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
236
237             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
240
241             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
242             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0,
248                                                                  charge+jnrE+0,charge+jnrF+0,
249                                                                  charge+jnrG+0,charge+jnrH+0);
250
251             fjx0             = _mm256_setzero_ps();
252             fjy0             = _mm256_setzero_ps();
253             fjz0             = _mm256_setzero_ps();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             if (gmx_mm256_any_lt(rsq00,rcutoff2))
260             {
261
262             r00              = _mm256_mul_ps(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             qq00             = _mm256_mul_ps(iq0,jq0);
266
267             /* EWALD ELECTROSTATICS */
268             
269             /* Analytical PME correction */
270             zeta2            = _mm256_mul_ps(beta2,rsq00);
271             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
272             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
273             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
274             felec            = _mm256_mul_ps(qq00,felec);
275             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
276             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
277             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
278             velec            = _mm256_mul_ps(qq00,velec);
279             
280             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velec            = _mm256_and_ps(velec,cutoff_mask);
284             velecsum         = _mm256_add_ps(velecsum,velec);
285
286             fscal            = felec;
287
288             fscal            = _mm256_and_ps(fscal,cutoff_mask);
289
290             /* Calculate temporary vectorial force */
291             tx               = _mm256_mul_ps(fscal,dx00);
292             ty               = _mm256_mul_ps(fscal,dy00);
293             tz               = _mm256_mul_ps(fscal,dz00);
294
295             /* Update vectorial force */
296             fix0             = _mm256_add_ps(fix0,tx);
297             fiy0             = _mm256_add_ps(fiy0,ty);
298             fiz0             = _mm256_add_ps(fiz0,tz);
299
300             fjx0             = _mm256_add_ps(fjx0,tx);
301             fjy0             = _mm256_add_ps(fjy0,ty);
302             fjz0             = _mm256_add_ps(fjz0,tz);
303
304             }
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (gmx_mm256_any_lt(rsq10,rcutoff2))
311             {
312
313             r10              = _mm256_mul_ps(rsq10,rinv10);
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq10             = _mm256_mul_ps(iq1,jq0);
317
318             /* EWALD ELECTROSTATICS */
319             
320             /* Analytical PME correction */
321             zeta2            = _mm256_mul_ps(beta2,rsq10);
322             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
323             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
324             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
325             felec            = _mm256_mul_ps(qq10,felec);
326             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
327             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
328             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
329             velec            = _mm256_mul_ps(qq10,velec);
330             
331             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velec            = _mm256_and_ps(velec,cutoff_mask);
335             velecsum         = _mm256_add_ps(velecsum,velec);
336
337             fscal            = felec;
338
339             fscal            = _mm256_and_ps(fscal,cutoff_mask);
340
341             /* Calculate temporary vectorial force */
342             tx               = _mm256_mul_ps(fscal,dx10);
343             ty               = _mm256_mul_ps(fscal,dy10);
344             tz               = _mm256_mul_ps(fscal,dz10);
345
346             /* Update vectorial force */
347             fix1             = _mm256_add_ps(fix1,tx);
348             fiy1             = _mm256_add_ps(fiy1,ty);
349             fiz1             = _mm256_add_ps(fiz1,tz);
350
351             fjx0             = _mm256_add_ps(fjx0,tx);
352             fjy0             = _mm256_add_ps(fjy0,ty);
353             fjz0             = _mm256_add_ps(fjz0,tz);
354
355             }
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             if (gmx_mm256_any_lt(rsq20,rcutoff2))
362             {
363
364             r20              = _mm256_mul_ps(rsq20,rinv20);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq20             = _mm256_mul_ps(iq2,jq0);
368
369             /* EWALD ELECTROSTATICS */
370             
371             /* Analytical PME correction */
372             zeta2            = _mm256_mul_ps(beta2,rsq20);
373             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
374             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
375             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
376             felec            = _mm256_mul_ps(qq20,felec);
377             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
378             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
379             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
380             velec            = _mm256_mul_ps(qq20,velec);
381             
382             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velec            = _mm256_and_ps(velec,cutoff_mask);
386             velecsum         = _mm256_add_ps(velecsum,velec);
387
388             fscal            = felec;
389
390             fscal            = _mm256_and_ps(fscal,cutoff_mask);
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm256_mul_ps(fscal,dx20);
394             ty               = _mm256_mul_ps(fscal,dy20);
395             tz               = _mm256_mul_ps(fscal,dz20);
396
397             /* Update vectorial force */
398             fix2             = _mm256_add_ps(fix2,tx);
399             fiy2             = _mm256_add_ps(fiy2,ty);
400             fiz2             = _mm256_add_ps(fiz2,tz);
401
402             fjx0             = _mm256_add_ps(fjx0,tx);
403             fjy0             = _mm256_add_ps(fjy0,ty);
404             fjz0             = _mm256_add_ps(fjz0,tz);
405
406             }
407
408             fjptrA             = f+j_coord_offsetA;
409             fjptrB             = f+j_coord_offsetB;
410             fjptrC             = f+j_coord_offsetC;
411             fjptrD             = f+j_coord_offsetD;
412             fjptrE             = f+j_coord_offsetE;
413             fjptrF             = f+j_coord_offsetF;
414             fjptrG             = f+j_coord_offsetG;
415             fjptrH             = f+j_coord_offsetH;
416
417             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
418
419             /* Inner loop uses 330 flops */
420         }
421
422         if(jidx<j_index_end)
423         {
424
425             /* Get j neighbor index, and coordinate index */
426             jnrlistA         = jjnr[jidx];
427             jnrlistB         = jjnr[jidx+1];
428             jnrlistC         = jjnr[jidx+2];
429             jnrlistD         = jjnr[jidx+3];
430             jnrlistE         = jjnr[jidx+4];
431             jnrlistF         = jjnr[jidx+5];
432             jnrlistG         = jjnr[jidx+6];
433             jnrlistH         = jjnr[jidx+7];
434             /* Sign of each element will be negative for non-real atoms.
435              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
436              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
437              */
438             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
439                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
440                                             
441             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
442             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
443             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
444             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
445             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
446             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
447             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
448             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
449             j_coord_offsetA  = DIM*jnrA;
450             j_coord_offsetB  = DIM*jnrB;
451             j_coord_offsetC  = DIM*jnrC;
452             j_coord_offsetD  = DIM*jnrD;
453             j_coord_offsetE  = DIM*jnrE;
454             j_coord_offsetF  = DIM*jnrF;
455             j_coord_offsetG  = DIM*jnrG;
456             j_coord_offsetH  = DIM*jnrH;
457
458             /* load j atom coordinates */
459             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
460                                                  x+j_coord_offsetC,x+j_coord_offsetD,
461                                                  x+j_coord_offsetE,x+j_coord_offsetF,
462                                                  x+j_coord_offsetG,x+j_coord_offsetH,
463                                                  &jx0,&jy0,&jz0);
464
465             /* Calculate displacement vector */
466             dx00             = _mm256_sub_ps(ix0,jx0);
467             dy00             = _mm256_sub_ps(iy0,jy0);
468             dz00             = _mm256_sub_ps(iz0,jz0);
469             dx10             = _mm256_sub_ps(ix1,jx0);
470             dy10             = _mm256_sub_ps(iy1,jy0);
471             dz10             = _mm256_sub_ps(iz1,jz0);
472             dx20             = _mm256_sub_ps(ix2,jx0);
473             dy20             = _mm256_sub_ps(iy2,jy0);
474             dz20             = _mm256_sub_ps(iz2,jz0);
475
476             /* Calculate squared distance and things based on it */
477             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
478             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
479             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
480
481             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
482             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
483             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
484
485             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
486             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
487             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
488
489             /* Load parameters for j particles */
490             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
491                                                                  charge+jnrC+0,charge+jnrD+0,
492                                                                  charge+jnrE+0,charge+jnrF+0,
493                                                                  charge+jnrG+0,charge+jnrH+0);
494
495             fjx0             = _mm256_setzero_ps();
496             fjy0             = _mm256_setzero_ps();
497             fjz0             = _mm256_setzero_ps();
498
499             /**************************
500              * CALCULATE INTERACTIONS *
501              **************************/
502
503             if (gmx_mm256_any_lt(rsq00,rcutoff2))
504             {
505
506             r00              = _mm256_mul_ps(rsq00,rinv00);
507             r00              = _mm256_andnot_ps(dummy_mask,r00);
508
509             /* Compute parameters for interactions between i and j atoms */
510             qq00             = _mm256_mul_ps(iq0,jq0);
511
512             /* EWALD ELECTROSTATICS */
513             
514             /* Analytical PME correction */
515             zeta2            = _mm256_mul_ps(beta2,rsq00);
516             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
517             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
518             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
519             felec            = _mm256_mul_ps(qq00,felec);
520             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
521             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
522             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
523             velec            = _mm256_mul_ps(qq00,velec);
524             
525             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm256_and_ps(velec,cutoff_mask);
529             velec            = _mm256_andnot_ps(dummy_mask,velec);
530             velecsum         = _mm256_add_ps(velecsum,velec);
531
532             fscal            = felec;
533
534             fscal            = _mm256_and_ps(fscal,cutoff_mask);
535
536             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm256_mul_ps(fscal,dx00);
540             ty               = _mm256_mul_ps(fscal,dy00);
541             tz               = _mm256_mul_ps(fscal,dz00);
542
543             /* Update vectorial force */
544             fix0             = _mm256_add_ps(fix0,tx);
545             fiy0             = _mm256_add_ps(fiy0,ty);
546             fiz0             = _mm256_add_ps(fiz0,tz);
547
548             fjx0             = _mm256_add_ps(fjx0,tx);
549             fjy0             = _mm256_add_ps(fjy0,ty);
550             fjz0             = _mm256_add_ps(fjz0,tz);
551
552             }
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             if (gmx_mm256_any_lt(rsq10,rcutoff2))
559             {
560
561             r10              = _mm256_mul_ps(rsq10,rinv10);
562             r10              = _mm256_andnot_ps(dummy_mask,r10);
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq10             = _mm256_mul_ps(iq1,jq0);
566
567             /* EWALD ELECTROSTATICS */
568             
569             /* Analytical PME correction */
570             zeta2            = _mm256_mul_ps(beta2,rsq10);
571             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
572             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
573             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
574             felec            = _mm256_mul_ps(qq10,felec);
575             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
576             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
577             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
578             velec            = _mm256_mul_ps(qq10,velec);
579             
580             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm256_and_ps(velec,cutoff_mask);
584             velec            = _mm256_andnot_ps(dummy_mask,velec);
585             velecsum         = _mm256_add_ps(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm256_and_ps(fscal,cutoff_mask);
590
591             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm256_mul_ps(fscal,dx10);
595             ty               = _mm256_mul_ps(fscal,dy10);
596             tz               = _mm256_mul_ps(fscal,dz10);
597
598             /* Update vectorial force */
599             fix1             = _mm256_add_ps(fix1,tx);
600             fiy1             = _mm256_add_ps(fiy1,ty);
601             fiz1             = _mm256_add_ps(fiz1,tz);
602
603             fjx0             = _mm256_add_ps(fjx0,tx);
604             fjy0             = _mm256_add_ps(fjy0,ty);
605             fjz0             = _mm256_add_ps(fjz0,tz);
606
607             }
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             if (gmx_mm256_any_lt(rsq20,rcutoff2))
614             {
615
616             r20              = _mm256_mul_ps(rsq20,rinv20);
617             r20              = _mm256_andnot_ps(dummy_mask,r20);
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq20             = _mm256_mul_ps(iq2,jq0);
621
622             /* EWALD ELECTROSTATICS */
623             
624             /* Analytical PME correction */
625             zeta2            = _mm256_mul_ps(beta2,rsq20);
626             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
627             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
628             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
629             felec            = _mm256_mul_ps(qq20,felec);
630             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
631             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
632             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
633             velec            = _mm256_mul_ps(qq20,velec);
634             
635             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
636
637             /* Update potential sum for this i atom from the interaction with this j atom. */
638             velec            = _mm256_and_ps(velec,cutoff_mask);
639             velec            = _mm256_andnot_ps(dummy_mask,velec);
640             velecsum         = _mm256_add_ps(velecsum,velec);
641
642             fscal            = felec;
643
644             fscal            = _mm256_and_ps(fscal,cutoff_mask);
645
646             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm256_mul_ps(fscal,dx20);
650             ty               = _mm256_mul_ps(fscal,dy20);
651             tz               = _mm256_mul_ps(fscal,dz20);
652
653             /* Update vectorial force */
654             fix2             = _mm256_add_ps(fix2,tx);
655             fiy2             = _mm256_add_ps(fiy2,ty);
656             fiz2             = _mm256_add_ps(fiz2,tz);
657
658             fjx0             = _mm256_add_ps(fjx0,tx);
659             fjy0             = _mm256_add_ps(fjy0,ty);
660             fjz0             = _mm256_add_ps(fjz0,tz);
661
662             }
663
664             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
665             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
666             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
667             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
668             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
669             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
670             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
671             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
672
673             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
674
675             /* Inner loop uses 333 flops */
676         }
677
678         /* End of innermost loop */
679
680         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
681                                                  f+i_coord_offset,fshift+i_shift_offset);
682
683         ggid                        = gid[iidx];
684         /* Update potential energies */
685         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
686
687         /* Increment number of inner iterations */
688         inneriter                  += j_index_end - j_index_start;
689
690         /* Outer loop uses 19 flops */
691     }
692
693     /* Increment number of outer iterations */
694     outeriter        += nri;
695
696     /* Update outer/inner flops */
697
698     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*333);
699 }
700 /*
701  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_avx_256_single
702  * Electrostatics interaction: Ewald
703  * VdW interaction:            None
704  * Geometry:                   Water3-Particle
705  * Calculate force/pot:        Force
706  */
707 void
708 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_avx_256_single
709                     (t_nblist                    * gmx_restrict       nlist,
710                      rvec                        * gmx_restrict          xx,
711                      rvec                        * gmx_restrict          ff,
712                      t_forcerec                  * gmx_restrict          fr,
713                      t_mdatoms                   * gmx_restrict     mdatoms,
714                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
715                      t_nrnb                      * gmx_restrict        nrnb)
716 {
717     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
718      * just 0 for non-waters.
719      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
720      * jnr indices corresponding to data put in the four positions in the SIMD register.
721      */
722     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
723     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
724     int              jnrA,jnrB,jnrC,jnrD;
725     int              jnrE,jnrF,jnrG,jnrH;
726     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
727     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
728     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
729     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
730     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
731     real             rcutoff_scalar;
732     real             *shiftvec,*fshift,*x,*f;
733     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
734     real             scratch[4*DIM];
735     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
736     real *           vdwioffsetptr0;
737     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
738     real *           vdwioffsetptr1;
739     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
740     real *           vdwioffsetptr2;
741     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
742     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
743     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
744     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
745     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
746     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
747     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
748     real             *charge;
749     __m256i          ewitab;
750     __m128i          ewitab_lo,ewitab_hi;
751     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
752     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
753     real             *ewtab;
754     __m256           dummy_mask,cutoff_mask;
755     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
756     __m256           one     = _mm256_set1_ps(1.0);
757     __m256           two     = _mm256_set1_ps(2.0);
758     x                = xx[0];
759     f                = ff[0];
760
761     nri              = nlist->nri;
762     iinr             = nlist->iinr;
763     jindex           = nlist->jindex;
764     jjnr             = nlist->jjnr;
765     shiftidx         = nlist->shift;
766     gid              = nlist->gid;
767     shiftvec         = fr->shift_vec[0];
768     fshift           = fr->fshift[0];
769     facel            = _mm256_set1_ps(fr->epsfac);
770     charge           = mdatoms->chargeA;
771
772     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
773     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
774     beta2            = _mm256_mul_ps(beta,beta);
775     beta3            = _mm256_mul_ps(beta,beta2);
776
777     ewtab            = fr->ic->tabq_coul_F;
778     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
779     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
780
781     /* Setup water-specific parameters */
782     inr              = nlist->iinr[0];
783     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
784     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
785     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
786
787     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
788     rcutoff_scalar   = fr->rcoulomb;
789     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
790     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
791
792     /* Avoid stupid compiler warnings */
793     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
794     j_coord_offsetA = 0;
795     j_coord_offsetB = 0;
796     j_coord_offsetC = 0;
797     j_coord_offsetD = 0;
798     j_coord_offsetE = 0;
799     j_coord_offsetF = 0;
800     j_coord_offsetG = 0;
801     j_coord_offsetH = 0;
802
803     outeriter        = 0;
804     inneriter        = 0;
805
806     for(iidx=0;iidx<4*DIM;iidx++)
807     {
808         scratch[iidx] = 0.0;
809     }
810
811     /* Start outer loop over neighborlists */
812     for(iidx=0; iidx<nri; iidx++)
813     {
814         /* Load shift vector for this list */
815         i_shift_offset   = DIM*shiftidx[iidx];
816
817         /* Load limits for loop over neighbors */
818         j_index_start    = jindex[iidx];
819         j_index_end      = jindex[iidx+1];
820
821         /* Get outer coordinate index */
822         inr              = iinr[iidx];
823         i_coord_offset   = DIM*inr;
824
825         /* Load i particle coords and add shift vector */
826         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
827                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
828
829         fix0             = _mm256_setzero_ps();
830         fiy0             = _mm256_setzero_ps();
831         fiz0             = _mm256_setzero_ps();
832         fix1             = _mm256_setzero_ps();
833         fiy1             = _mm256_setzero_ps();
834         fiz1             = _mm256_setzero_ps();
835         fix2             = _mm256_setzero_ps();
836         fiy2             = _mm256_setzero_ps();
837         fiz2             = _mm256_setzero_ps();
838
839         /* Start inner kernel loop */
840         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
841         {
842
843             /* Get j neighbor index, and coordinate index */
844             jnrA             = jjnr[jidx];
845             jnrB             = jjnr[jidx+1];
846             jnrC             = jjnr[jidx+2];
847             jnrD             = jjnr[jidx+3];
848             jnrE             = jjnr[jidx+4];
849             jnrF             = jjnr[jidx+5];
850             jnrG             = jjnr[jidx+6];
851             jnrH             = jjnr[jidx+7];
852             j_coord_offsetA  = DIM*jnrA;
853             j_coord_offsetB  = DIM*jnrB;
854             j_coord_offsetC  = DIM*jnrC;
855             j_coord_offsetD  = DIM*jnrD;
856             j_coord_offsetE  = DIM*jnrE;
857             j_coord_offsetF  = DIM*jnrF;
858             j_coord_offsetG  = DIM*jnrG;
859             j_coord_offsetH  = DIM*jnrH;
860
861             /* load j atom coordinates */
862             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
863                                                  x+j_coord_offsetC,x+j_coord_offsetD,
864                                                  x+j_coord_offsetE,x+j_coord_offsetF,
865                                                  x+j_coord_offsetG,x+j_coord_offsetH,
866                                                  &jx0,&jy0,&jz0);
867
868             /* Calculate displacement vector */
869             dx00             = _mm256_sub_ps(ix0,jx0);
870             dy00             = _mm256_sub_ps(iy0,jy0);
871             dz00             = _mm256_sub_ps(iz0,jz0);
872             dx10             = _mm256_sub_ps(ix1,jx0);
873             dy10             = _mm256_sub_ps(iy1,jy0);
874             dz10             = _mm256_sub_ps(iz1,jz0);
875             dx20             = _mm256_sub_ps(ix2,jx0);
876             dy20             = _mm256_sub_ps(iy2,jy0);
877             dz20             = _mm256_sub_ps(iz2,jz0);
878
879             /* Calculate squared distance and things based on it */
880             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
881             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
882             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
883
884             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
885             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
886             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
887
888             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
889             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
890             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
891
892             /* Load parameters for j particles */
893             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
894                                                                  charge+jnrC+0,charge+jnrD+0,
895                                                                  charge+jnrE+0,charge+jnrF+0,
896                                                                  charge+jnrG+0,charge+jnrH+0);
897
898             fjx0             = _mm256_setzero_ps();
899             fjy0             = _mm256_setzero_ps();
900             fjz0             = _mm256_setzero_ps();
901
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             if (gmx_mm256_any_lt(rsq00,rcutoff2))
907             {
908
909             r00              = _mm256_mul_ps(rsq00,rinv00);
910
911             /* Compute parameters for interactions between i and j atoms */
912             qq00             = _mm256_mul_ps(iq0,jq0);
913
914             /* EWALD ELECTROSTATICS */
915             
916             /* Analytical PME correction */
917             zeta2            = _mm256_mul_ps(beta2,rsq00);
918             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
919             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
920             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
921             felec            = _mm256_mul_ps(qq00,felec);
922             
923             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
924
925             fscal            = felec;
926
927             fscal            = _mm256_and_ps(fscal,cutoff_mask);
928
929             /* Calculate temporary vectorial force */
930             tx               = _mm256_mul_ps(fscal,dx00);
931             ty               = _mm256_mul_ps(fscal,dy00);
932             tz               = _mm256_mul_ps(fscal,dz00);
933
934             /* Update vectorial force */
935             fix0             = _mm256_add_ps(fix0,tx);
936             fiy0             = _mm256_add_ps(fiy0,ty);
937             fiz0             = _mm256_add_ps(fiz0,tz);
938
939             fjx0             = _mm256_add_ps(fjx0,tx);
940             fjy0             = _mm256_add_ps(fjy0,ty);
941             fjz0             = _mm256_add_ps(fjz0,tz);
942
943             }
944
945             /**************************
946              * CALCULATE INTERACTIONS *
947              **************************/
948
949             if (gmx_mm256_any_lt(rsq10,rcutoff2))
950             {
951
952             r10              = _mm256_mul_ps(rsq10,rinv10);
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq10             = _mm256_mul_ps(iq1,jq0);
956
957             /* EWALD ELECTROSTATICS */
958             
959             /* Analytical PME correction */
960             zeta2            = _mm256_mul_ps(beta2,rsq10);
961             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
962             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
963             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
964             felec            = _mm256_mul_ps(qq10,felec);
965             
966             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
967
968             fscal            = felec;
969
970             fscal            = _mm256_and_ps(fscal,cutoff_mask);
971
972             /* Calculate temporary vectorial force */
973             tx               = _mm256_mul_ps(fscal,dx10);
974             ty               = _mm256_mul_ps(fscal,dy10);
975             tz               = _mm256_mul_ps(fscal,dz10);
976
977             /* Update vectorial force */
978             fix1             = _mm256_add_ps(fix1,tx);
979             fiy1             = _mm256_add_ps(fiy1,ty);
980             fiz1             = _mm256_add_ps(fiz1,tz);
981
982             fjx0             = _mm256_add_ps(fjx0,tx);
983             fjy0             = _mm256_add_ps(fjy0,ty);
984             fjz0             = _mm256_add_ps(fjz0,tz);
985
986             }
987
988             /**************************
989              * CALCULATE INTERACTIONS *
990              **************************/
991
992             if (gmx_mm256_any_lt(rsq20,rcutoff2))
993             {
994
995             r20              = _mm256_mul_ps(rsq20,rinv20);
996
997             /* Compute parameters for interactions between i and j atoms */
998             qq20             = _mm256_mul_ps(iq2,jq0);
999
1000             /* EWALD ELECTROSTATICS */
1001             
1002             /* Analytical PME correction */
1003             zeta2            = _mm256_mul_ps(beta2,rsq20);
1004             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1005             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1006             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1007             felec            = _mm256_mul_ps(qq20,felec);
1008             
1009             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1010
1011             fscal            = felec;
1012
1013             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1014
1015             /* Calculate temporary vectorial force */
1016             tx               = _mm256_mul_ps(fscal,dx20);
1017             ty               = _mm256_mul_ps(fscal,dy20);
1018             tz               = _mm256_mul_ps(fscal,dz20);
1019
1020             /* Update vectorial force */
1021             fix2             = _mm256_add_ps(fix2,tx);
1022             fiy2             = _mm256_add_ps(fiy2,ty);
1023             fiz2             = _mm256_add_ps(fiz2,tz);
1024
1025             fjx0             = _mm256_add_ps(fjx0,tx);
1026             fjy0             = _mm256_add_ps(fjy0,ty);
1027             fjz0             = _mm256_add_ps(fjz0,tz);
1028
1029             }
1030
1031             fjptrA             = f+j_coord_offsetA;
1032             fjptrB             = f+j_coord_offsetB;
1033             fjptrC             = f+j_coord_offsetC;
1034             fjptrD             = f+j_coord_offsetD;
1035             fjptrE             = f+j_coord_offsetE;
1036             fjptrF             = f+j_coord_offsetF;
1037             fjptrG             = f+j_coord_offsetG;
1038             fjptrH             = f+j_coord_offsetH;
1039
1040             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1041
1042             /* Inner loop uses 180 flops */
1043         }
1044
1045         if(jidx<j_index_end)
1046         {
1047
1048             /* Get j neighbor index, and coordinate index */
1049             jnrlistA         = jjnr[jidx];
1050             jnrlistB         = jjnr[jidx+1];
1051             jnrlistC         = jjnr[jidx+2];
1052             jnrlistD         = jjnr[jidx+3];
1053             jnrlistE         = jjnr[jidx+4];
1054             jnrlistF         = jjnr[jidx+5];
1055             jnrlistG         = jjnr[jidx+6];
1056             jnrlistH         = jjnr[jidx+7];
1057             /* Sign of each element will be negative for non-real atoms.
1058              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1059              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1060              */
1061             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1062                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1063                                             
1064             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1065             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1066             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1067             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1068             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1069             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1070             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1071             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1072             j_coord_offsetA  = DIM*jnrA;
1073             j_coord_offsetB  = DIM*jnrB;
1074             j_coord_offsetC  = DIM*jnrC;
1075             j_coord_offsetD  = DIM*jnrD;
1076             j_coord_offsetE  = DIM*jnrE;
1077             j_coord_offsetF  = DIM*jnrF;
1078             j_coord_offsetG  = DIM*jnrG;
1079             j_coord_offsetH  = DIM*jnrH;
1080
1081             /* load j atom coordinates */
1082             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1083                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1084                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1085                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1086                                                  &jx0,&jy0,&jz0);
1087
1088             /* Calculate displacement vector */
1089             dx00             = _mm256_sub_ps(ix0,jx0);
1090             dy00             = _mm256_sub_ps(iy0,jy0);
1091             dz00             = _mm256_sub_ps(iz0,jz0);
1092             dx10             = _mm256_sub_ps(ix1,jx0);
1093             dy10             = _mm256_sub_ps(iy1,jy0);
1094             dz10             = _mm256_sub_ps(iz1,jz0);
1095             dx20             = _mm256_sub_ps(ix2,jx0);
1096             dy20             = _mm256_sub_ps(iy2,jy0);
1097             dz20             = _mm256_sub_ps(iz2,jz0);
1098
1099             /* Calculate squared distance and things based on it */
1100             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1101             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1102             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1103
1104             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1105             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1106             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1107
1108             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1109             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1110             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1111
1112             /* Load parameters for j particles */
1113             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1114                                                                  charge+jnrC+0,charge+jnrD+0,
1115                                                                  charge+jnrE+0,charge+jnrF+0,
1116                                                                  charge+jnrG+0,charge+jnrH+0);
1117
1118             fjx0             = _mm256_setzero_ps();
1119             fjy0             = _mm256_setzero_ps();
1120             fjz0             = _mm256_setzero_ps();
1121
1122             /**************************
1123              * CALCULATE INTERACTIONS *
1124              **************************/
1125
1126             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1127             {
1128
1129             r00              = _mm256_mul_ps(rsq00,rinv00);
1130             r00              = _mm256_andnot_ps(dummy_mask,r00);
1131
1132             /* Compute parameters for interactions between i and j atoms */
1133             qq00             = _mm256_mul_ps(iq0,jq0);
1134
1135             /* EWALD ELECTROSTATICS */
1136             
1137             /* Analytical PME correction */
1138             zeta2            = _mm256_mul_ps(beta2,rsq00);
1139             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1140             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1141             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1142             felec            = _mm256_mul_ps(qq00,felec);
1143             
1144             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1145
1146             fscal            = felec;
1147
1148             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1149
1150             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1151
1152             /* Calculate temporary vectorial force */
1153             tx               = _mm256_mul_ps(fscal,dx00);
1154             ty               = _mm256_mul_ps(fscal,dy00);
1155             tz               = _mm256_mul_ps(fscal,dz00);
1156
1157             /* Update vectorial force */
1158             fix0             = _mm256_add_ps(fix0,tx);
1159             fiy0             = _mm256_add_ps(fiy0,ty);
1160             fiz0             = _mm256_add_ps(fiz0,tz);
1161
1162             fjx0             = _mm256_add_ps(fjx0,tx);
1163             fjy0             = _mm256_add_ps(fjy0,ty);
1164             fjz0             = _mm256_add_ps(fjz0,tz);
1165
1166             }
1167
1168             /**************************
1169              * CALCULATE INTERACTIONS *
1170              **************************/
1171
1172             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1173             {
1174
1175             r10              = _mm256_mul_ps(rsq10,rinv10);
1176             r10              = _mm256_andnot_ps(dummy_mask,r10);
1177
1178             /* Compute parameters for interactions between i and j atoms */
1179             qq10             = _mm256_mul_ps(iq1,jq0);
1180
1181             /* EWALD ELECTROSTATICS */
1182             
1183             /* Analytical PME correction */
1184             zeta2            = _mm256_mul_ps(beta2,rsq10);
1185             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1186             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1187             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1188             felec            = _mm256_mul_ps(qq10,felec);
1189             
1190             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1191
1192             fscal            = felec;
1193
1194             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1195
1196             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1197
1198             /* Calculate temporary vectorial force */
1199             tx               = _mm256_mul_ps(fscal,dx10);
1200             ty               = _mm256_mul_ps(fscal,dy10);
1201             tz               = _mm256_mul_ps(fscal,dz10);
1202
1203             /* Update vectorial force */
1204             fix1             = _mm256_add_ps(fix1,tx);
1205             fiy1             = _mm256_add_ps(fiy1,ty);
1206             fiz1             = _mm256_add_ps(fiz1,tz);
1207
1208             fjx0             = _mm256_add_ps(fjx0,tx);
1209             fjy0             = _mm256_add_ps(fjy0,ty);
1210             fjz0             = _mm256_add_ps(fjz0,tz);
1211
1212             }
1213
1214             /**************************
1215              * CALCULATE INTERACTIONS *
1216              **************************/
1217
1218             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1219             {
1220
1221             r20              = _mm256_mul_ps(rsq20,rinv20);
1222             r20              = _mm256_andnot_ps(dummy_mask,r20);
1223
1224             /* Compute parameters for interactions between i and j atoms */
1225             qq20             = _mm256_mul_ps(iq2,jq0);
1226
1227             /* EWALD ELECTROSTATICS */
1228             
1229             /* Analytical PME correction */
1230             zeta2            = _mm256_mul_ps(beta2,rsq20);
1231             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1232             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1233             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1234             felec            = _mm256_mul_ps(qq20,felec);
1235             
1236             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1237
1238             fscal            = felec;
1239
1240             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1241
1242             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1243
1244             /* Calculate temporary vectorial force */
1245             tx               = _mm256_mul_ps(fscal,dx20);
1246             ty               = _mm256_mul_ps(fscal,dy20);
1247             tz               = _mm256_mul_ps(fscal,dz20);
1248
1249             /* Update vectorial force */
1250             fix2             = _mm256_add_ps(fix2,tx);
1251             fiy2             = _mm256_add_ps(fiy2,ty);
1252             fiz2             = _mm256_add_ps(fiz2,tz);
1253
1254             fjx0             = _mm256_add_ps(fjx0,tx);
1255             fjy0             = _mm256_add_ps(fjy0,ty);
1256             fjz0             = _mm256_add_ps(fjz0,tz);
1257
1258             }
1259
1260             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1261             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1262             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1263             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1264             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1265             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1266             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1267             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1268
1269             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1270
1271             /* Inner loop uses 183 flops */
1272         }
1273
1274         /* End of innermost loop */
1275
1276         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1277                                                  f+i_coord_offset,fshift+i_shift_offset);
1278
1279         /* Increment number of inner iterations */
1280         inneriter                  += j_index_end - j_index_start;
1281
1282         /* Outer loop uses 18 flops */
1283     }
1284
1285     /* Increment number of outer iterations */
1286     outeriter        += nri;
1287
1288     /* Update outer/inner flops */
1289
1290     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*183);
1291 }