Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m256i          ewitab;
93     __m128i          ewitab_lo,ewitab_hi;
94     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
96     real             *ewtab;
97     __m256           dummy_mask,cutoff_mask;
98     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
99     __m256           one     = _mm256_set1_ps(1.0);
100     __m256           two     = _mm256_set1_ps(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm256_set1_ps(fr->ic->epsfac);
113     charge           = mdatoms->chargeA;
114
115     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
116     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
117     beta2            = _mm256_mul_ps(beta,beta);
118     beta3            = _mm256_mul_ps(beta,beta2);
119
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->ic->rcoulomb;
126     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135     j_coord_offsetE = 0;
136     j_coord_offsetF = 0;
137     j_coord_offsetG = 0;
138     j_coord_offsetH = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165         fix0             = _mm256_setzero_ps();
166         fiy0             = _mm256_setzero_ps();
167         fiz0             = _mm256_setzero_ps();
168
169         /* Load parameters for i particles */
170         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             jnrE             = jjnr[jidx+4];
185             jnrF             = jjnr[jidx+5];
186             jnrG             = jjnr[jidx+6];
187             jnrH             = jjnr[jidx+7];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192             j_coord_offsetE  = DIM*jnrE;
193             j_coord_offsetF  = DIM*jnrF;
194             j_coord_offsetG  = DIM*jnrG;
195             j_coord_offsetH  = DIM*jnrH;
196
197             /* load j atom coordinates */
198             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                                  x+j_coord_offsetC,x+j_coord_offsetD,
200                                                  x+j_coord_offsetE,x+j_coord_offsetF,
201                                                  x+j_coord_offsetG,x+j_coord_offsetH,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm256_sub_ps(ix0,jx0);
206             dy00             = _mm256_sub_ps(iy0,jy0);
207             dz00             = _mm256_sub_ps(iz0,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
211
212             rinv00           = avx256_invsqrt_f(rsq00);
213
214             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
218                                                                  charge+jnrC+0,charge+jnrD+0,
219                                                                  charge+jnrE+0,charge+jnrF+0,
220                                                                  charge+jnrG+0,charge+jnrH+0);
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             if (gmx_mm256_any_lt(rsq00,rcutoff2))
227             {
228
229             r00              = _mm256_mul_ps(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm256_mul_ps(iq0,jq0);
233
234             /* EWALD ELECTROSTATICS */
235             
236             /* Analytical PME correction */
237             zeta2            = _mm256_mul_ps(beta2,rsq00);
238             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
239             pmecorrF         = avx256_pmecorrF_f(zeta2);
240             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
241             felec            = _mm256_mul_ps(qq00,felec);
242             pmecorrV         = avx256_pmecorrV_f(zeta2);
243             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
244             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
245             velec            = _mm256_mul_ps(qq00,velec);
246             
247             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velec            = _mm256_and_ps(velec,cutoff_mask);
251             velecsum         = _mm256_add_ps(velecsum,velec);
252
253             fscal            = felec;
254
255             fscal            = _mm256_and_ps(fscal,cutoff_mask);
256
257             /* Calculate temporary vectorial force */
258             tx               = _mm256_mul_ps(fscal,dx00);
259             ty               = _mm256_mul_ps(fscal,dy00);
260             tz               = _mm256_mul_ps(fscal,dz00);
261
262             /* Update vectorial force */
263             fix0             = _mm256_add_ps(fix0,tx);
264             fiy0             = _mm256_add_ps(fiy0,ty);
265             fiz0             = _mm256_add_ps(fiz0,tz);
266
267             fjptrA             = f+j_coord_offsetA;
268             fjptrB             = f+j_coord_offsetB;
269             fjptrC             = f+j_coord_offsetC;
270             fjptrD             = f+j_coord_offsetD;
271             fjptrE             = f+j_coord_offsetE;
272             fjptrF             = f+j_coord_offsetF;
273             fjptrG             = f+j_coord_offsetG;
274             fjptrH             = f+j_coord_offsetH;
275             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
276
277             }
278
279             /* Inner loop uses 109 flops */
280         }
281
282         if(jidx<j_index_end)
283         {
284
285             /* Get j neighbor index, and coordinate index */
286             jnrlistA         = jjnr[jidx];
287             jnrlistB         = jjnr[jidx+1];
288             jnrlistC         = jjnr[jidx+2];
289             jnrlistD         = jjnr[jidx+3];
290             jnrlistE         = jjnr[jidx+4];
291             jnrlistF         = jjnr[jidx+5];
292             jnrlistG         = jjnr[jidx+6];
293             jnrlistH         = jjnr[jidx+7];
294             /* Sign of each element will be negative for non-real atoms.
295              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
296              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
297              */
298             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
299                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
300                                             
301             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
302             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
303             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
304             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
305             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
306             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
307             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
308             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
309             j_coord_offsetA  = DIM*jnrA;
310             j_coord_offsetB  = DIM*jnrB;
311             j_coord_offsetC  = DIM*jnrC;
312             j_coord_offsetD  = DIM*jnrD;
313             j_coord_offsetE  = DIM*jnrE;
314             j_coord_offsetF  = DIM*jnrF;
315             j_coord_offsetG  = DIM*jnrG;
316             j_coord_offsetH  = DIM*jnrH;
317
318             /* load j atom coordinates */
319             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
320                                                  x+j_coord_offsetC,x+j_coord_offsetD,
321                                                  x+j_coord_offsetE,x+j_coord_offsetF,
322                                                  x+j_coord_offsetG,x+j_coord_offsetH,
323                                                  &jx0,&jy0,&jz0);
324
325             /* Calculate displacement vector */
326             dx00             = _mm256_sub_ps(ix0,jx0);
327             dy00             = _mm256_sub_ps(iy0,jy0);
328             dz00             = _mm256_sub_ps(iz0,jz0);
329
330             /* Calculate squared distance and things based on it */
331             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
332
333             rinv00           = avx256_invsqrt_f(rsq00);
334
335             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
336
337             /* Load parameters for j particles */
338             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
339                                                                  charge+jnrC+0,charge+jnrD+0,
340                                                                  charge+jnrE+0,charge+jnrF+0,
341                                                                  charge+jnrG+0,charge+jnrH+0);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             if (gmx_mm256_any_lt(rsq00,rcutoff2))
348             {
349
350             r00              = _mm256_mul_ps(rsq00,rinv00);
351             r00              = _mm256_andnot_ps(dummy_mask,r00);
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq00             = _mm256_mul_ps(iq0,jq0);
355
356             /* EWALD ELECTROSTATICS */
357             
358             /* Analytical PME correction */
359             zeta2            = _mm256_mul_ps(beta2,rsq00);
360             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
361             pmecorrF         = avx256_pmecorrF_f(zeta2);
362             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
363             felec            = _mm256_mul_ps(qq00,felec);
364             pmecorrV         = avx256_pmecorrV_f(zeta2);
365             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
366             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
367             velec            = _mm256_mul_ps(qq00,velec);
368             
369             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm256_and_ps(velec,cutoff_mask);
373             velec            = _mm256_andnot_ps(dummy_mask,velec);
374             velecsum         = _mm256_add_ps(velecsum,velec);
375
376             fscal            = felec;
377
378             fscal            = _mm256_and_ps(fscal,cutoff_mask);
379
380             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm256_mul_ps(fscal,dx00);
384             ty               = _mm256_mul_ps(fscal,dy00);
385             tz               = _mm256_mul_ps(fscal,dz00);
386
387             /* Update vectorial force */
388             fix0             = _mm256_add_ps(fix0,tx);
389             fiy0             = _mm256_add_ps(fiy0,ty);
390             fiz0             = _mm256_add_ps(fiz0,tz);
391
392             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
393             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
394             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
395             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
396             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
397             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
398             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
399             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
400             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
401
402             }
403
404             /* Inner loop uses 110 flops */
405         }
406
407         /* End of innermost loop */
408
409         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
410                                                  f+i_coord_offset,fshift+i_shift_offset);
411
412         ggid                        = gid[iidx];
413         /* Update potential energies */
414         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
415
416         /* Increment number of inner iterations */
417         inneriter                  += j_index_end - j_index_start;
418
419         /* Outer loop uses 8 flops */
420     }
421
422     /* Increment number of outer iterations */
423     outeriter        += nri;
424
425     /* Update outer/inner flops */
426
427     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*110);
428 }
429 /*
430  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_single
431  * Electrostatics interaction: Ewald
432  * VdW interaction:            None
433  * Geometry:                   Particle-Particle
434  * Calculate force/pot:        Force
435  */
436 void
437 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_single
438                     (t_nblist                    * gmx_restrict       nlist,
439                      rvec                        * gmx_restrict          xx,
440                      rvec                        * gmx_restrict          ff,
441                      struct t_forcerec           * gmx_restrict          fr,
442                      t_mdatoms                   * gmx_restrict     mdatoms,
443                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
444                      t_nrnb                      * gmx_restrict        nrnb)
445 {
446     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
447      * just 0 for non-waters.
448      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
449      * jnr indices corresponding to data put in the four positions in the SIMD register.
450      */
451     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
452     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
453     int              jnrA,jnrB,jnrC,jnrD;
454     int              jnrE,jnrF,jnrG,jnrH;
455     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
456     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
457     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
458     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
459     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
460     real             rcutoff_scalar;
461     real             *shiftvec,*fshift,*x,*f;
462     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
463     real             scratch[4*DIM];
464     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
465     real *           vdwioffsetptr0;
466     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
467     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
468     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
469     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
470     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
471     real             *charge;
472     __m256i          ewitab;
473     __m128i          ewitab_lo,ewitab_hi;
474     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
475     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
476     real             *ewtab;
477     __m256           dummy_mask,cutoff_mask;
478     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
479     __m256           one     = _mm256_set1_ps(1.0);
480     __m256           two     = _mm256_set1_ps(2.0);
481     x                = xx[0];
482     f                = ff[0];
483
484     nri              = nlist->nri;
485     iinr             = nlist->iinr;
486     jindex           = nlist->jindex;
487     jjnr             = nlist->jjnr;
488     shiftidx         = nlist->shift;
489     gid              = nlist->gid;
490     shiftvec         = fr->shift_vec[0];
491     fshift           = fr->fshift[0];
492     facel            = _mm256_set1_ps(fr->ic->epsfac);
493     charge           = mdatoms->chargeA;
494
495     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
496     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
497     beta2            = _mm256_mul_ps(beta,beta);
498     beta3            = _mm256_mul_ps(beta,beta2);
499
500     ewtab            = fr->ic->tabq_coul_F;
501     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
502     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
503
504     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
505     rcutoff_scalar   = fr->ic->rcoulomb;
506     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
507     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
508
509     /* Avoid stupid compiler warnings */
510     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
511     j_coord_offsetA = 0;
512     j_coord_offsetB = 0;
513     j_coord_offsetC = 0;
514     j_coord_offsetD = 0;
515     j_coord_offsetE = 0;
516     j_coord_offsetF = 0;
517     j_coord_offsetG = 0;
518     j_coord_offsetH = 0;
519
520     outeriter        = 0;
521     inneriter        = 0;
522
523     for(iidx=0;iidx<4*DIM;iidx++)
524     {
525         scratch[iidx] = 0.0;
526     }
527
528     /* Start outer loop over neighborlists */
529     for(iidx=0; iidx<nri; iidx++)
530     {
531         /* Load shift vector for this list */
532         i_shift_offset   = DIM*shiftidx[iidx];
533
534         /* Load limits for loop over neighbors */
535         j_index_start    = jindex[iidx];
536         j_index_end      = jindex[iidx+1];
537
538         /* Get outer coordinate index */
539         inr              = iinr[iidx];
540         i_coord_offset   = DIM*inr;
541
542         /* Load i particle coords and add shift vector */
543         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
544
545         fix0             = _mm256_setzero_ps();
546         fiy0             = _mm256_setzero_ps();
547         fiz0             = _mm256_setzero_ps();
548
549         /* Load parameters for i particles */
550         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
551
552         /* Start inner kernel loop */
553         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
554         {
555
556             /* Get j neighbor index, and coordinate index */
557             jnrA             = jjnr[jidx];
558             jnrB             = jjnr[jidx+1];
559             jnrC             = jjnr[jidx+2];
560             jnrD             = jjnr[jidx+3];
561             jnrE             = jjnr[jidx+4];
562             jnrF             = jjnr[jidx+5];
563             jnrG             = jjnr[jidx+6];
564             jnrH             = jjnr[jidx+7];
565             j_coord_offsetA  = DIM*jnrA;
566             j_coord_offsetB  = DIM*jnrB;
567             j_coord_offsetC  = DIM*jnrC;
568             j_coord_offsetD  = DIM*jnrD;
569             j_coord_offsetE  = DIM*jnrE;
570             j_coord_offsetF  = DIM*jnrF;
571             j_coord_offsetG  = DIM*jnrG;
572             j_coord_offsetH  = DIM*jnrH;
573
574             /* load j atom coordinates */
575             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
576                                                  x+j_coord_offsetC,x+j_coord_offsetD,
577                                                  x+j_coord_offsetE,x+j_coord_offsetF,
578                                                  x+j_coord_offsetG,x+j_coord_offsetH,
579                                                  &jx0,&jy0,&jz0);
580
581             /* Calculate displacement vector */
582             dx00             = _mm256_sub_ps(ix0,jx0);
583             dy00             = _mm256_sub_ps(iy0,jy0);
584             dz00             = _mm256_sub_ps(iz0,jz0);
585
586             /* Calculate squared distance and things based on it */
587             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
588
589             rinv00           = avx256_invsqrt_f(rsq00);
590
591             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
592
593             /* Load parameters for j particles */
594             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
595                                                                  charge+jnrC+0,charge+jnrD+0,
596                                                                  charge+jnrE+0,charge+jnrF+0,
597                                                                  charge+jnrG+0,charge+jnrH+0);
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             if (gmx_mm256_any_lt(rsq00,rcutoff2))
604             {
605
606             r00              = _mm256_mul_ps(rsq00,rinv00);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq00             = _mm256_mul_ps(iq0,jq0);
610
611             /* EWALD ELECTROSTATICS */
612             
613             /* Analytical PME correction */
614             zeta2            = _mm256_mul_ps(beta2,rsq00);
615             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
616             pmecorrF         = avx256_pmecorrF_f(zeta2);
617             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
618             felec            = _mm256_mul_ps(qq00,felec);
619             
620             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
621
622             fscal            = felec;
623
624             fscal            = _mm256_and_ps(fscal,cutoff_mask);
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm256_mul_ps(fscal,dx00);
628             ty               = _mm256_mul_ps(fscal,dy00);
629             tz               = _mm256_mul_ps(fscal,dz00);
630
631             /* Update vectorial force */
632             fix0             = _mm256_add_ps(fix0,tx);
633             fiy0             = _mm256_add_ps(fiy0,ty);
634             fiz0             = _mm256_add_ps(fiz0,tz);
635
636             fjptrA             = f+j_coord_offsetA;
637             fjptrB             = f+j_coord_offsetB;
638             fjptrC             = f+j_coord_offsetC;
639             fjptrD             = f+j_coord_offsetD;
640             fjptrE             = f+j_coord_offsetE;
641             fjptrF             = f+j_coord_offsetF;
642             fjptrG             = f+j_coord_offsetG;
643             fjptrH             = f+j_coord_offsetH;
644             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
645
646             }
647
648             /* Inner loop uses 59 flops */
649         }
650
651         if(jidx<j_index_end)
652         {
653
654             /* Get j neighbor index, and coordinate index */
655             jnrlistA         = jjnr[jidx];
656             jnrlistB         = jjnr[jidx+1];
657             jnrlistC         = jjnr[jidx+2];
658             jnrlistD         = jjnr[jidx+3];
659             jnrlistE         = jjnr[jidx+4];
660             jnrlistF         = jjnr[jidx+5];
661             jnrlistG         = jjnr[jidx+6];
662             jnrlistH         = jjnr[jidx+7];
663             /* Sign of each element will be negative for non-real atoms.
664              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
665              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
666              */
667             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
668                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
669                                             
670             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
671             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
672             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
673             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
674             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
675             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
676             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
677             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
678             j_coord_offsetA  = DIM*jnrA;
679             j_coord_offsetB  = DIM*jnrB;
680             j_coord_offsetC  = DIM*jnrC;
681             j_coord_offsetD  = DIM*jnrD;
682             j_coord_offsetE  = DIM*jnrE;
683             j_coord_offsetF  = DIM*jnrF;
684             j_coord_offsetG  = DIM*jnrG;
685             j_coord_offsetH  = DIM*jnrH;
686
687             /* load j atom coordinates */
688             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
689                                                  x+j_coord_offsetC,x+j_coord_offsetD,
690                                                  x+j_coord_offsetE,x+j_coord_offsetF,
691                                                  x+j_coord_offsetG,x+j_coord_offsetH,
692                                                  &jx0,&jy0,&jz0);
693
694             /* Calculate displacement vector */
695             dx00             = _mm256_sub_ps(ix0,jx0);
696             dy00             = _mm256_sub_ps(iy0,jy0);
697             dz00             = _mm256_sub_ps(iz0,jz0);
698
699             /* Calculate squared distance and things based on it */
700             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
701
702             rinv00           = avx256_invsqrt_f(rsq00);
703
704             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
705
706             /* Load parameters for j particles */
707             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
708                                                                  charge+jnrC+0,charge+jnrD+0,
709                                                                  charge+jnrE+0,charge+jnrF+0,
710                                                                  charge+jnrG+0,charge+jnrH+0);
711
712             /**************************
713              * CALCULATE INTERACTIONS *
714              **************************/
715
716             if (gmx_mm256_any_lt(rsq00,rcutoff2))
717             {
718
719             r00              = _mm256_mul_ps(rsq00,rinv00);
720             r00              = _mm256_andnot_ps(dummy_mask,r00);
721
722             /* Compute parameters for interactions between i and j atoms */
723             qq00             = _mm256_mul_ps(iq0,jq0);
724
725             /* EWALD ELECTROSTATICS */
726             
727             /* Analytical PME correction */
728             zeta2            = _mm256_mul_ps(beta2,rsq00);
729             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
730             pmecorrF         = avx256_pmecorrF_f(zeta2);
731             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
732             felec            = _mm256_mul_ps(qq00,felec);
733             
734             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
735
736             fscal            = felec;
737
738             fscal            = _mm256_and_ps(fscal,cutoff_mask);
739
740             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
741
742             /* Calculate temporary vectorial force */
743             tx               = _mm256_mul_ps(fscal,dx00);
744             ty               = _mm256_mul_ps(fscal,dy00);
745             tz               = _mm256_mul_ps(fscal,dz00);
746
747             /* Update vectorial force */
748             fix0             = _mm256_add_ps(fix0,tx);
749             fiy0             = _mm256_add_ps(fiy0,ty);
750             fiz0             = _mm256_add_ps(fiz0,tz);
751
752             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
753             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
754             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
755             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
756             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
757             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
758             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
759             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
760             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
761
762             }
763
764             /* Inner loop uses 60 flops */
765         }
766
767         /* End of innermost loop */
768
769         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
770                                                  f+i_coord_offset,fshift+i_shift_offset);
771
772         /* Increment number of inner iterations */
773         inneriter                  += j_index_end - j_index_start;
774
775         /* Outer loop uses 7 flops */
776     }
777
778     /* Increment number of outer iterations */
779     outeriter        += nri;
780
781     /* Update outer/inner flops */
782
783     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*60);
784 }