Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256i          ewitab;
94     __m128i          ewitab_lo,ewitab_hi;
95     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
96     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
97     real             *ewtab;
98     __m256           dummy_mask,cutoff_mask;
99     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
100     __m256           one     = _mm256_set1_ps(1.0);
101     __m256           two     = _mm256_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
117     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
118     beta2            = _mm256_mul_ps(beta,beta);
119     beta3            = _mm256_mul_ps(beta,beta2);
120
121     ewtab            = fr->ic->tabq_coul_FDV0;
122     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
123     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff_scalar   = fr->rcoulomb;
127     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
128     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136     j_coord_offsetE = 0;
137     j_coord_offsetF = 0;
138     j_coord_offsetG = 0;
139     j_coord_offsetH = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm256_setzero_ps();
167         fiy0             = _mm256_setzero_ps();
168         fiz0             = _mm256_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
172
173         /* Reset potential sums */
174         velecsum         = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_ps(ix0,jx0);
207             dy00             = _mm256_sub_ps(iy0,jy0);
208             dz00             = _mm256_sub_ps(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
214
215             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                                  charge+jnrC+0,charge+jnrD+0,
220                                                                  charge+jnrE+0,charge+jnrF+0,
221                                                                  charge+jnrG+0,charge+jnrH+0);
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             if (gmx_mm256_any_lt(rsq00,rcutoff2))
228             {
229
230             r00              = _mm256_mul_ps(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq00             = _mm256_mul_ps(iq0,jq0);
234
235             /* EWALD ELECTROSTATICS */
236             
237             /* Analytical PME correction */
238             zeta2            = _mm256_mul_ps(beta2,rsq00);
239             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
240             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
241             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
242             felec            = _mm256_mul_ps(qq00,felec);
243             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
244             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
245             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
246             velec            = _mm256_mul_ps(qq00,velec);
247             
248             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velec            = _mm256_and_ps(velec,cutoff_mask);
252             velecsum         = _mm256_add_ps(velecsum,velec);
253
254             fscal            = felec;
255
256             fscal            = _mm256_and_ps(fscal,cutoff_mask);
257
258             /* Calculate temporary vectorial force */
259             tx               = _mm256_mul_ps(fscal,dx00);
260             ty               = _mm256_mul_ps(fscal,dy00);
261             tz               = _mm256_mul_ps(fscal,dz00);
262
263             /* Update vectorial force */
264             fix0             = _mm256_add_ps(fix0,tx);
265             fiy0             = _mm256_add_ps(fiy0,ty);
266             fiz0             = _mm256_add_ps(fiz0,tz);
267
268             fjptrA             = f+j_coord_offsetA;
269             fjptrB             = f+j_coord_offsetB;
270             fjptrC             = f+j_coord_offsetC;
271             fjptrD             = f+j_coord_offsetD;
272             fjptrE             = f+j_coord_offsetE;
273             fjptrF             = f+j_coord_offsetF;
274             fjptrG             = f+j_coord_offsetG;
275             fjptrH             = f+j_coord_offsetH;
276             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
277
278             }
279
280             /* Inner loop uses 109 flops */
281         }
282
283         if(jidx<j_index_end)
284         {
285
286             /* Get j neighbor index, and coordinate index */
287             jnrlistA         = jjnr[jidx];
288             jnrlistB         = jjnr[jidx+1];
289             jnrlistC         = jjnr[jidx+2];
290             jnrlistD         = jjnr[jidx+3];
291             jnrlistE         = jjnr[jidx+4];
292             jnrlistF         = jjnr[jidx+5];
293             jnrlistG         = jjnr[jidx+6];
294             jnrlistH         = jjnr[jidx+7];
295             /* Sign of each element will be negative for non-real atoms.
296              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
297              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
298              */
299             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
300                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
301                                             
302             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
303             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
304             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
305             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
306             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
307             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
308             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
309             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
310             j_coord_offsetA  = DIM*jnrA;
311             j_coord_offsetB  = DIM*jnrB;
312             j_coord_offsetC  = DIM*jnrC;
313             j_coord_offsetD  = DIM*jnrD;
314             j_coord_offsetE  = DIM*jnrE;
315             j_coord_offsetF  = DIM*jnrF;
316             j_coord_offsetG  = DIM*jnrG;
317             j_coord_offsetH  = DIM*jnrH;
318
319             /* load j atom coordinates */
320             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
321                                                  x+j_coord_offsetC,x+j_coord_offsetD,
322                                                  x+j_coord_offsetE,x+j_coord_offsetF,
323                                                  x+j_coord_offsetG,x+j_coord_offsetH,
324                                                  &jx0,&jy0,&jz0);
325
326             /* Calculate displacement vector */
327             dx00             = _mm256_sub_ps(ix0,jx0);
328             dy00             = _mm256_sub_ps(iy0,jy0);
329             dz00             = _mm256_sub_ps(iz0,jz0);
330
331             /* Calculate squared distance and things based on it */
332             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
333
334             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
335
336             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
337
338             /* Load parameters for j particles */
339             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
340                                                                  charge+jnrC+0,charge+jnrD+0,
341                                                                  charge+jnrE+0,charge+jnrF+0,
342                                                                  charge+jnrG+0,charge+jnrH+0);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             if (gmx_mm256_any_lt(rsq00,rcutoff2))
349             {
350
351             r00              = _mm256_mul_ps(rsq00,rinv00);
352             r00              = _mm256_andnot_ps(dummy_mask,r00);
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq00             = _mm256_mul_ps(iq0,jq0);
356
357             /* EWALD ELECTROSTATICS */
358             
359             /* Analytical PME correction */
360             zeta2            = _mm256_mul_ps(beta2,rsq00);
361             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
362             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
363             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
364             felec            = _mm256_mul_ps(qq00,felec);
365             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
366             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
367             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
368             velec            = _mm256_mul_ps(qq00,velec);
369             
370             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velec            = _mm256_and_ps(velec,cutoff_mask);
374             velec            = _mm256_andnot_ps(dummy_mask,velec);
375             velecsum         = _mm256_add_ps(velecsum,velec);
376
377             fscal            = felec;
378
379             fscal            = _mm256_and_ps(fscal,cutoff_mask);
380
381             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
382
383             /* Calculate temporary vectorial force */
384             tx               = _mm256_mul_ps(fscal,dx00);
385             ty               = _mm256_mul_ps(fscal,dy00);
386             tz               = _mm256_mul_ps(fscal,dz00);
387
388             /* Update vectorial force */
389             fix0             = _mm256_add_ps(fix0,tx);
390             fiy0             = _mm256_add_ps(fiy0,ty);
391             fiz0             = _mm256_add_ps(fiz0,tz);
392
393             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
394             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
395             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
396             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
397             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
398             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
399             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
400             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
401             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
402
403             }
404
405             /* Inner loop uses 110 flops */
406         }
407
408         /* End of innermost loop */
409
410         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
411                                                  f+i_coord_offset,fshift+i_shift_offset);
412
413         ggid                        = gid[iidx];
414         /* Update potential energies */
415         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
416
417         /* Increment number of inner iterations */
418         inneriter                  += j_index_end - j_index_start;
419
420         /* Outer loop uses 8 flops */
421     }
422
423     /* Increment number of outer iterations */
424     outeriter        += nri;
425
426     /* Update outer/inner flops */
427
428     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*110);
429 }
430 /*
431  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_single
432  * Electrostatics interaction: Ewald
433  * VdW interaction:            None
434  * Geometry:                   Particle-Particle
435  * Calculate force/pot:        Force
436  */
437 void
438 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_single
439                     (t_nblist                    * gmx_restrict       nlist,
440                      rvec                        * gmx_restrict          xx,
441                      rvec                        * gmx_restrict          ff,
442                      t_forcerec                  * gmx_restrict          fr,
443                      t_mdatoms                   * gmx_restrict     mdatoms,
444                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
445                      t_nrnb                      * gmx_restrict        nrnb)
446 {
447     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
448      * just 0 for non-waters.
449      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
450      * jnr indices corresponding to data put in the four positions in the SIMD register.
451      */
452     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
453     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
454     int              jnrA,jnrB,jnrC,jnrD;
455     int              jnrE,jnrF,jnrG,jnrH;
456     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
457     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
458     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
459     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
460     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
461     real             rcutoff_scalar;
462     real             *shiftvec,*fshift,*x,*f;
463     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
464     real             scratch[4*DIM];
465     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
466     real *           vdwioffsetptr0;
467     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
468     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
469     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
470     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
471     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
472     real             *charge;
473     __m256i          ewitab;
474     __m128i          ewitab_lo,ewitab_hi;
475     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
476     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
477     real             *ewtab;
478     __m256           dummy_mask,cutoff_mask;
479     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
480     __m256           one     = _mm256_set1_ps(1.0);
481     __m256           two     = _mm256_set1_ps(2.0);
482     x                = xx[0];
483     f                = ff[0];
484
485     nri              = nlist->nri;
486     iinr             = nlist->iinr;
487     jindex           = nlist->jindex;
488     jjnr             = nlist->jjnr;
489     shiftidx         = nlist->shift;
490     gid              = nlist->gid;
491     shiftvec         = fr->shift_vec[0];
492     fshift           = fr->fshift[0];
493     facel            = _mm256_set1_ps(fr->epsfac);
494     charge           = mdatoms->chargeA;
495
496     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
497     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
498     beta2            = _mm256_mul_ps(beta,beta);
499     beta3            = _mm256_mul_ps(beta,beta2);
500
501     ewtab            = fr->ic->tabq_coul_F;
502     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
503     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
504
505     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
506     rcutoff_scalar   = fr->rcoulomb;
507     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
508     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
509
510     /* Avoid stupid compiler warnings */
511     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
512     j_coord_offsetA = 0;
513     j_coord_offsetB = 0;
514     j_coord_offsetC = 0;
515     j_coord_offsetD = 0;
516     j_coord_offsetE = 0;
517     j_coord_offsetF = 0;
518     j_coord_offsetG = 0;
519     j_coord_offsetH = 0;
520
521     outeriter        = 0;
522     inneriter        = 0;
523
524     for(iidx=0;iidx<4*DIM;iidx++)
525     {
526         scratch[iidx] = 0.0;
527     }
528
529     /* Start outer loop over neighborlists */
530     for(iidx=0; iidx<nri; iidx++)
531     {
532         /* Load shift vector for this list */
533         i_shift_offset   = DIM*shiftidx[iidx];
534
535         /* Load limits for loop over neighbors */
536         j_index_start    = jindex[iidx];
537         j_index_end      = jindex[iidx+1];
538
539         /* Get outer coordinate index */
540         inr              = iinr[iidx];
541         i_coord_offset   = DIM*inr;
542
543         /* Load i particle coords and add shift vector */
544         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
545
546         fix0             = _mm256_setzero_ps();
547         fiy0             = _mm256_setzero_ps();
548         fiz0             = _mm256_setzero_ps();
549
550         /* Load parameters for i particles */
551         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
552
553         /* Start inner kernel loop */
554         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
555         {
556
557             /* Get j neighbor index, and coordinate index */
558             jnrA             = jjnr[jidx];
559             jnrB             = jjnr[jidx+1];
560             jnrC             = jjnr[jidx+2];
561             jnrD             = jjnr[jidx+3];
562             jnrE             = jjnr[jidx+4];
563             jnrF             = jjnr[jidx+5];
564             jnrG             = jjnr[jidx+6];
565             jnrH             = jjnr[jidx+7];
566             j_coord_offsetA  = DIM*jnrA;
567             j_coord_offsetB  = DIM*jnrB;
568             j_coord_offsetC  = DIM*jnrC;
569             j_coord_offsetD  = DIM*jnrD;
570             j_coord_offsetE  = DIM*jnrE;
571             j_coord_offsetF  = DIM*jnrF;
572             j_coord_offsetG  = DIM*jnrG;
573             j_coord_offsetH  = DIM*jnrH;
574
575             /* load j atom coordinates */
576             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
577                                                  x+j_coord_offsetC,x+j_coord_offsetD,
578                                                  x+j_coord_offsetE,x+j_coord_offsetF,
579                                                  x+j_coord_offsetG,x+j_coord_offsetH,
580                                                  &jx0,&jy0,&jz0);
581
582             /* Calculate displacement vector */
583             dx00             = _mm256_sub_ps(ix0,jx0);
584             dy00             = _mm256_sub_ps(iy0,jy0);
585             dz00             = _mm256_sub_ps(iz0,jz0);
586
587             /* Calculate squared distance and things based on it */
588             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
589
590             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
591
592             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
593
594             /* Load parameters for j particles */
595             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
596                                                                  charge+jnrC+0,charge+jnrD+0,
597                                                                  charge+jnrE+0,charge+jnrF+0,
598                                                                  charge+jnrG+0,charge+jnrH+0);
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             if (gmx_mm256_any_lt(rsq00,rcutoff2))
605             {
606
607             r00              = _mm256_mul_ps(rsq00,rinv00);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq00             = _mm256_mul_ps(iq0,jq0);
611
612             /* EWALD ELECTROSTATICS */
613             
614             /* Analytical PME correction */
615             zeta2            = _mm256_mul_ps(beta2,rsq00);
616             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
617             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
618             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
619             felec            = _mm256_mul_ps(qq00,felec);
620             
621             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
622
623             fscal            = felec;
624
625             fscal            = _mm256_and_ps(fscal,cutoff_mask);
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm256_mul_ps(fscal,dx00);
629             ty               = _mm256_mul_ps(fscal,dy00);
630             tz               = _mm256_mul_ps(fscal,dz00);
631
632             /* Update vectorial force */
633             fix0             = _mm256_add_ps(fix0,tx);
634             fiy0             = _mm256_add_ps(fiy0,ty);
635             fiz0             = _mm256_add_ps(fiz0,tz);
636
637             fjptrA             = f+j_coord_offsetA;
638             fjptrB             = f+j_coord_offsetB;
639             fjptrC             = f+j_coord_offsetC;
640             fjptrD             = f+j_coord_offsetD;
641             fjptrE             = f+j_coord_offsetE;
642             fjptrF             = f+j_coord_offsetF;
643             fjptrG             = f+j_coord_offsetG;
644             fjptrH             = f+j_coord_offsetH;
645             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
646
647             }
648
649             /* Inner loop uses 59 flops */
650         }
651
652         if(jidx<j_index_end)
653         {
654
655             /* Get j neighbor index, and coordinate index */
656             jnrlistA         = jjnr[jidx];
657             jnrlistB         = jjnr[jidx+1];
658             jnrlistC         = jjnr[jidx+2];
659             jnrlistD         = jjnr[jidx+3];
660             jnrlistE         = jjnr[jidx+4];
661             jnrlistF         = jjnr[jidx+5];
662             jnrlistG         = jjnr[jidx+6];
663             jnrlistH         = jjnr[jidx+7];
664             /* Sign of each element will be negative for non-real atoms.
665              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
666              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
667              */
668             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
669                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
670                                             
671             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
672             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
673             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
674             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
675             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
676             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
677             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
678             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
679             j_coord_offsetA  = DIM*jnrA;
680             j_coord_offsetB  = DIM*jnrB;
681             j_coord_offsetC  = DIM*jnrC;
682             j_coord_offsetD  = DIM*jnrD;
683             j_coord_offsetE  = DIM*jnrE;
684             j_coord_offsetF  = DIM*jnrF;
685             j_coord_offsetG  = DIM*jnrG;
686             j_coord_offsetH  = DIM*jnrH;
687
688             /* load j atom coordinates */
689             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
690                                                  x+j_coord_offsetC,x+j_coord_offsetD,
691                                                  x+j_coord_offsetE,x+j_coord_offsetF,
692                                                  x+j_coord_offsetG,x+j_coord_offsetH,
693                                                  &jx0,&jy0,&jz0);
694
695             /* Calculate displacement vector */
696             dx00             = _mm256_sub_ps(ix0,jx0);
697             dy00             = _mm256_sub_ps(iy0,jy0);
698             dz00             = _mm256_sub_ps(iz0,jz0);
699
700             /* Calculate squared distance and things based on it */
701             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
702
703             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
704
705             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
706
707             /* Load parameters for j particles */
708             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
709                                                                  charge+jnrC+0,charge+jnrD+0,
710                                                                  charge+jnrE+0,charge+jnrF+0,
711                                                                  charge+jnrG+0,charge+jnrH+0);
712
713             /**************************
714              * CALCULATE INTERACTIONS *
715              **************************/
716
717             if (gmx_mm256_any_lt(rsq00,rcutoff2))
718             {
719
720             r00              = _mm256_mul_ps(rsq00,rinv00);
721             r00              = _mm256_andnot_ps(dummy_mask,r00);
722
723             /* Compute parameters for interactions between i and j atoms */
724             qq00             = _mm256_mul_ps(iq0,jq0);
725
726             /* EWALD ELECTROSTATICS */
727             
728             /* Analytical PME correction */
729             zeta2            = _mm256_mul_ps(beta2,rsq00);
730             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
731             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
732             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
733             felec            = _mm256_mul_ps(qq00,felec);
734             
735             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
736
737             fscal            = felec;
738
739             fscal            = _mm256_and_ps(fscal,cutoff_mask);
740
741             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
742
743             /* Calculate temporary vectorial force */
744             tx               = _mm256_mul_ps(fscal,dx00);
745             ty               = _mm256_mul_ps(fscal,dy00);
746             tz               = _mm256_mul_ps(fscal,dz00);
747
748             /* Update vectorial force */
749             fix0             = _mm256_add_ps(fix0,tx);
750             fiy0             = _mm256_add_ps(fiy0,ty);
751             fiz0             = _mm256_add_ps(fiz0,tz);
752
753             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
754             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
755             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
756             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
757             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
758             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
759             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
760             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
761             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
762
763             }
764
765             /* Inner loop uses 60 flops */
766         }
767
768         /* End of innermost loop */
769
770         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
771                                                  f+i_coord_offset,fshift+i_shift_offset);
772
773         /* Increment number of inner iterations */
774         inneriter                  += j_index_end - j_index_start;
775
776         /* Outer loop uses 7 flops */
777     }
778
779     /* Increment number of outer iterations */
780     outeriter        += nri;
781
782     /* Update outer/inner flops */
783
784     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*60);
785 }