Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m256i          ewitab;
96     __m128i          ewitab_lo,ewitab_hi;
97     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99     real             *ewtab;
100     __m256           dummy_mask,cutoff_mask;
101     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
102     __m256           one     = _mm256_set1_ps(1.0);
103     __m256           two     = _mm256_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
119     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
120     beta2            = _mm256_mul_ps(beta,beta);
121     beta3            = _mm256_mul_ps(beta,beta2);
122
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
130     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138     j_coord_offsetE = 0;
139     j_coord_offsetF = 0;
140     j_coord_offsetG = 0;
141     j_coord_offsetH = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm256_setzero_ps();
169         fiy0             = _mm256_setzero_ps();
170         fiz0             = _mm256_setzero_ps();
171
172         /* Load parameters for i particles */
173         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
174
175         /* Reset potential sums */
176         velecsum         = _mm256_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             jnrE             = jjnr[jidx+4];
188             jnrF             = jjnr[jidx+5];
189             jnrG             = jjnr[jidx+6];
190             jnrH             = jjnr[jidx+7];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195             j_coord_offsetE  = DIM*jnrE;
196             j_coord_offsetF  = DIM*jnrF;
197             j_coord_offsetG  = DIM*jnrG;
198             j_coord_offsetH  = DIM*jnrH;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  x+j_coord_offsetE,x+j_coord_offsetF,
204                                                  x+j_coord_offsetG,x+j_coord_offsetH,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_ps(ix0,jx0);
209             dy00             = _mm256_sub_ps(iy0,jy0);
210             dz00             = _mm256_sub_ps(iz0,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
214
215             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
216
217             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                                  charge+jnrC+0,charge+jnrD+0,
222                                                                  charge+jnrE+0,charge+jnrF+0,
223                                                                  charge+jnrG+0,charge+jnrH+0);
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             if (gmx_mm256_any_lt(rsq00,rcutoff2))
230             {
231
232             r00              = _mm256_mul_ps(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm256_mul_ps(iq0,jq0);
236
237             /* EWALD ELECTROSTATICS */
238             
239             /* Analytical PME correction */
240             zeta2            = _mm256_mul_ps(beta2,rsq00);
241             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
242             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
243             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
244             felec            = _mm256_mul_ps(qq00,felec);
245             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
246             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
247             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
248             velec            = _mm256_mul_ps(qq00,velec);
249             
250             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velec            = _mm256_and_ps(velec,cutoff_mask);
254             velecsum         = _mm256_add_ps(velecsum,velec);
255
256             fscal            = felec;
257
258             fscal            = _mm256_and_ps(fscal,cutoff_mask);
259
260             /* Calculate temporary vectorial force */
261             tx               = _mm256_mul_ps(fscal,dx00);
262             ty               = _mm256_mul_ps(fscal,dy00);
263             tz               = _mm256_mul_ps(fscal,dz00);
264
265             /* Update vectorial force */
266             fix0             = _mm256_add_ps(fix0,tx);
267             fiy0             = _mm256_add_ps(fiy0,ty);
268             fiz0             = _mm256_add_ps(fiz0,tz);
269
270             fjptrA             = f+j_coord_offsetA;
271             fjptrB             = f+j_coord_offsetB;
272             fjptrC             = f+j_coord_offsetC;
273             fjptrD             = f+j_coord_offsetD;
274             fjptrE             = f+j_coord_offsetE;
275             fjptrF             = f+j_coord_offsetF;
276             fjptrG             = f+j_coord_offsetG;
277             fjptrH             = f+j_coord_offsetH;
278             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
279
280             }
281
282             /* Inner loop uses 109 flops */
283         }
284
285         if(jidx<j_index_end)
286         {
287
288             /* Get j neighbor index, and coordinate index */
289             jnrlistA         = jjnr[jidx];
290             jnrlistB         = jjnr[jidx+1];
291             jnrlistC         = jjnr[jidx+2];
292             jnrlistD         = jjnr[jidx+3];
293             jnrlistE         = jjnr[jidx+4];
294             jnrlistF         = jjnr[jidx+5];
295             jnrlistG         = jjnr[jidx+6];
296             jnrlistH         = jjnr[jidx+7];
297             /* Sign of each element will be negative for non-real atoms.
298              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
299              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
300              */
301             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
302                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
303                                             
304             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
305             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
306             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
307             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
308             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
309             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
310             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
311             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
312             j_coord_offsetA  = DIM*jnrA;
313             j_coord_offsetB  = DIM*jnrB;
314             j_coord_offsetC  = DIM*jnrC;
315             j_coord_offsetD  = DIM*jnrD;
316             j_coord_offsetE  = DIM*jnrE;
317             j_coord_offsetF  = DIM*jnrF;
318             j_coord_offsetG  = DIM*jnrG;
319             j_coord_offsetH  = DIM*jnrH;
320
321             /* load j atom coordinates */
322             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
323                                                  x+j_coord_offsetC,x+j_coord_offsetD,
324                                                  x+j_coord_offsetE,x+j_coord_offsetF,
325                                                  x+j_coord_offsetG,x+j_coord_offsetH,
326                                                  &jx0,&jy0,&jz0);
327
328             /* Calculate displacement vector */
329             dx00             = _mm256_sub_ps(ix0,jx0);
330             dy00             = _mm256_sub_ps(iy0,jy0);
331             dz00             = _mm256_sub_ps(iz0,jz0);
332
333             /* Calculate squared distance and things based on it */
334             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
335
336             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
337
338             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
339
340             /* Load parameters for j particles */
341             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
342                                                                  charge+jnrC+0,charge+jnrD+0,
343                                                                  charge+jnrE+0,charge+jnrF+0,
344                                                                  charge+jnrG+0,charge+jnrH+0);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             if (gmx_mm256_any_lt(rsq00,rcutoff2))
351             {
352
353             r00              = _mm256_mul_ps(rsq00,rinv00);
354             r00              = _mm256_andnot_ps(dummy_mask,r00);
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq00             = _mm256_mul_ps(iq0,jq0);
358
359             /* EWALD ELECTROSTATICS */
360             
361             /* Analytical PME correction */
362             zeta2            = _mm256_mul_ps(beta2,rsq00);
363             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
364             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
365             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
366             felec            = _mm256_mul_ps(qq00,felec);
367             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
368             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
369             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
370             velec            = _mm256_mul_ps(qq00,velec);
371             
372             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velec            = _mm256_and_ps(velec,cutoff_mask);
376             velec            = _mm256_andnot_ps(dummy_mask,velec);
377             velecsum         = _mm256_add_ps(velecsum,velec);
378
379             fscal            = felec;
380
381             fscal            = _mm256_and_ps(fscal,cutoff_mask);
382
383             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm256_mul_ps(fscal,dx00);
387             ty               = _mm256_mul_ps(fscal,dy00);
388             tz               = _mm256_mul_ps(fscal,dz00);
389
390             /* Update vectorial force */
391             fix0             = _mm256_add_ps(fix0,tx);
392             fiy0             = _mm256_add_ps(fiy0,ty);
393             fiz0             = _mm256_add_ps(fiz0,tz);
394
395             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
396             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
397             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
398             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
399             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
400             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
401             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
402             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
403             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
404
405             }
406
407             /* Inner loop uses 110 flops */
408         }
409
410         /* End of innermost loop */
411
412         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
413                                                  f+i_coord_offset,fshift+i_shift_offset);
414
415         ggid                        = gid[iidx];
416         /* Update potential energies */
417         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
418
419         /* Increment number of inner iterations */
420         inneriter                  += j_index_end - j_index_start;
421
422         /* Outer loop uses 8 flops */
423     }
424
425     /* Increment number of outer iterations */
426     outeriter        += nri;
427
428     /* Update outer/inner flops */
429
430     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*110);
431 }
432 /*
433  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_single
434  * Electrostatics interaction: Ewald
435  * VdW interaction:            None
436  * Geometry:                   Particle-Particle
437  * Calculate force/pot:        Force
438  */
439 void
440 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_single
441                     (t_nblist                    * gmx_restrict       nlist,
442                      rvec                        * gmx_restrict          xx,
443                      rvec                        * gmx_restrict          ff,
444                      t_forcerec                  * gmx_restrict          fr,
445                      t_mdatoms                   * gmx_restrict     mdatoms,
446                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
447                      t_nrnb                      * gmx_restrict        nrnb)
448 {
449     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
450      * just 0 for non-waters.
451      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
452      * jnr indices corresponding to data put in the four positions in the SIMD register.
453      */
454     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
455     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
456     int              jnrA,jnrB,jnrC,jnrD;
457     int              jnrE,jnrF,jnrG,jnrH;
458     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
459     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
460     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
461     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
462     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
463     real             rcutoff_scalar;
464     real             *shiftvec,*fshift,*x,*f;
465     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
466     real             scratch[4*DIM];
467     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
468     real *           vdwioffsetptr0;
469     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
470     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
471     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
472     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
473     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
474     real             *charge;
475     __m256i          ewitab;
476     __m128i          ewitab_lo,ewitab_hi;
477     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
478     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
479     real             *ewtab;
480     __m256           dummy_mask,cutoff_mask;
481     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
482     __m256           one     = _mm256_set1_ps(1.0);
483     __m256           two     = _mm256_set1_ps(2.0);
484     x                = xx[0];
485     f                = ff[0];
486
487     nri              = nlist->nri;
488     iinr             = nlist->iinr;
489     jindex           = nlist->jindex;
490     jjnr             = nlist->jjnr;
491     shiftidx         = nlist->shift;
492     gid              = nlist->gid;
493     shiftvec         = fr->shift_vec[0];
494     fshift           = fr->fshift[0];
495     facel            = _mm256_set1_ps(fr->epsfac);
496     charge           = mdatoms->chargeA;
497
498     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
499     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
500     beta2            = _mm256_mul_ps(beta,beta);
501     beta3            = _mm256_mul_ps(beta,beta2);
502
503     ewtab            = fr->ic->tabq_coul_F;
504     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
505     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
506
507     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
508     rcutoff_scalar   = fr->rcoulomb;
509     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
510     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
511
512     /* Avoid stupid compiler warnings */
513     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
514     j_coord_offsetA = 0;
515     j_coord_offsetB = 0;
516     j_coord_offsetC = 0;
517     j_coord_offsetD = 0;
518     j_coord_offsetE = 0;
519     j_coord_offsetF = 0;
520     j_coord_offsetG = 0;
521     j_coord_offsetH = 0;
522
523     outeriter        = 0;
524     inneriter        = 0;
525
526     for(iidx=0;iidx<4*DIM;iidx++)
527     {
528         scratch[iidx] = 0.0;
529     }
530
531     /* Start outer loop over neighborlists */
532     for(iidx=0; iidx<nri; iidx++)
533     {
534         /* Load shift vector for this list */
535         i_shift_offset   = DIM*shiftidx[iidx];
536
537         /* Load limits for loop over neighbors */
538         j_index_start    = jindex[iidx];
539         j_index_end      = jindex[iidx+1];
540
541         /* Get outer coordinate index */
542         inr              = iinr[iidx];
543         i_coord_offset   = DIM*inr;
544
545         /* Load i particle coords and add shift vector */
546         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
547
548         fix0             = _mm256_setzero_ps();
549         fiy0             = _mm256_setzero_ps();
550         fiz0             = _mm256_setzero_ps();
551
552         /* Load parameters for i particles */
553         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
554
555         /* Start inner kernel loop */
556         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
557         {
558
559             /* Get j neighbor index, and coordinate index */
560             jnrA             = jjnr[jidx];
561             jnrB             = jjnr[jidx+1];
562             jnrC             = jjnr[jidx+2];
563             jnrD             = jjnr[jidx+3];
564             jnrE             = jjnr[jidx+4];
565             jnrF             = jjnr[jidx+5];
566             jnrG             = jjnr[jidx+6];
567             jnrH             = jjnr[jidx+7];
568             j_coord_offsetA  = DIM*jnrA;
569             j_coord_offsetB  = DIM*jnrB;
570             j_coord_offsetC  = DIM*jnrC;
571             j_coord_offsetD  = DIM*jnrD;
572             j_coord_offsetE  = DIM*jnrE;
573             j_coord_offsetF  = DIM*jnrF;
574             j_coord_offsetG  = DIM*jnrG;
575             j_coord_offsetH  = DIM*jnrH;
576
577             /* load j atom coordinates */
578             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
579                                                  x+j_coord_offsetC,x+j_coord_offsetD,
580                                                  x+j_coord_offsetE,x+j_coord_offsetF,
581                                                  x+j_coord_offsetG,x+j_coord_offsetH,
582                                                  &jx0,&jy0,&jz0);
583
584             /* Calculate displacement vector */
585             dx00             = _mm256_sub_ps(ix0,jx0);
586             dy00             = _mm256_sub_ps(iy0,jy0);
587             dz00             = _mm256_sub_ps(iz0,jz0);
588
589             /* Calculate squared distance and things based on it */
590             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
591
592             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
593
594             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
595
596             /* Load parameters for j particles */
597             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
598                                                                  charge+jnrC+0,charge+jnrD+0,
599                                                                  charge+jnrE+0,charge+jnrF+0,
600                                                                  charge+jnrG+0,charge+jnrH+0);
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             if (gmx_mm256_any_lt(rsq00,rcutoff2))
607             {
608
609             r00              = _mm256_mul_ps(rsq00,rinv00);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq00             = _mm256_mul_ps(iq0,jq0);
613
614             /* EWALD ELECTROSTATICS */
615             
616             /* Analytical PME correction */
617             zeta2            = _mm256_mul_ps(beta2,rsq00);
618             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
619             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
620             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
621             felec            = _mm256_mul_ps(qq00,felec);
622             
623             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
624
625             fscal            = felec;
626
627             fscal            = _mm256_and_ps(fscal,cutoff_mask);
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm256_mul_ps(fscal,dx00);
631             ty               = _mm256_mul_ps(fscal,dy00);
632             tz               = _mm256_mul_ps(fscal,dz00);
633
634             /* Update vectorial force */
635             fix0             = _mm256_add_ps(fix0,tx);
636             fiy0             = _mm256_add_ps(fiy0,ty);
637             fiz0             = _mm256_add_ps(fiz0,tz);
638
639             fjptrA             = f+j_coord_offsetA;
640             fjptrB             = f+j_coord_offsetB;
641             fjptrC             = f+j_coord_offsetC;
642             fjptrD             = f+j_coord_offsetD;
643             fjptrE             = f+j_coord_offsetE;
644             fjptrF             = f+j_coord_offsetF;
645             fjptrG             = f+j_coord_offsetG;
646             fjptrH             = f+j_coord_offsetH;
647             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
648
649             }
650
651             /* Inner loop uses 59 flops */
652         }
653
654         if(jidx<j_index_end)
655         {
656
657             /* Get j neighbor index, and coordinate index */
658             jnrlistA         = jjnr[jidx];
659             jnrlistB         = jjnr[jidx+1];
660             jnrlistC         = jjnr[jidx+2];
661             jnrlistD         = jjnr[jidx+3];
662             jnrlistE         = jjnr[jidx+4];
663             jnrlistF         = jjnr[jidx+5];
664             jnrlistG         = jjnr[jidx+6];
665             jnrlistH         = jjnr[jidx+7];
666             /* Sign of each element will be negative for non-real atoms.
667              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
668              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
669              */
670             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
671                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
672                                             
673             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
674             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
675             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
676             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
677             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
678             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
679             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
680             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
681             j_coord_offsetA  = DIM*jnrA;
682             j_coord_offsetB  = DIM*jnrB;
683             j_coord_offsetC  = DIM*jnrC;
684             j_coord_offsetD  = DIM*jnrD;
685             j_coord_offsetE  = DIM*jnrE;
686             j_coord_offsetF  = DIM*jnrF;
687             j_coord_offsetG  = DIM*jnrG;
688             j_coord_offsetH  = DIM*jnrH;
689
690             /* load j atom coordinates */
691             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
692                                                  x+j_coord_offsetC,x+j_coord_offsetD,
693                                                  x+j_coord_offsetE,x+j_coord_offsetF,
694                                                  x+j_coord_offsetG,x+j_coord_offsetH,
695                                                  &jx0,&jy0,&jz0);
696
697             /* Calculate displacement vector */
698             dx00             = _mm256_sub_ps(ix0,jx0);
699             dy00             = _mm256_sub_ps(iy0,jy0);
700             dz00             = _mm256_sub_ps(iz0,jz0);
701
702             /* Calculate squared distance and things based on it */
703             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
704
705             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
706
707             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
708
709             /* Load parameters for j particles */
710             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
711                                                                  charge+jnrC+0,charge+jnrD+0,
712                                                                  charge+jnrE+0,charge+jnrF+0,
713                                                                  charge+jnrG+0,charge+jnrH+0);
714
715             /**************************
716              * CALCULATE INTERACTIONS *
717              **************************/
718
719             if (gmx_mm256_any_lt(rsq00,rcutoff2))
720             {
721
722             r00              = _mm256_mul_ps(rsq00,rinv00);
723             r00              = _mm256_andnot_ps(dummy_mask,r00);
724
725             /* Compute parameters for interactions between i and j atoms */
726             qq00             = _mm256_mul_ps(iq0,jq0);
727
728             /* EWALD ELECTROSTATICS */
729             
730             /* Analytical PME correction */
731             zeta2            = _mm256_mul_ps(beta2,rsq00);
732             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
733             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
734             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
735             felec            = _mm256_mul_ps(qq00,felec);
736             
737             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
738
739             fscal            = felec;
740
741             fscal            = _mm256_and_ps(fscal,cutoff_mask);
742
743             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
744
745             /* Calculate temporary vectorial force */
746             tx               = _mm256_mul_ps(fscal,dx00);
747             ty               = _mm256_mul_ps(fscal,dy00);
748             tz               = _mm256_mul_ps(fscal,dz00);
749
750             /* Update vectorial force */
751             fix0             = _mm256_add_ps(fix0,tx);
752             fiy0             = _mm256_add_ps(fiy0,ty);
753             fiz0             = _mm256_add_ps(fiz0,tz);
754
755             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
756             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
757             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
758             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
759             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
760             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
761             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
762             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
763             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
764
765             }
766
767             /* Inner loop uses 60 flops */
768         }
769
770         /* End of innermost loop */
771
772         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
773                                                  f+i_coord_offset,fshift+i_shift_offset);
774
775         /* Increment number of inner iterations */
776         inneriter                  += j_index_end - j_index_start;
777
778         /* Outer loop uses 7 flops */
779     }
780
781     /* Increment number of outer iterations */
782     outeriter        += nri;
783
784     /* Update outer/inner flops */
785
786     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*60);
787 }