7e93f4c2405c6ff03ed1998acd52323f7ed511a2
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
107     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
108     __m256i          ewitab;
109     __m128i          ewitab_lo,ewitab_hi;
110     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
112     real             *ewtab;
113     __m256           dummy_mask,cutoff_mask;
114     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
115     __m256           one     = _mm256_set1_ps(1.0);
116     __m256           two     = _mm256_set1_ps(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_ps(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
135     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
136     beta2            = _mm256_mul_ps(beta,beta);
137     beta3            = _mm256_mul_ps(beta,beta2);
138
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
146     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
147     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
148     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
149
150     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151     rcutoff_scalar   = fr->rcoulomb;
152     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
153     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
154
155     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
156     rvdw             = _mm256_set1_ps(fr->rvdw);
157
158     /* Avoid stupid compiler warnings */
159     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
160     j_coord_offsetA = 0;
161     j_coord_offsetB = 0;
162     j_coord_offsetC = 0;
163     j_coord_offsetD = 0;
164     j_coord_offsetE = 0;
165     j_coord_offsetF = 0;
166     j_coord_offsetG = 0;
167     j_coord_offsetH = 0;
168
169     outeriter        = 0;
170     inneriter        = 0;
171
172     for(iidx=0;iidx<4*DIM;iidx++)
173     {
174         scratch[iidx] = 0.0;
175     }
176
177     /* Start outer loop over neighborlists */
178     for(iidx=0; iidx<nri; iidx++)
179     {
180         /* Load shift vector for this list */
181         i_shift_offset   = DIM*shiftidx[iidx];
182
183         /* Load limits for loop over neighbors */
184         j_index_start    = jindex[iidx];
185         j_index_end      = jindex[iidx+1];
186
187         /* Get outer coordinate index */
188         inr              = iinr[iidx];
189         i_coord_offset   = DIM*inr;
190
191         /* Load i particle coords and add shift vector */
192         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
193                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
194
195         fix0             = _mm256_setzero_ps();
196         fiy0             = _mm256_setzero_ps();
197         fiz0             = _mm256_setzero_ps();
198         fix1             = _mm256_setzero_ps();
199         fiy1             = _mm256_setzero_ps();
200         fiz1             = _mm256_setzero_ps();
201         fix2             = _mm256_setzero_ps();
202         fiy2             = _mm256_setzero_ps();
203         fiz2             = _mm256_setzero_ps();
204         fix3             = _mm256_setzero_ps();
205         fiy3             = _mm256_setzero_ps();
206         fiz3             = _mm256_setzero_ps();
207
208         /* Reset potential sums */
209         velecsum         = _mm256_setzero_ps();
210         vvdwsum          = _mm256_setzero_ps();
211
212         /* Start inner kernel loop */
213         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
214         {
215
216             /* Get j neighbor index, and coordinate index */
217             jnrA             = jjnr[jidx];
218             jnrB             = jjnr[jidx+1];
219             jnrC             = jjnr[jidx+2];
220             jnrD             = jjnr[jidx+3];
221             jnrE             = jjnr[jidx+4];
222             jnrF             = jjnr[jidx+5];
223             jnrG             = jjnr[jidx+6];
224             jnrH             = jjnr[jidx+7];
225             j_coord_offsetA  = DIM*jnrA;
226             j_coord_offsetB  = DIM*jnrB;
227             j_coord_offsetC  = DIM*jnrC;
228             j_coord_offsetD  = DIM*jnrD;
229             j_coord_offsetE  = DIM*jnrE;
230             j_coord_offsetF  = DIM*jnrF;
231             j_coord_offsetG  = DIM*jnrG;
232             j_coord_offsetH  = DIM*jnrH;
233
234             /* load j atom coordinates */
235             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
236                                                  x+j_coord_offsetC,x+j_coord_offsetD,
237                                                  x+j_coord_offsetE,x+j_coord_offsetF,
238                                                  x+j_coord_offsetG,x+j_coord_offsetH,
239                                                  &jx0,&jy0,&jz0);
240
241             /* Calculate displacement vector */
242             dx00             = _mm256_sub_ps(ix0,jx0);
243             dy00             = _mm256_sub_ps(iy0,jy0);
244             dz00             = _mm256_sub_ps(iz0,jz0);
245             dx10             = _mm256_sub_ps(ix1,jx0);
246             dy10             = _mm256_sub_ps(iy1,jy0);
247             dz10             = _mm256_sub_ps(iz1,jz0);
248             dx20             = _mm256_sub_ps(ix2,jx0);
249             dy20             = _mm256_sub_ps(iy2,jy0);
250             dz20             = _mm256_sub_ps(iz2,jz0);
251             dx30             = _mm256_sub_ps(ix3,jx0);
252             dy30             = _mm256_sub_ps(iy3,jy0);
253             dz30             = _mm256_sub_ps(iz3,jz0);
254
255             /* Calculate squared distance and things based on it */
256             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
257             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
258             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
259             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
260
261             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
262             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
263             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
264
265             rinvsq00         = gmx_mm256_inv_ps(rsq00);
266             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
267             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
268             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
269
270             /* Load parameters for j particles */
271             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
272                                                                  charge+jnrC+0,charge+jnrD+0,
273                                                                  charge+jnrE+0,charge+jnrF+0,
274                                                                  charge+jnrG+0,charge+jnrH+0);
275             vdwjidx0A        = 2*vdwtype[jnrA+0];
276             vdwjidx0B        = 2*vdwtype[jnrB+0];
277             vdwjidx0C        = 2*vdwtype[jnrC+0];
278             vdwjidx0D        = 2*vdwtype[jnrD+0];
279             vdwjidx0E        = 2*vdwtype[jnrE+0];
280             vdwjidx0F        = 2*vdwtype[jnrF+0];
281             vdwjidx0G        = 2*vdwtype[jnrG+0];
282             vdwjidx0H        = 2*vdwtype[jnrH+0];
283
284             fjx0             = _mm256_setzero_ps();
285             fjy0             = _mm256_setzero_ps();
286             fjz0             = _mm256_setzero_ps();
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             if (gmx_mm256_any_lt(rsq00,rcutoff2))
293             {
294
295             /* Compute parameters for interactions between i and j atoms */
296             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
297                                             vdwioffsetptr0+vdwjidx0B,
298                                             vdwioffsetptr0+vdwjidx0C,
299                                             vdwioffsetptr0+vdwjidx0D,
300                                             vdwioffsetptr0+vdwjidx0E,
301                                             vdwioffsetptr0+vdwjidx0F,
302                                             vdwioffsetptr0+vdwjidx0G,
303                                             vdwioffsetptr0+vdwjidx0H,
304                                             &c6_00,&c12_00);
305
306             /* LENNARD-JONES DISPERSION/REPULSION */
307
308             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
309             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
310             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
311             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
312                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
313             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
314
315             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
319             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
320
321             fscal            = fvdw;
322
323             fscal            = _mm256_and_ps(fscal,cutoff_mask);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm256_mul_ps(fscal,dx00);
327             ty               = _mm256_mul_ps(fscal,dy00);
328             tz               = _mm256_mul_ps(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm256_add_ps(fix0,tx);
332             fiy0             = _mm256_add_ps(fiy0,ty);
333             fiz0             = _mm256_add_ps(fiz0,tz);
334
335             fjx0             = _mm256_add_ps(fjx0,tx);
336             fjy0             = _mm256_add_ps(fjy0,ty);
337             fjz0             = _mm256_add_ps(fjz0,tz);
338
339             }
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             if (gmx_mm256_any_lt(rsq10,rcutoff2))
346             {
347
348             r10              = _mm256_mul_ps(rsq10,rinv10);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq10             = _mm256_mul_ps(iq1,jq0);
352
353             /* EWALD ELECTROSTATICS */
354             
355             /* Analytical PME correction */
356             zeta2            = _mm256_mul_ps(beta2,rsq10);
357             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
358             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
359             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
360             felec            = _mm256_mul_ps(qq10,felec);
361             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
362             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
363             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
364             velec            = _mm256_mul_ps(qq10,velec);
365             
366             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _mm256_and_ps(velec,cutoff_mask);
370             velecsum         = _mm256_add_ps(velecsum,velec);
371
372             fscal            = felec;
373
374             fscal            = _mm256_and_ps(fscal,cutoff_mask);
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm256_mul_ps(fscal,dx10);
378             ty               = _mm256_mul_ps(fscal,dy10);
379             tz               = _mm256_mul_ps(fscal,dz10);
380
381             /* Update vectorial force */
382             fix1             = _mm256_add_ps(fix1,tx);
383             fiy1             = _mm256_add_ps(fiy1,ty);
384             fiz1             = _mm256_add_ps(fiz1,tz);
385
386             fjx0             = _mm256_add_ps(fjx0,tx);
387             fjy0             = _mm256_add_ps(fjy0,ty);
388             fjz0             = _mm256_add_ps(fjz0,tz);
389
390             }
391
392             /**************************
393              * CALCULATE INTERACTIONS *
394              **************************/
395
396             if (gmx_mm256_any_lt(rsq20,rcutoff2))
397             {
398
399             r20              = _mm256_mul_ps(rsq20,rinv20);
400
401             /* Compute parameters for interactions between i and j atoms */
402             qq20             = _mm256_mul_ps(iq2,jq0);
403
404             /* EWALD ELECTROSTATICS */
405             
406             /* Analytical PME correction */
407             zeta2            = _mm256_mul_ps(beta2,rsq20);
408             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
409             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
410             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
411             felec            = _mm256_mul_ps(qq20,felec);
412             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
413             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
414             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
415             velec            = _mm256_mul_ps(qq20,velec);
416             
417             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm256_and_ps(velec,cutoff_mask);
421             velecsum         = _mm256_add_ps(velecsum,velec);
422
423             fscal            = felec;
424
425             fscal            = _mm256_and_ps(fscal,cutoff_mask);
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm256_mul_ps(fscal,dx20);
429             ty               = _mm256_mul_ps(fscal,dy20);
430             tz               = _mm256_mul_ps(fscal,dz20);
431
432             /* Update vectorial force */
433             fix2             = _mm256_add_ps(fix2,tx);
434             fiy2             = _mm256_add_ps(fiy2,ty);
435             fiz2             = _mm256_add_ps(fiz2,tz);
436
437             fjx0             = _mm256_add_ps(fjx0,tx);
438             fjy0             = _mm256_add_ps(fjy0,ty);
439             fjz0             = _mm256_add_ps(fjz0,tz);
440
441             }
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             if (gmx_mm256_any_lt(rsq30,rcutoff2))
448             {
449
450             r30              = _mm256_mul_ps(rsq30,rinv30);
451
452             /* Compute parameters for interactions between i and j atoms */
453             qq30             = _mm256_mul_ps(iq3,jq0);
454
455             /* EWALD ELECTROSTATICS */
456             
457             /* Analytical PME correction */
458             zeta2            = _mm256_mul_ps(beta2,rsq30);
459             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
460             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
461             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
462             felec            = _mm256_mul_ps(qq30,felec);
463             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
464             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
465             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
466             velec            = _mm256_mul_ps(qq30,velec);
467             
468             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
469
470             /* Update potential sum for this i atom from the interaction with this j atom. */
471             velec            = _mm256_and_ps(velec,cutoff_mask);
472             velecsum         = _mm256_add_ps(velecsum,velec);
473
474             fscal            = felec;
475
476             fscal            = _mm256_and_ps(fscal,cutoff_mask);
477
478             /* Calculate temporary vectorial force */
479             tx               = _mm256_mul_ps(fscal,dx30);
480             ty               = _mm256_mul_ps(fscal,dy30);
481             tz               = _mm256_mul_ps(fscal,dz30);
482
483             /* Update vectorial force */
484             fix3             = _mm256_add_ps(fix3,tx);
485             fiy3             = _mm256_add_ps(fiy3,ty);
486             fiz3             = _mm256_add_ps(fiz3,tz);
487
488             fjx0             = _mm256_add_ps(fjx0,tx);
489             fjy0             = _mm256_add_ps(fjy0,ty);
490             fjz0             = _mm256_add_ps(fjz0,tz);
491
492             }
493
494             fjptrA             = f+j_coord_offsetA;
495             fjptrB             = f+j_coord_offsetB;
496             fjptrC             = f+j_coord_offsetC;
497             fjptrD             = f+j_coord_offsetD;
498             fjptrE             = f+j_coord_offsetE;
499             fjptrF             = f+j_coord_offsetF;
500             fjptrG             = f+j_coord_offsetG;
501             fjptrH             = f+j_coord_offsetH;
502
503             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
504
505             /* Inner loop uses 371 flops */
506         }
507
508         if(jidx<j_index_end)
509         {
510
511             /* Get j neighbor index, and coordinate index */
512             jnrlistA         = jjnr[jidx];
513             jnrlistB         = jjnr[jidx+1];
514             jnrlistC         = jjnr[jidx+2];
515             jnrlistD         = jjnr[jidx+3];
516             jnrlistE         = jjnr[jidx+4];
517             jnrlistF         = jjnr[jidx+5];
518             jnrlistG         = jjnr[jidx+6];
519             jnrlistH         = jjnr[jidx+7];
520             /* Sign of each element will be negative for non-real atoms.
521              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
522              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
523              */
524             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
525                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
526                                             
527             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
528             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
529             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
530             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
531             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
532             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
533             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
534             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
535             j_coord_offsetA  = DIM*jnrA;
536             j_coord_offsetB  = DIM*jnrB;
537             j_coord_offsetC  = DIM*jnrC;
538             j_coord_offsetD  = DIM*jnrD;
539             j_coord_offsetE  = DIM*jnrE;
540             j_coord_offsetF  = DIM*jnrF;
541             j_coord_offsetG  = DIM*jnrG;
542             j_coord_offsetH  = DIM*jnrH;
543
544             /* load j atom coordinates */
545             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
546                                                  x+j_coord_offsetC,x+j_coord_offsetD,
547                                                  x+j_coord_offsetE,x+j_coord_offsetF,
548                                                  x+j_coord_offsetG,x+j_coord_offsetH,
549                                                  &jx0,&jy0,&jz0);
550
551             /* Calculate displacement vector */
552             dx00             = _mm256_sub_ps(ix0,jx0);
553             dy00             = _mm256_sub_ps(iy0,jy0);
554             dz00             = _mm256_sub_ps(iz0,jz0);
555             dx10             = _mm256_sub_ps(ix1,jx0);
556             dy10             = _mm256_sub_ps(iy1,jy0);
557             dz10             = _mm256_sub_ps(iz1,jz0);
558             dx20             = _mm256_sub_ps(ix2,jx0);
559             dy20             = _mm256_sub_ps(iy2,jy0);
560             dz20             = _mm256_sub_ps(iz2,jz0);
561             dx30             = _mm256_sub_ps(ix3,jx0);
562             dy30             = _mm256_sub_ps(iy3,jy0);
563             dz30             = _mm256_sub_ps(iz3,jz0);
564
565             /* Calculate squared distance and things based on it */
566             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
567             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
568             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
569             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
570
571             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
572             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
573             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
574
575             rinvsq00         = gmx_mm256_inv_ps(rsq00);
576             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
577             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
578             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
579
580             /* Load parameters for j particles */
581             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
582                                                                  charge+jnrC+0,charge+jnrD+0,
583                                                                  charge+jnrE+0,charge+jnrF+0,
584                                                                  charge+jnrG+0,charge+jnrH+0);
585             vdwjidx0A        = 2*vdwtype[jnrA+0];
586             vdwjidx0B        = 2*vdwtype[jnrB+0];
587             vdwjidx0C        = 2*vdwtype[jnrC+0];
588             vdwjidx0D        = 2*vdwtype[jnrD+0];
589             vdwjidx0E        = 2*vdwtype[jnrE+0];
590             vdwjidx0F        = 2*vdwtype[jnrF+0];
591             vdwjidx0G        = 2*vdwtype[jnrG+0];
592             vdwjidx0H        = 2*vdwtype[jnrH+0];
593
594             fjx0             = _mm256_setzero_ps();
595             fjy0             = _mm256_setzero_ps();
596             fjz0             = _mm256_setzero_ps();
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             if (gmx_mm256_any_lt(rsq00,rcutoff2))
603             {
604
605             /* Compute parameters for interactions between i and j atoms */
606             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
607                                             vdwioffsetptr0+vdwjidx0B,
608                                             vdwioffsetptr0+vdwjidx0C,
609                                             vdwioffsetptr0+vdwjidx0D,
610                                             vdwioffsetptr0+vdwjidx0E,
611                                             vdwioffsetptr0+vdwjidx0F,
612                                             vdwioffsetptr0+vdwjidx0G,
613                                             vdwioffsetptr0+vdwjidx0H,
614                                             &c6_00,&c12_00);
615
616             /* LENNARD-JONES DISPERSION/REPULSION */
617
618             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
619             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
620             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
621             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
622                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
623             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
624
625             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
626
627             /* Update potential sum for this i atom from the interaction with this j atom. */
628             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
629             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
630             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
631
632             fscal            = fvdw;
633
634             fscal            = _mm256_and_ps(fscal,cutoff_mask);
635
636             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
637
638             /* Calculate temporary vectorial force */
639             tx               = _mm256_mul_ps(fscal,dx00);
640             ty               = _mm256_mul_ps(fscal,dy00);
641             tz               = _mm256_mul_ps(fscal,dz00);
642
643             /* Update vectorial force */
644             fix0             = _mm256_add_ps(fix0,tx);
645             fiy0             = _mm256_add_ps(fiy0,ty);
646             fiz0             = _mm256_add_ps(fiz0,tz);
647
648             fjx0             = _mm256_add_ps(fjx0,tx);
649             fjy0             = _mm256_add_ps(fjy0,ty);
650             fjz0             = _mm256_add_ps(fjz0,tz);
651
652             }
653
654             /**************************
655              * CALCULATE INTERACTIONS *
656              **************************/
657
658             if (gmx_mm256_any_lt(rsq10,rcutoff2))
659             {
660
661             r10              = _mm256_mul_ps(rsq10,rinv10);
662             r10              = _mm256_andnot_ps(dummy_mask,r10);
663
664             /* Compute parameters for interactions between i and j atoms */
665             qq10             = _mm256_mul_ps(iq1,jq0);
666
667             /* EWALD ELECTROSTATICS */
668             
669             /* Analytical PME correction */
670             zeta2            = _mm256_mul_ps(beta2,rsq10);
671             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
672             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
673             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
674             felec            = _mm256_mul_ps(qq10,felec);
675             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
676             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
677             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
678             velec            = _mm256_mul_ps(qq10,velec);
679             
680             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
681
682             /* Update potential sum for this i atom from the interaction with this j atom. */
683             velec            = _mm256_and_ps(velec,cutoff_mask);
684             velec            = _mm256_andnot_ps(dummy_mask,velec);
685             velecsum         = _mm256_add_ps(velecsum,velec);
686
687             fscal            = felec;
688
689             fscal            = _mm256_and_ps(fscal,cutoff_mask);
690
691             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm256_mul_ps(fscal,dx10);
695             ty               = _mm256_mul_ps(fscal,dy10);
696             tz               = _mm256_mul_ps(fscal,dz10);
697
698             /* Update vectorial force */
699             fix1             = _mm256_add_ps(fix1,tx);
700             fiy1             = _mm256_add_ps(fiy1,ty);
701             fiz1             = _mm256_add_ps(fiz1,tz);
702
703             fjx0             = _mm256_add_ps(fjx0,tx);
704             fjy0             = _mm256_add_ps(fjy0,ty);
705             fjz0             = _mm256_add_ps(fjz0,tz);
706
707             }
708
709             /**************************
710              * CALCULATE INTERACTIONS *
711              **************************/
712
713             if (gmx_mm256_any_lt(rsq20,rcutoff2))
714             {
715
716             r20              = _mm256_mul_ps(rsq20,rinv20);
717             r20              = _mm256_andnot_ps(dummy_mask,r20);
718
719             /* Compute parameters for interactions between i and j atoms */
720             qq20             = _mm256_mul_ps(iq2,jq0);
721
722             /* EWALD ELECTROSTATICS */
723             
724             /* Analytical PME correction */
725             zeta2            = _mm256_mul_ps(beta2,rsq20);
726             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
727             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
728             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
729             felec            = _mm256_mul_ps(qq20,felec);
730             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
731             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
732             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
733             velec            = _mm256_mul_ps(qq20,velec);
734             
735             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
736
737             /* Update potential sum for this i atom from the interaction with this j atom. */
738             velec            = _mm256_and_ps(velec,cutoff_mask);
739             velec            = _mm256_andnot_ps(dummy_mask,velec);
740             velecsum         = _mm256_add_ps(velecsum,velec);
741
742             fscal            = felec;
743
744             fscal            = _mm256_and_ps(fscal,cutoff_mask);
745
746             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
747
748             /* Calculate temporary vectorial force */
749             tx               = _mm256_mul_ps(fscal,dx20);
750             ty               = _mm256_mul_ps(fscal,dy20);
751             tz               = _mm256_mul_ps(fscal,dz20);
752
753             /* Update vectorial force */
754             fix2             = _mm256_add_ps(fix2,tx);
755             fiy2             = _mm256_add_ps(fiy2,ty);
756             fiz2             = _mm256_add_ps(fiz2,tz);
757
758             fjx0             = _mm256_add_ps(fjx0,tx);
759             fjy0             = _mm256_add_ps(fjy0,ty);
760             fjz0             = _mm256_add_ps(fjz0,tz);
761
762             }
763
764             /**************************
765              * CALCULATE INTERACTIONS *
766              **************************/
767
768             if (gmx_mm256_any_lt(rsq30,rcutoff2))
769             {
770
771             r30              = _mm256_mul_ps(rsq30,rinv30);
772             r30              = _mm256_andnot_ps(dummy_mask,r30);
773
774             /* Compute parameters for interactions between i and j atoms */
775             qq30             = _mm256_mul_ps(iq3,jq0);
776
777             /* EWALD ELECTROSTATICS */
778             
779             /* Analytical PME correction */
780             zeta2            = _mm256_mul_ps(beta2,rsq30);
781             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
782             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
783             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
784             felec            = _mm256_mul_ps(qq30,felec);
785             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
786             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
787             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
788             velec            = _mm256_mul_ps(qq30,velec);
789             
790             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
791
792             /* Update potential sum for this i atom from the interaction with this j atom. */
793             velec            = _mm256_and_ps(velec,cutoff_mask);
794             velec            = _mm256_andnot_ps(dummy_mask,velec);
795             velecsum         = _mm256_add_ps(velecsum,velec);
796
797             fscal            = felec;
798
799             fscal            = _mm256_and_ps(fscal,cutoff_mask);
800
801             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
802
803             /* Calculate temporary vectorial force */
804             tx               = _mm256_mul_ps(fscal,dx30);
805             ty               = _mm256_mul_ps(fscal,dy30);
806             tz               = _mm256_mul_ps(fscal,dz30);
807
808             /* Update vectorial force */
809             fix3             = _mm256_add_ps(fix3,tx);
810             fiy3             = _mm256_add_ps(fiy3,ty);
811             fiz3             = _mm256_add_ps(fiz3,tz);
812
813             fjx0             = _mm256_add_ps(fjx0,tx);
814             fjy0             = _mm256_add_ps(fjy0,ty);
815             fjz0             = _mm256_add_ps(fjz0,tz);
816
817             }
818
819             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
820             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
821             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
822             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
823             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
824             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
825             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
826             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
827
828             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
829
830             /* Inner loop uses 374 flops */
831         }
832
833         /* End of innermost loop */
834
835         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
836                                                  f+i_coord_offset,fshift+i_shift_offset);
837
838         ggid                        = gid[iidx];
839         /* Update potential energies */
840         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
841         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
842
843         /* Increment number of inner iterations */
844         inneriter                  += j_index_end - j_index_start;
845
846         /* Outer loop uses 26 flops */
847     }
848
849     /* Increment number of outer iterations */
850     outeriter        += nri;
851
852     /* Update outer/inner flops */
853
854     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*374);
855 }
856 /*
857  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_single
858  * Electrostatics interaction: Ewald
859  * VdW interaction:            LennardJones
860  * Geometry:                   Water4-Particle
861  * Calculate force/pot:        Force
862  */
863 void
864 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_single
865                     (t_nblist                    * gmx_restrict       nlist,
866                      rvec                        * gmx_restrict          xx,
867                      rvec                        * gmx_restrict          ff,
868                      t_forcerec                  * gmx_restrict          fr,
869                      t_mdatoms                   * gmx_restrict     mdatoms,
870                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
871                      t_nrnb                      * gmx_restrict        nrnb)
872 {
873     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
874      * just 0 for non-waters.
875      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
876      * jnr indices corresponding to data put in the four positions in the SIMD register.
877      */
878     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
879     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
880     int              jnrA,jnrB,jnrC,jnrD;
881     int              jnrE,jnrF,jnrG,jnrH;
882     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
883     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
884     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
885     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
886     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
887     real             rcutoff_scalar;
888     real             *shiftvec,*fshift,*x,*f;
889     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
890     real             scratch[4*DIM];
891     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
892     real *           vdwioffsetptr0;
893     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
894     real *           vdwioffsetptr1;
895     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
896     real *           vdwioffsetptr2;
897     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
898     real *           vdwioffsetptr3;
899     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
900     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
901     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
902     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
903     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
904     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
905     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
906     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
907     real             *charge;
908     int              nvdwtype;
909     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
910     int              *vdwtype;
911     real             *vdwparam;
912     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
913     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
914     __m256i          ewitab;
915     __m128i          ewitab_lo,ewitab_hi;
916     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
917     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
918     real             *ewtab;
919     __m256           dummy_mask,cutoff_mask;
920     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
921     __m256           one     = _mm256_set1_ps(1.0);
922     __m256           two     = _mm256_set1_ps(2.0);
923     x                = xx[0];
924     f                = ff[0];
925
926     nri              = nlist->nri;
927     iinr             = nlist->iinr;
928     jindex           = nlist->jindex;
929     jjnr             = nlist->jjnr;
930     shiftidx         = nlist->shift;
931     gid              = nlist->gid;
932     shiftvec         = fr->shift_vec[0];
933     fshift           = fr->fshift[0];
934     facel            = _mm256_set1_ps(fr->epsfac);
935     charge           = mdatoms->chargeA;
936     nvdwtype         = fr->ntype;
937     vdwparam         = fr->nbfp;
938     vdwtype          = mdatoms->typeA;
939
940     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
941     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
942     beta2            = _mm256_mul_ps(beta,beta);
943     beta3            = _mm256_mul_ps(beta,beta2);
944
945     ewtab            = fr->ic->tabq_coul_F;
946     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
947     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
948
949     /* Setup water-specific parameters */
950     inr              = nlist->iinr[0];
951     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
952     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
953     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
954     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
955
956     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
957     rcutoff_scalar   = fr->rcoulomb;
958     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
959     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
960
961     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
962     rvdw             = _mm256_set1_ps(fr->rvdw);
963
964     /* Avoid stupid compiler warnings */
965     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
966     j_coord_offsetA = 0;
967     j_coord_offsetB = 0;
968     j_coord_offsetC = 0;
969     j_coord_offsetD = 0;
970     j_coord_offsetE = 0;
971     j_coord_offsetF = 0;
972     j_coord_offsetG = 0;
973     j_coord_offsetH = 0;
974
975     outeriter        = 0;
976     inneriter        = 0;
977
978     for(iidx=0;iidx<4*DIM;iidx++)
979     {
980         scratch[iidx] = 0.0;
981     }
982
983     /* Start outer loop over neighborlists */
984     for(iidx=0; iidx<nri; iidx++)
985     {
986         /* Load shift vector for this list */
987         i_shift_offset   = DIM*shiftidx[iidx];
988
989         /* Load limits for loop over neighbors */
990         j_index_start    = jindex[iidx];
991         j_index_end      = jindex[iidx+1];
992
993         /* Get outer coordinate index */
994         inr              = iinr[iidx];
995         i_coord_offset   = DIM*inr;
996
997         /* Load i particle coords and add shift vector */
998         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
999                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1000
1001         fix0             = _mm256_setzero_ps();
1002         fiy0             = _mm256_setzero_ps();
1003         fiz0             = _mm256_setzero_ps();
1004         fix1             = _mm256_setzero_ps();
1005         fiy1             = _mm256_setzero_ps();
1006         fiz1             = _mm256_setzero_ps();
1007         fix2             = _mm256_setzero_ps();
1008         fiy2             = _mm256_setzero_ps();
1009         fiz2             = _mm256_setzero_ps();
1010         fix3             = _mm256_setzero_ps();
1011         fiy3             = _mm256_setzero_ps();
1012         fiz3             = _mm256_setzero_ps();
1013
1014         /* Start inner kernel loop */
1015         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
1016         {
1017
1018             /* Get j neighbor index, and coordinate index */
1019             jnrA             = jjnr[jidx];
1020             jnrB             = jjnr[jidx+1];
1021             jnrC             = jjnr[jidx+2];
1022             jnrD             = jjnr[jidx+3];
1023             jnrE             = jjnr[jidx+4];
1024             jnrF             = jjnr[jidx+5];
1025             jnrG             = jjnr[jidx+6];
1026             jnrH             = jjnr[jidx+7];
1027             j_coord_offsetA  = DIM*jnrA;
1028             j_coord_offsetB  = DIM*jnrB;
1029             j_coord_offsetC  = DIM*jnrC;
1030             j_coord_offsetD  = DIM*jnrD;
1031             j_coord_offsetE  = DIM*jnrE;
1032             j_coord_offsetF  = DIM*jnrF;
1033             j_coord_offsetG  = DIM*jnrG;
1034             j_coord_offsetH  = DIM*jnrH;
1035
1036             /* load j atom coordinates */
1037             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1038                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1039                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1040                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1041                                                  &jx0,&jy0,&jz0);
1042
1043             /* Calculate displacement vector */
1044             dx00             = _mm256_sub_ps(ix0,jx0);
1045             dy00             = _mm256_sub_ps(iy0,jy0);
1046             dz00             = _mm256_sub_ps(iz0,jz0);
1047             dx10             = _mm256_sub_ps(ix1,jx0);
1048             dy10             = _mm256_sub_ps(iy1,jy0);
1049             dz10             = _mm256_sub_ps(iz1,jz0);
1050             dx20             = _mm256_sub_ps(ix2,jx0);
1051             dy20             = _mm256_sub_ps(iy2,jy0);
1052             dz20             = _mm256_sub_ps(iz2,jz0);
1053             dx30             = _mm256_sub_ps(ix3,jx0);
1054             dy30             = _mm256_sub_ps(iy3,jy0);
1055             dz30             = _mm256_sub_ps(iz3,jz0);
1056
1057             /* Calculate squared distance and things based on it */
1058             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1059             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1060             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1061             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1062
1063             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1064             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1065             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1066
1067             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1068             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1069             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1070             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1071
1072             /* Load parameters for j particles */
1073             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1074                                                                  charge+jnrC+0,charge+jnrD+0,
1075                                                                  charge+jnrE+0,charge+jnrF+0,
1076                                                                  charge+jnrG+0,charge+jnrH+0);
1077             vdwjidx0A        = 2*vdwtype[jnrA+0];
1078             vdwjidx0B        = 2*vdwtype[jnrB+0];
1079             vdwjidx0C        = 2*vdwtype[jnrC+0];
1080             vdwjidx0D        = 2*vdwtype[jnrD+0];
1081             vdwjidx0E        = 2*vdwtype[jnrE+0];
1082             vdwjidx0F        = 2*vdwtype[jnrF+0];
1083             vdwjidx0G        = 2*vdwtype[jnrG+0];
1084             vdwjidx0H        = 2*vdwtype[jnrH+0];
1085
1086             fjx0             = _mm256_setzero_ps();
1087             fjy0             = _mm256_setzero_ps();
1088             fjz0             = _mm256_setzero_ps();
1089
1090             /**************************
1091              * CALCULATE INTERACTIONS *
1092              **************************/
1093
1094             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1095             {
1096
1097             /* Compute parameters for interactions between i and j atoms */
1098             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1099                                             vdwioffsetptr0+vdwjidx0B,
1100                                             vdwioffsetptr0+vdwjidx0C,
1101                                             vdwioffsetptr0+vdwjidx0D,
1102                                             vdwioffsetptr0+vdwjidx0E,
1103                                             vdwioffsetptr0+vdwjidx0F,
1104                                             vdwioffsetptr0+vdwjidx0G,
1105                                             vdwioffsetptr0+vdwjidx0H,
1106                                             &c6_00,&c12_00);
1107
1108             /* LENNARD-JONES DISPERSION/REPULSION */
1109
1110             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1111             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1112
1113             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1114
1115             fscal            = fvdw;
1116
1117             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1118
1119             /* Calculate temporary vectorial force */
1120             tx               = _mm256_mul_ps(fscal,dx00);
1121             ty               = _mm256_mul_ps(fscal,dy00);
1122             tz               = _mm256_mul_ps(fscal,dz00);
1123
1124             /* Update vectorial force */
1125             fix0             = _mm256_add_ps(fix0,tx);
1126             fiy0             = _mm256_add_ps(fiy0,ty);
1127             fiz0             = _mm256_add_ps(fiz0,tz);
1128
1129             fjx0             = _mm256_add_ps(fjx0,tx);
1130             fjy0             = _mm256_add_ps(fjy0,ty);
1131             fjz0             = _mm256_add_ps(fjz0,tz);
1132
1133             }
1134
1135             /**************************
1136              * CALCULATE INTERACTIONS *
1137              **************************/
1138
1139             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1140             {
1141
1142             r10              = _mm256_mul_ps(rsq10,rinv10);
1143
1144             /* Compute parameters for interactions between i and j atoms */
1145             qq10             = _mm256_mul_ps(iq1,jq0);
1146
1147             /* EWALD ELECTROSTATICS */
1148             
1149             /* Analytical PME correction */
1150             zeta2            = _mm256_mul_ps(beta2,rsq10);
1151             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1152             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1153             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1154             felec            = _mm256_mul_ps(qq10,felec);
1155             
1156             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1157
1158             fscal            = felec;
1159
1160             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1161
1162             /* Calculate temporary vectorial force */
1163             tx               = _mm256_mul_ps(fscal,dx10);
1164             ty               = _mm256_mul_ps(fscal,dy10);
1165             tz               = _mm256_mul_ps(fscal,dz10);
1166
1167             /* Update vectorial force */
1168             fix1             = _mm256_add_ps(fix1,tx);
1169             fiy1             = _mm256_add_ps(fiy1,ty);
1170             fiz1             = _mm256_add_ps(fiz1,tz);
1171
1172             fjx0             = _mm256_add_ps(fjx0,tx);
1173             fjy0             = _mm256_add_ps(fjy0,ty);
1174             fjz0             = _mm256_add_ps(fjz0,tz);
1175
1176             }
1177
1178             /**************************
1179              * CALCULATE INTERACTIONS *
1180              **************************/
1181
1182             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1183             {
1184
1185             r20              = _mm256_mul_ps(rsq20,rinv20);
1186
1187             /* Compute parameters for interactions between i and j atoms */
1188             qq20             = _mm256_mul_ps(iq2,jq0);
1189
1190             /* EWALD ELECTROSTATICS */
1191             
1192             /* Analytical PME correction */
1193             zeta2            = _mm256_mul_ps(beta2,rsq20);
1194             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1195             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1196             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1197             felec            = _mm256_mul_ps(qq20,felec);
1198             
1199             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1200
1201             fscal            = felec;
1202
1203             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1204
1205             /* Calculate temporary vectorial force */
1206             tx               = _mm256_mul_ps(fscal,dx20);
1207             ty               = _mm256_mul_ps(fscal,dy20);
1208             tz               = _mm256_mul_ps(fscal,dz20);
1209
1210             /* Update vectorial force */
1211             fix2             = _mm256_add_ps(fix2,tx);
1212             fiy2             = _mm256_add_ps(fiy2,ty);
1213             fiz2             = _mm256_add_ps(fiz2,tz);
1214
1215             fjx0             = _mm256_add_ps(fjx0,tx);
1216             fjy0             = _mm256_add_ps(fjy0,ty);
1217             fjz0             = _mm256_add_ps(fjz0,tz);
1218
1219             }
1220
1221             /**************************
1222              * CALCULATE INTERACTIONS *
1223              **************************/
1224
1225             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1226             {
1227
1228             r30              = _mm256_mul_ps(rsq30,rinv30);
1229
1230             /* Compute parameters for interactions between i and j atoms */
1231             qq30             = _mm256_mul_ps(iq3,jq0);
1232
1233             /* EWALD ELECTROSTATICS */
1234             
1235             /* Analytical PME correction */
1236             zeta2            = _mm256_mul_ps(beta2,rsq30);
1237             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1238             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1239             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1240             felec            = _mm256_mul_ps(qq30,felec);
1241             
1242             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1243
1244             fscal            = felec;
1245
1246             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1247
1248             /* Calculate temporary vectorial force */
1249             tx               = _mm256_mul_ps(fscal,dx30);
1250             ty               = _mm256_mul_ps(fscal,dy30);
1251             tz               = _mm256_mul_ps(fscal,dz30);
1252
1253             /* Update vectorial force */
1254             fix3             = _mm256_add_ps(fix3,tx);
1255             fiy3             = _mm256_add_ps(fiy3,ty);
1256             fiz3             = _mm256_add_ps(fiz3,tz);
1257
1258             fjx0             = _mm256_add_ps(fjx0,tx);
1259             fjy0             = _mm256_add_ps(fjy0,ty);
1260             fjz0             = _mm256_add_ps(fjz0,tz);
1261
1262             }
1263
1264             fjptrA             = f+j_coord_offsetA;
1265             fjptrB             = f+j_coord_offsetB;
1266             fjptrC             = f+j_coord_offsetC;
1267             fjptrD             = f+j_coord_offsetD;
1268             fjptrE             = f+j_coord_offsetE;
1269             fjptrF             = f+j_coord_offsetF;
1270             fjptrG             = f+j_coord_offsetG;
1271             fjptrH             = f+j_coord_offsetH;
1272
1273             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1274
1275             /* Inner loop uses 210 flops */
1276         }
1277
1278         if(jidx<j_index_end)
1279         {
1280
1281             /* Get j neighbor index, and coordinate index */
1282             jnrlistA         = jjnr[jidx];
1283             jnrlistB         = jjnr[jidx+1];
1284             jnrlistC         = jjnr[jidx+2];
1285             jnrlistD         = jjnr[jidx+3];
1286             jnrlistE         = jjnr[jidx+4];
1287             jnrlistF         = jjnr[jidx+5];
1288             jnrlistG         = jjnr[jidx+6];
1289             jnrlistH         = jjnr[jidx+7];
1290             /* Sign of each element will be negative for non-real atoms.
1291              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1292              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1293              */
1294             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1295                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1296                                             
1297             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1298             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1299             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1300             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1301             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1302             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1303             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1304             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1305             j_coord_offsetA  = DIM*jnrA;
1306             j_coord_offsetB  = DIM*jnrB;
1307             j_coord_offsetC  = DIM*jnrC;
1308             j_coord_offsetD  = DIM*jnrD;
1309             j_coord_offsetE  = DIM*jnrE;
1310             j_coord_offsetF  = DIM*jnrF;
1311             j_coord_offsetG  = DIM*jnrG;
1312             j_coord_offsetH  = DIM*jnrH;
1313
1314             /* load j atom coordinates */
1315             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1316                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1317                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1318                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1319                                                  &jx0,&jy0,&jz0);
1320
1321             /* Calculate displacement vector */
1322             dx00             = _mm256_sub_ps(ix0,jx0);
1323             dy00             = _mm256_sub_ps(iy0,jy0);
1324             dz00             = _mm256_sub_ps(iz0,jz0);
1325             dx10             = _mm256_sub_ps(ix1,jx0);
1326             dy10             = _mm256_sub_ps(iy1,jy0);
1327             dz10             = _mm256_sub_ps(iz1,jz0);
1328             dx20             = _mm256_sub_ps(ix2,jx0);
1329             dy20             = _mm256_sub_ps(iy2,jy0);
1330             dz20             = _mm256_sub_ps(iz2,jz0);
1331             dx30             = _mm256_sub_ps(ix3,jx0);
1332             dy30             = _mm256_sub_ps(iy3,jy0);
1333             dz30             = _mm256_sub_ps(iz3,jz0);
1334
1335             /* Calculate squared distance and things based on it */
1336             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1337             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1338             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1339             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1340
1341             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1342             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1343             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1344
1345             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1346             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1347             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1348             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1349
1350             /* Load parameters for j particles */
1351             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1352                                                                  charge+jnrC+0,charge+jnrD+0,
1353                                                                  charge+jnrE+0,charge+jnrF+0,
1354                                                                  charge+jnrG+0,charge+jnrH+0);
1355             vdwjidx0A        = 2*vdwtype[jnrA+0];
1356             vdwjidx0B        = 2*vdwtype[jnrB+0];
1357             vdwjidx0C        = 2*vdwtype[jnrC+0];
1358             vdwjidx0D        = 2*vdwtype[jnrD+0];
1359             vdwjidx0E        = 2*vdwtype[jnrE+0];
1360             vdwjidx0F        = 2*vdwtype[jnrF+0];
1361             vdwjidx0G        = 2*vdwtype[jnrG+0];
1362             vdwjidx0H        = 2*vdwtype[jnrH+0];
1363
1364             fjx0             = _mm256_setzero_ps();
1365             fjy0             = _mm256_setzero_ps();
1366             fjz0             = _mm256_setzero_ps();
1367
1368             /**************************
1369              * CALCULATE INTERACTIONS *
1370              **************************/
1371
1372             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1373             {
1374
1375             /* Compute parameters for interactions between i and j atoms */
1376             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1377                                             vdwioffsetptr0+vdwjidx0B,
1378                                             vdwioffsetptr0+vdwjidx0C,
1379                                             vdwioffsetptr0+vdwjidx0D,
1380                                             vdwioffsetptr0+vdwjidx0E,
1381                                             vdwioffsetptr0+vdwjidx0F,
1382                                             vdwioffsetptr0+vdwjidx0G,
1383                                             vdwioffsetptr0+vdwjidx0H,
1384                                             &c6_00,&c12_00);
1385
1386             /* LENNARD-JONES DISPERSION/REPULSION */
1387
1388             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1389             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1390
1391             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1392
1393             fscal            = fvdw;
1394
1395             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1396
1397             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1398
1399             /* Calculate temporary vectorial force */
1400             tx               = _mm256_mul_ps(fscal,dx00);
1401             ty               = _mm256_mul_ps(fscal,dy00);
1402             tz               = _mm256_mul_ps(fscal,dz00);
1403
1404             /* Update vectorial force */
1405             fix0             = _mm256_add_ps(fix0,tx);
1406             fiy0             = _mm256_add_ps(fiy0,ty);
1407             fiz0             = _mm256_add_ps(fiz0,tz);
1408
1409             fjx0             = _mm256_add_ps(fjx0,tx);
1410             fjy0             = _mm256_add_ps(fjy0,ty);
1411             fjz0             = _mm256_add_ps(fjz0,tz);
1412
1413             }
1414
1415             /**************************
1416              * CALCULATE INTERACTIONS *
1417              **************************/
1418
1419             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1420             {
1421
1422             r10              = _mm256_mul_ps(rsq10,rinv10);
1423             r10              = _mm256_andnot_ps(dummy_mask,r10);
1424
1425             /* Compute parameters for interactions between i and j atoms */
1426             qq10             = _mm256_mul_ps(iq1,jq0);
1427
1428             /* EWALD ELECTROSTATICS */
1429             
1430             /* Analytical PME correction */
1431             zeta2            = _mm256_mul_ps(beta2,rsq10);
1432             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1433             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1434             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1435             felec            = _mm256_mul_ps(qq10,felec);
1436             
1437             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1438
1439             fscal            = felec;
1440
1441             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1442
1443             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1444
1445             /* Calculate temporary vectorial force */
1446             tx               = _mm256_mul_ps(fscal,dx10);
1447             ty               = _mm256_mul_ps(fscal,dy10);
1448             tz               = _mm256_mul_ps(fscal,dz10);
1449
1450             /* Update vectorial force */
1451             fix1             = _mm256_add_ps(fix1,tx);
1452             fiy1             = _mm256_add_ps(fiy1,ty);
1453             fiz1             = _mm256_add_ps(fiz1,tz);
1454
1455             fjx0             = _mm256_add_ps(fjx0,tx);
1456             fjy0             = _mm256_add_ps(fjy0,ty);
1457             fjz0             = _mm256_add_ps(fjz0,tz);
1458
1459             }
1460
1461             /**************************
1462              * CALCULATE INTERACTIONS *
1463              **************************/
1464
1465             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1466             {
1467
1468             r20              = _mm256_mul_ps(rsq20,rinv20);
1469             r20              = _mm256_andnot_ps(dummy_mask,r20);
1470
1471             /* Compute parameters for interactions between i and j atoms */
1472             qq20             = _mm256_mul_ps(iq2,jq0);
1473
1474             /* EWALD ELECTROSTATICS */
1475             
1476             /* Analytical PME correction */
1477             zeta2            = _mm256_mul_ps(beta2,rsq20);
1478             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1479             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1480             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1481             felec            = _mm256_mul_ps(qq20,felec);
1482             
1483             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1484
1485             fscal            = felec;
1486
1487             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1488
1489             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1490
1491             /* Calculate temporary vectorial force */
1492             tx               = _mm256_mul_ps(fscal,dx20);
1493             ty               = _mm256_mul_ps(fscal,dy20);
1494             tz               = _mm256_mul_ps(fscal,dz20);
1495
1496             /* Update vectorial force */
1497             fix2             = _mm256_add_ps(fix2,tx);
1498             fiy2             = _mm256_add_ps(fiy2,ty);
1499             fiz2             = _mm256_add_ps(fiz2,tz);
1500
1501             fjx0             = _mm256_add_ps(fjx0,tx);
1502             fjy0             = _mm256_add_ps(fjy0,ty);
1503             fjz0             = _mm256_add_ps(fjz0,tz);
1504
1505             }
1506
1507             /**************************
1508              * CALCULATE INTERACTIONS *
1509              **************************/
1510
1511             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1512             {
1513
1514             r30              = _mm256_mul_ps(rsq30,rinv30);
1515             r30              = _mm256_andnot_ps(dummy_mask,r30);
1516
1517             /* Compute parameters for interactions between i and j atoms */
1518             qq30             = _mm256_mul_ps(iq3,jq0);
1519
1520             /* EWALD ELECTROSTATICS */
1521             
1522             /* Analytical PME correction */
1523             zeta2            = _mm256_mul_ps(beta2,rsq30);
1524             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1525             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1526             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1527             felec            = _mm256_mul_ps(qq30,felec);
1528             
1529             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1530
1531             fscal            = felec;
1532
1533             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1534
1535             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1536
1537             /* Calculate temporary vectorial force */
1538             tx               = _mm256_mul_ps(fscal,dx30);
1539             ty               = _mm256_mul_ps(fscal,dy30);
1540             tz               = _mm256_mul_ps(fscal,dz30);
1541
1542             /* Update vectorial force */
1543             fix3             = _mm256_add_ps(fix3,tx);
1544             fiy3             = _mm256_add_ps(fiy3,ty);
1545             fiz3             = _mm256_add_ps(fiz3,tz);
1546
1547             fjx0             = _mm256_add_ps(fjx0,tx);
1548             fjy0             = _mm256_add_ps(fjy0,ty);
1549             fjz0             = _mm256_add_ps(fjz0,tz);
1550
1551             }
1552
1553             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1554             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1555             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1556             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1557             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1558             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1559             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1560             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1561
1562             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1563
1564             /* Inner loop uses 213 flops */
1565         }
1566
1567         /* End of innermost loop */
1568
1569         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1570                                                  f+i_coord_offset,fshift+i_shift_offset);
1571
1572         /* Increment number of inner iterations */
1573         inneriter                  += j_index_end - j_index_start;
1574
1575         /* Outer loop uses 24 flops */
1576     }
1577
1578     /* Increment number of outer iterations */
1579     outeriter        += nri;
1580
1581     /* Update outer/inner flops */
1582
1583     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*213);
1584 }