Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     real *           vdwioffsetptr3;
95     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
96     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
97     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
98     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
100     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
102     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
109     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
110     __m256i          ewitab;
111     __m128i          ewitab_lo,ewitab_hi;
112     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
114     real             *ewtab;
115     __m256           dummy_mask,cutoff_mask;
116     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
117     __m256           one     = _mm256_set1_ps(1.0);
118     __m256           two     = _mm256_set1_ps(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm256_set1_ps(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135
136     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
137     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
138     beta2            = _mm256_mul_ps(beta,beta);
139     beta3            = _mm256_mul_ps(beta,beta2);
140
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
148     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
149     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
150     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
151
152     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
153     rcutoff_scalar   = fr->rcoulomb;
154     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
155     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
156
157     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
158     rvdw             = _mm256_set1_ps(fr->rvdw);
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164     j_coord_offsetC = 0;
165     j_coord_offsetD = 0;
166     j_coord_offsetE = 0;
167     j_coord_offsetF = 0;
168     j_coord_offsetG = 0;
169     j_coord_offsetH = 0;
170
171     outeriter        = 0;
172     inneriter        = 0;
173
174     for(iidx=0;iidx<4*DIM;iidx++)
175     {
176         scratch[iidx] = 0.0;
177     }
178
179     /* Start outer loop over neighborlists */
180     for(iidx=0; iidx<nri; iidx++)
181     {
182         /* Load shift vector for this list */
183         i_shift_offset   = DIM*shiftidx[iidx];
184
185         /* Load limits for loop over neighbors */
186         j_index_start    = jindex[iidx];
187         j_index_end      = jindex[iidx+1];
188
189         /* Get outer coordinate index */
190         inr              = iinr[iidx];
191         i_coord_offset   = DIM*inr;
192
193         /* Load i particle coords and add shift vector */
194         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
195                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
196
197         fix0             = _mm256_setzero_ps();
198         fiy0             = _mm256_setzero_ps();
199         fiz0             = _mm256_setzero_ps();
200         fix1             = _mm256_setzero_ps();
201         fiy1             = _mm256_setzero_ps();
202         fiz1             = _mm256_setzero_ps();
203         fix2             = _mm256_setzero_ps();
204         fiy2             = _mm256_setzero_ps();
205         fiz2             = _mm256_setzero_ps();
206         fix3             = _mm256_setzero_ps();
207         fiy3             = _mm256_setzero_ps();
208         fiz3             = _mm256_setzero_ps();
209
210         /* Reset potential sums */
211         velecsum         = _mm256_setzero_ps();
212         vvdwsum          = _mm256_setzero_ps();
213
214         /* Start inner kernel loop */
215         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
216         {
217
218             /* Get j neighbor index, and coordinate index */
219             jnrA             = jjnr[jidx];
220             jnrB             = jjnr[jidx+1];
221             jnrC             = jjnr[jidx+2];
222             jnrD             = jjnr[jidx+3];
223             jnrE             = jjnr[jidx+4];
224             jnrF             = jjnr[jidx+5];
225             jnrG             = jjnr[jidx+6];
226             jnrH             = jjnr[jidx+7];
227             j_coord_offsetA  = DIM*jnrA;
228             j_coord_offsetB  = DIM*jnrB;
229             j_coord_offsetC  = DIM*jnrC;
230             j_coord_offsetD  = DIM*jnrD;
231             j_coord_offsetE  = DIM*jnrE;
232             j_coord_offsetF  = DIM*jnrF;
233             j_coord_offsetG  = DIM*jnrG;
234             j_coord_offsetH  = DIM*jnrH;
235
236             /* load j atom coordinates */
237             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
238                                                  x+j_coord_offsetC,x+j_coord_offsetD,
239                                                  x+j_coord_offsetE,x+j_coord_offsetF,
240                                                  x+j_coord_offsetG,x+j_coord_offsetH,
241                                                  &jx0,&jy0,&jz0);
242
243             /* Calculate displacement vector */
244             dx00             = _mm256_sub_ps(ix0,jx0);
245             dy00             = _mm256_sub_ps(iy0,jy0);
246             dz00             = _mm256_sub_ps(iz0,jz0);
247             dx10             = _mm256_sub_ps(ix1,jx0);
248             dy10             = _mm256_sub_ps(iy1,jy0);
249             dz10             = _mm256_sub_ps(iz1,jz0);
250             dx20             = _mm256_sub_ps(ix2,jx0);
251             dy20             = _mm256_sub_ps(iy2,jy0);
252             dz20             = _mm256_sub_ps(iz2,jz0);
253             dx30             = _mm256_sub_ps(ix3,jx0);
254             dy30             = _mm256_sub_ps(iy3,jy0);
255             dz30             = _mm256_sub_ps(iz3,jz0);
256
257             /* Calculate squared distance and things based on it */
258             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
259             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
260             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
261             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
262
263             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
264             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
265             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
266
267             rinvsq00         = gmx_mm256_inv_ps(rsq00);
268             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
269             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
270             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
271
272             /* Load parameters for j particles */
273             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
274                                                                  charge+jnrC+0,charge+jnrD+0,
275                                                                  charge+jnrE+0,charge+jnrF+0,
276                                                                  charge+jnrG+0,charge+jnrH+0);
277             vdwjidx0A        = 2*vdwtype[jnrA+0];
278             vdwjidx0B        = 2*vdwtype[jnrB+0];
279             vdwjidx0C        = 2*vdwtype[jnrC+0];
280             vdwjidx0D        = 2*vdwtype[jnrD+0];
281             vdwjidx0E        = 2*vdwtype[jnrE+0];
282             vdwjidx0F        = 2*vdwtype[jnrF+0];
283             vdwjidx0G        = 2*vdwtype[jnrG+0];
284             vdwjidx0H        = 2*vdwtype[jnrH+0];
285
286             fjx0             = _mm256_setzero_ps();
287             fjy0             = _mm256_setzero_ps();
288             fjz0             = _mm256_setzero_ps();
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             if (gmx_mm256_any_lt(rsq00,rcutoff2))
295             {
296
297             /* Compute parameters for interactions between i and j atoms */
298             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
299                                             vdwioffsetptr0+vdwjidx0B,
300                                             vdwioffsetptr0+vdwjidx0C,
301                                             vdwioffsetptr0+vdwjidx0D,
302                                             vdwioffsetptr0+vdwjidx0E,
303                                             vdwioffsetptr0+vdwjidx0F,
304                                             vdwioffsetptr0+vdwjidx0G,
305                                             vdwioffsetptr0+vdwjidx0H,
306                                             &c6_00,&c12_00);
307
308             /* LENNARD-JONES DISPERSION/REPULSION */
309
310             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
311             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
312             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
313             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
314                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
315             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
316
317             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
321             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
322
323             fscal            = fvdw;
324
325             fscal            = _mm256_and_ps(fscal,cutoff_mask);
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm256_mul_ps(fscal,dx00);
329             ty               = _mm256_mul_ps(fscal,dy00);
330             tz               = _mm256_mul_ps(fscal,dz00);
331
332             /* Update vectorial force */
333             fix0             = _mm256_add_ps(fix0,tx);
334             fiy0             = _mm256_add_ps(fiy0,ty);
335             fiz0             = _mm256_add_ps(fiz0,tz);
336
337             fjx0             = _mm256_add_ps(fjx0,tx);
338             fjy0             = _mm256_add_ps(fjy0,ty);
339             fjz0             = _mm256_add_ps(fjz0,tz);
340
341             }
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             if (gmx_mm256_any_lt(rsq10,rcutoff2))
348             {
349
350             r10              = _mm256_mul_ps(rsq10,rinv10);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq10             = _mm256_mul_ps(iq1,jq0);
354
355             /* EWALD ELECTROSTATICS */
356             
357             /* Analytical PME correction */
358             zeta2            = _mm256_mul_ps(beta2,rsq10);
359             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
360             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
361             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
362             felec            = _mm256_mul_ps(qq10,felec);
363             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
364             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
365             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
366             velec            = _mm256_mul_ps(qq10,velec);
367             
368             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm256_and_ps(velec,cutoff_mask);
372             velecsum         = _mm256_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376             fscal            = _mm256_and_ps(fscal,cutoff_mask);
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm256_mul_ps(fscal,dx10);
380             ty               = _mm256_mul_ps(fscal,dy10);
381             tz               = _mm256_mul_ps(fscal,dz10);
382
383             /* Update vectorial force */
384             fix1             = _mm256_add_ps(fix1,tx);
385             fiy1             = _mm256_add_ps(fiy1,ty);
386             fiz1             = _mm256_add_ps(fiz1,tz);
387
388             fjx0             = _mm256_add_ps(fjx0,tx);
389             fjy0             = _mm256_add_ps(fjy0,ty);
390             fjz0             = _mm256_add_ps(fjz0,tz);
391
392             }
393
394             /**************************
395              * CALCULATE INTERACTIONS *
396              **************************/
397
398             if (gmx_mm256_any_lt(rsq20,rcutoff2))
399             {
400
401             r20              = _mm256_mul_ps(rsq20,rinv20);
402
403             /* Compute parameters for interactions between i and j atoms */
404             qq20             = _mm256_mul_ps(iq2,jq0);
405
406             /* EWALD ELECTROSTATICS */
407             
408             /* Analytical PME correction */
409             zeta2            = _mm256_mul_ps(beta2,rsq20);
410             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
411             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
412             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
413             felec            = _mm256_mul_ps(qq20,felec);
414             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
415             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
416             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
417             velec            = _mm256_mul_ps(qq20,velec);
418             
419             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
420
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             velec            = _mm256_and_ps(velec,cutoff_mask);
423             velecsum         = _mm256_add_ps(velecsum,velec);
424
425             fscal            = felec;
426
427             fscal            = _mm256_and_ps(fscal,cutoff_mask);
428
429             /* Calculate temporary vectorial force */
430             tx               = _mm256_mul_ps(fscal,dx20);
431             ty               = _mm256_mul_ps(fscal,dy20);
432             tz               = _mm256_mul_ps(fscal,dz20);
433
434             /* Update vectorial force */
435             fix2             = _mm256_add_ps(fix2,tx);
436             fiy2             = _mm256_add_ps(fiy2,ty);
437             fiz2             = _mm256_add_ps(fiz2,tz);
438
439             fjx0             = _mm256_add_ps(fjx0,tx);
440             fjy0             = _mm256_add_ps(fjy0,ty);
441             fjz0             = _mm256_add_ps(fjz0,tz);
442
443             }
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             if (gmx_mm256_any_lt(rsq30,rcutoff2))
450             {
451
452             r30              = _mm256_mul_ps(rsq30,rinv30);
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq30             = _mm256_mul_ps(iq3,jq0);
456
457             /* EWALD ELECTROSTATICS */
458             
459             /* Analytical PME correction */
460             zeta2            = _mm256_mul_ps(beta2,rsq30);
461             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
462             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
463             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
464             felec            = _mm256_mul_ps(qq30,felec);
465             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
466             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
467             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
468             velec            = _mm256_mul_ps(qq30,velec);
469             
470             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             velec            = _mm256_and_ps(velec,cutoff_mask);
474             velecsum         = _mm256_add_ps(velecsum,velec);
475
476             fscal            = felec;
477
478             fscal            = _mm256_and_ps(fscal,cutoff_mask);
479
480             /* Calculate temporary vectorial force */
481             tx               = _mm256_mul_ps(fscal,dx30);
482             ty               = _mm256_mul_ps(fscal,dy30);
483             tz               = _mm256_mul_ps(fscal,dz30);
484
485             /* Update vectorial force */
486             fix3             = _mm256_add_ps(fix3,tx);
487             fiy3             = _mm256_add_ps(fiy3,ty);
488             fiz3             = _mm256_add_ps(fiz3,tz);
489
490             fjx0             = _mm256_add_ps(fjx0,tx);
491             fjy0             = _mm256_add_ps(fjy0,ty);
492             fjz0             = _mm256_add_ps(fjz0,tz);
493
494             }
495
496             fjptrA             = f+j_coord_offsetA;
497             fjptrB             = f+j_coord_offsetB;
498             fjptrC             = f+j_coord_offsetC;
499             fjptrD             = f+j_coord_offsetD;
500             fjptrE             = f+j_coord_offsetE;
501             fjptrF             = f+j_coord_offsetF;
502             fjptrG             = f+j_coord_offsetG;
503             fjptrH             = f+j_coord_offsetH;
504
505             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
506
507             /* Inner loop uses 371 flops */
508         }
509
510         if(jidx<j_index_end)
511         {
512
513             /* Get j neighbor index, and coordinate index */
514             jnrlistA         = jjnr[jidx];
515             jnrlistB         = jjnr[jidx+1];
516             jnrlistC         = jjnr[jidx+2];
517             jnrlistD         = jjnr[jidx+3];
518             jnrlistE         = jjnr[jidx+4];
519             jnrlistF         = jjnr[jidx+5];
520             jnrlistG         = jjnr[jidx+6];
521             jnrlistH         = jjnr[jidx+7];
522             /* Sign of each element will be negative for non-real atoms.
523              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
524              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
525              */
526             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
527                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
528                                             
529             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
530             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
531             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
532             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
533             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
534             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
535             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
536             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
537             j_coord_offsetA  = DIM*jnrA;
538             j_coord_offsetB  = DIM*jnrB;
539             j_coord_offsetC  = DIM*jnrC;
540             j_coord_offsetD  = DIM*jnrD;
541             j_coord_offsetE  = DIM*jnrE;
542             j_coord_offsetF  = DIM*jnrF;
543             j_coord_offsetG  = DIM*jnrG;
544             j_coord_offsetH  = DIM*jnrH;
545
546             /* load j atom coordinates */
547             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
548                                                  x+j_coord_offsetC,x+j_coord_offsetD,
549                                                  x+j_coord_offsetE,x+j_coord_offsetF,
550                                                  x+j_coord_offsetG,x+j_coord_offsetH,
551                                                  &jx0,&jy0,&jz0);
552
553             /* Calculate displacement vector */
554             dx00             = _mm256_sub_ps(ix0,jx0);
555             dy00             = _mm256_sub_ps(iy0,jy0);
556             dz00             = _mm256_sub_ps(iz0,jz0);
557             dx10             = _mm256_sub_ps(ix1,jx0);
558             dy10             = _mm256_sub_ps(iy1,jy0);
559             dz10             = _mm256_sub_ps(iz1,jz0);
560             dx20             = _mm256_sub_ps(ix2,jx0);
561             dy20             = _mm256_sub_ps(iy2,jy0);
562             dz20             = _mm256_sub_ps(iz2,jz0);
563             dx30             = _mm256_sub_ps(ix3,jx0);
564             dy30             = _mm256_sub_ps(iy3,jy0);
565             dz30             = _mm256_sub_ps(iz3,jz0);
566
567             /* Calculate squared distance and things based on it */
568             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
569             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
570             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
571             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
572
573             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
574             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
575             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
576
577             rinvsq00         = gmx_mm256_inv_ps(rsq00);
578             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
579             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
580             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
581
582             /* Load parameters for j particles */
583             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
584                                                                  charge+jnrC+0,charge+jnrD+0,
585                                                                  charge+jnrE+0,charge+jnrF+0,
586                                                                  charge+jnrG+0,charge+jnrH+0);
587             vdwjidx0A        = 2*vdwtype[jnrA+0];
588             vdwjidx0B        = 2*vdwtype[jnrB+0];
589             vdwjidx0C        = 2*vdwtype[jnrC+0];
590             vdwjidx0D        = 2*vdwtype[jnrD+0];
591             vdwjidx0E        = 2*vdwtype[jnrE+0];
592             vdwjidx0F        = 2*vdwtype[jnrF+0];
593             vdwjidx0G        = 2*vdwtype[jnrG+0];
594             vdwjidx0H        = 2*vdwtype[jnrH+0];
595
596             fjx0             = _mm256_setzero_ps();
597             fjy0             = _mm256_setzero_ps();
598             fjz0             = _mm256_setzero_ps();
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             if (gmx_mm256_any_lt(rsq00,rcutoff2))
605             {
606
607             /* Compute parameters for interactions between i and j atoms */
608             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
609                                             vdwioffsetptr0+vdwjidx0B,
610                                             vdwioffsetptr0+vdwjidx0C,
611                                             vdwioffsetptr0+vdwjidx0D,
612                                             vdwioffsetptr0+vdwjidx0E,
613                                             vdwioffsetptr0+vdwjidx0F,
614                                             vdwioffsetptr0+vdwjidx0G,
615                                             vdwioffsetptr0+vdwjidx0H,
616                                             &c6_00,&c12_00);
617
618             /* LENNARD-JONES DISPERSION/REPULSION */
619
620             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
621             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
622             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
623             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
624                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
625             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
626
627             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
628
629             /* Update potential sum for this i atom from the interaction with this j atom. */
630             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
631             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
632             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
633
634             fscal            = fvdw;
635
636             fscal            = _mm256_and_ps(fscal,cutoff_mask);
637
638             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
639
640             /* Calculate temporary vectorial force */
641             tx               = _mm256_mul_ps(fscal,dx00);
642             ty               = _mm256_mul_ps(fscal,dy00);
643             tz               = _mm256_mul_ps(fscal,dz00);
644
645             /* Update vectorial force */
646             fix0             = _mm256_add_ps(fix0,tx);
647             fiy0             = _mm256_add_ps(fiy0,ty);
648             fiz0             = _mm256_add_ps(fiz0,tz);
649
650             fjx0             = _mm256_add_ps(fjx0,tx);
651             fjy0             = _mm256_add_ps(fjy0,ty);
652             fjz0             = _mm256_add_ps(fjz0,tz);
653
654             }
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (gmx_mm256_any_lt(rsq10,rcutoff2))
661             {
662
663             r10              = _mm256_mul_ps(rsq10,rinv10);
664             r10              = _mm256_andnot_ps(dummy_mask,r10);
665
666             /* Compute parameters for interactions between i and j atoms */
667             qq10             = _mm256_mul_ps(iq1,jq0);
668
669             /* EWALD ELECTROSTATICS */
670             
671             /* Analytical PME correction */
672             zeta2            = _mm256_mul_ps(beta2,rsq10);
673             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
674             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
675             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
676             felec            = _mm256_mul_ps(qq10,felec);
677             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
678             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
679             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
680             velec            = _mm256_mul_ps(qq10,velec);
681             
682             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
683
684             /* Update potential sum for this i atom from the interaction with this j atom. */
685             velec            = _mm256_and_ps(velec,cutoff_mask);
686             velec            = _mm256_andnot_ps(dummy_mask,velec);
687             velecsum         = _mm256_add_ps(velecsum,velec);
688
689             fscal            = felec;
690
691             fscal            = _mm256_and_ps(fscal,cutoff_mask);
692
693             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
694
695             /* Calculate temporary vectorial force */
696             tx               = _mm256_mul_ps(fscal,dx10);
697             ty               = _mm256_mul_ps(fscal,dy10);
698             tz               = _mm256_mul_ps(fscal,dz10);
699
700             /* Update vectorial force */
701             fix1             = _mm256_add_ps(fix1,tx);
702             fiy1             = _mm256_add_ps(fiy1,ty);
703             fiz1             = _mm256_add_ps(fiz1,tz);
704
705             fjx0             = _mm256_add_ps(fjx0,tx);
706             fjy0             = _mm256_add_ps(fjy0,ty);
707             fjz0             = _mm256_add_ps(fjz0,tz);
708
709             }
710
711             /**************************
712              * CALCULATE INTERACTIONS *
713              **************************/
714
715             if (gmx_mm256_any_lt(rsq20,rcutoff2))
716             {
717
718             r20              = _mm256_mul_ps(rsq20,rinv20);
719             r20              = _mm256_andnot_ps(dummy_mask,r20);
720
721             /* Compute parameters for interactions between i and j atoms */
722             qq20             = _mm256_mul_ps(iq2,jq0);
723
724             /* EWALD ELECTROSTATICS */
725             
726             /* Analytical PME correction */
727             zeta2            = _mm256_mul_ps(beta2,rsq20);
728             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
729             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
730             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
731             felec            = _mm256_mul_ps(qq20,felec);
732             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
733             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
734             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
735             velec            = _mm256_mul_ps(qq20,velec);
736             
737             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
738
739             /* Update potential sum for this i atom from the interaction with this j atom. */
740             velec            = _mm256_and_ps(velec,cutoff_mask);
741             velec            = _mm256_andnot_ps(dummy_mask,velec);
742             velecsum         = _mm256_add_ps(velecsum,velec);
743
744             fscal            = felec;
745
746             fscal            = _mm256_and_ps(fscal,cutoff_mask);
747
748             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
749
750             /* Calculate temporary vectorial force */
751             tx               = _mm256_mul_ps(fscal,dx20);
752             ty               = _mm256_mul_ps(fscal,dy20);
753             tz               = _mm256_mul_ps(fscal,dz20);
754
755             /* Update vectorial force */
756             fix2             = _mm256_add_ps(fix2,tx);
757             fiy2             = _mm256_add_ps(fiy2,ty);
758             fiz2             = _mm256_add_ps(fiz2,tz);
759
760             fjx0             = _mm256_add_ps(fjx0,tx);
761             fjy0             = _mm256_add_ps(fjy0,ty);
762             fjz0             = _mm256_add_ps(fjz0,tz);
763
764             }
765
766             /**************************
767              * CALCULATE INTERACTIONS *
768              **************************/
769
770             if (gmx_mm256_any_lt(rsq30,rcutoff2))
771             {
772
773             r30              = _mm256_mul_ps(rsq30,rinv30);
774             r30              = _mm256_andnot_ps(dummy_mask,r30);
775
776             /* Compute parameters for interactions between i and j atoms */
777             qq30             = _mm256_mul_ps(iq3,jq0);
778
779             /* EWALD ELECTROSTATICS */
780             
781             /* Analytical PME correction */
782             zeta2            = _mm256_mul_ps(beta2,rsq30);
783             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
784             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
785             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
786             felec            = _mm256_mul_ps(qq30,felec);
787             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
788             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
789             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
790             velec            = _mm256_mul_ps(qq30,velec);
791             
792             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
793
794             /* Update potential sum for this i atom from the interaction with this j atom. */
795             velec            = _mm256_and_ps(velec,cutoff_mask);
796             velec            = _mm256_andnot_ps(dummy_mask,velec);
797             velecsum         = _mm256_add_ps(velecsum,velec);
798
799             fscal            = felec;
800
801             fscal            = _mm256_and_ps(fscal,cutoff_mask);
802
803             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
804
805             /* Calculate temporary vectorial force */
806             tx               = _mm256_mul_ps(fscal,dx30);
807             ty               = _mm256_mul_ps(fscal,dy30);
808             tz               = _mm256_mul_ps(fscal,dz30);
809
810             /* Update vectorial force */
811             fix3             = _mm256_add_ps(fix3,tx);
812             fiy3             = _mm256_add_ps(fiy3,ty);
813             fiz3             = _mm256_add_ps(fiz3,tz);
814
815             fjx0             = _mm256_add_ps(fjx0,tx);
816             fjy0             = _mm256_add_ps(fjy0,ty);
817             fjz0             = _mm256_add_ps(fjz0,tz);
818
819             }
820
821             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
822             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
823             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
824             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
825             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
826             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
827             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
828             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
829
830             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
831
832             /* Inner loop uses 374 flops */
833         }
834
835         /* End of innermost loop */
836
837         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
838                                                  f+i_coord_offset,fshift+i_shift_offset);
839
840         ggid                        = gid[iidx];
841         /* Update potential energies */
842         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
843         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
844
845         /* Increment number of inner iterations */
846         inneriter                  += j_index_end - j_index_start;
847
848         /* Outer loop uses 26 flops */
849     }
850
851     /* Increment number of outer iterations */
852     outeriter        += nri;
853
854     /* Update outer/inner flops */
855
856     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*374);
857 }
858 /*
859  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_single
860  * Electrostatics interaction: Ewald
861  * VdW interaction:            LennardJones
862  * Geometry:                   Water4-Particle
863  * Calculate force/pot:        Force
864  */
865 void
866 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_single
867                     (t_nblist                    * gmx_restrict       nlist,
868                      rvec                        * gmx_restrict          xx,
869                      rvec                        * gmx_restrict          ff,
870                      t_forcerec                  * gmx_restrict          fr,
871                      t_mdatoms                   * gmx_restrict     mdatoms,
872                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
873                      t_nrnb                      * gmx_restrict        nrnb)
874 {
875     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
876      * just 0 for non-waters.
877      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
878      * jnr indices corresponding to data put in the four positions in the SIMD register.
879      */
880     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
881     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
882     int              jnrA,jnrB,jnrC,jnrD;
883     int              jnrE,jnrF,jnrG,jnrH;
884     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
885     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
886     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
887     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
888     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
889     real             rcutoff_scalar;
890     real             *shiftvec,*fshift,*x,*f;
891     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
892     real             scratch[4*DIM];
893     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
894     real *           vdwioffsetptr0;
895     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
896     real *           vdwioffsetptr1;
897     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
898     real *           vdwioffsetptr2;
899     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
900     real *           vdwioffsetptr3;
901     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
902     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
903     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
904     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
905     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
906     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
907     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
908     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
909     real             *charge;
910     int              nvdwtype;
911     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
912     int              *vdwtype;
913     real             *vdwparam;
914     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
915     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
916     __m256i          ewitab;
917     __m128i          ewitab_lo,ewitab_hi;
918     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
919     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
920     real             *ewtab;
921     __m256           dummy_mask,cutoff_mask;
922     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
923     __m256           one     = _mm256_set1_ps(1.0);
924     __m256           two     = _mm256_set1_ps(2.0);
925     x                = xx[0];
926     f                = ff[0];
927
928     nri              = nlist->nri;
929     iinr             = nlist->iinr;
930     jindex           = nlist->jindex;
931     jjnr             = nlist->jjnr;
932     shiftidx         = nlist->shift;
933     gid              = nlist->gid;
934     shiftvec         = fr->shift_vec[0];
935     fshift           = fr->fshift[0];
936     facel            = _mm256_set1_ps(fr->epsfac);
937     charge           = mdatoms->chargeA;
938     nvdwtype         = fr->ntype;
939     vdwparam         = fr->nbfp;
940     vdwtype          = mdatoms->typeA;
941
942     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
943     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
944     beta2            = _mm256_mul_ps(beta,beta);
945     beta3            = _mm256_mul_ps(beta,beta2);
946
947     ewtab            = fr->ic->tabq_coul_F;
948     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
949     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
950
951     /* Setup water-specific parameters */
952     inr              = nlist->iinr[0];
953     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
954     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
955     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
956     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
957
958     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
959     rcutoff_scalar   = fr->rcoulomb;
960     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
961     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
962
963     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
964     rvdw             = _mm256_set1_ps(fr->rvdw);
965
966     /* Avoid stupid compiler warnings */
967     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
968     j_coord_offsetA = 0;
969     j_coord_offsetB = 0;
970     j_coord_offsetC = 0;
971     j_coord_offsetD = 0;
972     j_coord_offsetE = 0;
973     j_coord_offsetF = 0;
974     j_coord_offsetG = 0;
975     j_coord_offsetH = 0;
976
977     outeriter        = 0;
978     inneriter        = 0;
979
980     for(iidx=0;iidx<4*DIM;iidx++)
981     {
982         scratch[iidx] = 0.0;
983     }
984
985     /* Start outer loop over neighborlists */
986     for(iidx=0; iidx<nri; iidx++)
987     {
988         /* Load shift vector for this list */
989         i_shift_offset   = DIM*shiftidx[iidx];
990
991         /* Load limits for loop over neighbors */
992         j_index_start    = jindex[iidx];
993         j_index_end      = jindex[iidx+1];
994
995         /* Get outer coordinate index */
996         inr              = iinr[iidx];
997         i_coord_offset   = DIM*inr;
998
999         /* Load i particle coords and add shift vector */
1000         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1001                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1002
1003         fix0             = _mm256_setzero_ps();
1004         fiy0             = _mm256_setzero_ps();
1005         fiz0             = _mm256_setzero_ps();
1006         fix1             = _mm256_setzero_ps();
1007         fiy1             = _mm256_setzero_ps();
1008         fiz1             = _mm256_setzero_ps();
1009         fix2             = _mm256_setzero_ps();
1010         fiy2             = _mm256_setzero_ps();
1011         fiz2             = _mm256_setzero_ps();
1012         fix3             = _mm256_setzero_ps();
1013         fiy3             = _mm256_setzero_ps();
1014         fiz3             = _mm256_setzero_ps();
1015
1016         /* Start inner kernel loop */
1017         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
1018         {
1019
1020             /* Get j neighbor index, and coordinate index */
1021             jnrA             = jjnr[jidx];
1022             jnrB             = jjnr[jidx+1];
1023             jnrC             = jjnr[jidx+2];
1024             jnrD             = jjnr[jidx+3];
1025             jnrE             = jjnr[jidx+4];
1026             jnrF             = jjnr[jidx+5];
1027             jnrG             = jjnr[jidx+6];
1028             jnrH             = jjnr[jidx+7];
1029             j_coord_offsetA  = DIM*jnrA;
1030             j_coord_offsetB  = DIM*jnrB;
1031             j_coord_offsetC  = DIM*jnrC;
1032             j_coord_offsetD  = DIM*jnrD;
1033             j_coord_offsetE  = DIM*jnrE;
1034             j_coord_offsetF  = DIM*jnrF;
1035             j_coord_offsetG  = DIM*jnrG;
1036             j_coord_offsetH  = DIM*jnrH;
1037
1038             /* load j atom coordinates */
1039             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1040                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1041                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1042                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1043                                                  &jx0,&jy0,&jz0);
1044
1045             /* Calculate displacement vector */
1046             dx00             = _mm256_sub_ps(ix0,jx0);
1047             dy00             = _mm256_sub_ps(iy0,jy0);
1048             dz00             = _mm256_sub_ps(iz0,jz0);
1049             dx10             = _mm256_sub_ps(ix1,jx0);
1050             dy10             = _mm256_sub_ps(iy1,jy0);
1051             dz10             = _mm256_sub_ps(iz1,jz0);
1052             dx20             = _mm256_sub_ps(ix2,jx0);
1053             dy20             = _mm256_sub_ps(iy2,jy0);
1054             dz20             = _mm256_sub_ps(iz2,jz0);
1055             dx30             = _mm256_sub_ps(ix3,jx0);
1056             dy30             = _mm256_sub_ps(iy3,jy0);
1057             dz30             = _mm256_sub_ps(iz3,jz0);
1058
1059             /* Calculate squared distance and things based on it */
1060             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1061             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1062             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1063             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1064
1065             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1066             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1067             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1068
1069             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1070             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1071             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1072             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1073
1074             /* Load parameters for j particles */
1075             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1076                                                                  charge+jnrC+0,charge+jnrD+0,
1077                                                                  charge+jnrE+0,charge+jnrF+0,
1078                                                                  charge+jnrG+0,charge+jnrH+0);
1079             vdwjidx0A        = 2*vdwtype[jnrA+0];
1080             vdwjidx0B        = 2*vdwtype[jnrB+0];
1081             vdwjidx0C        = 2*vdwtype[jnrC+0];
1082             vdwjidx0D        = 2*vdwtype[jnrD+0];
1083             vdwjidx0E        = 2*vdwtype[jnrE+0];
1084             vdwjidx0F        = 2*vdwtype[jnrF+0];
1085             vdwjidx0G        = 2*vdwtype[jnrG+0];
1086             vdwjidx0H        = 2*vdwtype[jnrH+0];
1087
1088             fjx0             = _mm256_setzero_ps();
1089             fjy0             = _mm256_setzero_ps();
1090             fjz0             = _mm256_setzero_ps();
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1097             {
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1101                                             vdwioffsetptr0+vdwjidx0B,
1102                                             vdwioffsetptr0+vdwjidx0C,
1103                                             vdwioffsetptr0+vdwjidx0D,
1104                                             vdwioffsetptr0+vdwjidx0E,
1105                                             vdwioffsetptr0+vdwjidx0F,
1106                                             vdwioffsetptr0+vdwjidx0G,
1107                                             vdwioffsetptr0+vdwjidx0H,
1108                                             &c6_00,&c12_00);
1109
1110             /* LENNARD-JONES DISPERSION/REPULSION */
1111
1112             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1113             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1114
1115             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1116
1117             fscal            = fvdw;
1118
1119             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1120
1121             /* Calculate temporary vectorial force */
1122             tx               = _mm256_mul_ps(fscal,dx00);
1123             ty               = _mm256_mul_ps(fscal,dy00);
1124             tz               = _mm256_mul_ps(fscal,dz00);
1125
1126             /* Update vectorial force */
1127             fix0             = _mm256_add_ps(fix0,tx);
1128             fiy0             = _mm256_add_ps(fiy0,ty);
1129             fiz0             = _mm256_add_ps(fiz0,tz);
1130
1131             fjx0             = _mm256_add_ps(fjx0,tx);
1132             fjy0             = _mm256_add_ps(fjy0,ty);
1133             fjz0             = _mm256_add_ps(fjz0,tz);
1134
1135             }
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1142             {
1143
1144             r10              = _mm256_mul_ps(rsq10,rinv10);
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             qq10             = _mm256_mul_ps(iq1,jq0);
1148
1149             /* EWALD ELECTROSTATICS */
1150             
1151             /* Analytical PME correction */
1152             zeta2            = _mm256_mul_ps(beta2,rsq10);
1153             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1154             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1155             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1156             felec            = _mm256_mul_ps(qq10,felec);
1157             
1158             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1159
1160             fscal            = felec;
1161
1162             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1163
1164             /* Calculate temporary vectorial force */
1165             tx               = _mm256_mul_ps(fscal,dx10);
1166             ty               = _mm256_mul_ps(fscal,dy10);
1167             tz               = _mm256_mul_ps(fscal,dz10);
1168
1169             /* Update vectorial force */
1170             fix1             = _mm256_add_ps(fix1,tx);
1171             fiy1             = _mm256_add_ps(fiy1,ty);
1172             fiz1             = _mm256_add_ps(fiz1,tz);
1173
1174             fjx0             = _mm256_add_ps(fjx0,tx);
1175             fjy0             = _mm256_add_ps(fjy0,ty);
1176             fjz0             = _mm256_add_ps(fjz0,tz);
1177
1178             }
1179
1180             /**************************
1181              * CALCULATE INTERACTIONS *
1182              **************************/
1183
1184             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1185             {
1186
1187             r20              = _mm256_mul_ps(rsq20,rinv20);
1188
1189             /* Compute parameters for interactions between i and j atoms */
1190             qq20             = _mm256_mul_ps(iq2,jq0);
1191
1192             /* EWALD ELECTROSTATICS */
1193             
1194             /* Analytical PME correction */
1195             zeta2            = _mm256_mul_ps(beta2,rsq20);
1196             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1197             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1198             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1199             felec            = _mm256_mul_ps(qq20,felec);
1200             
1201             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1202
1203             fscal            = felec;
1204
1205             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1206
1207             /* Calculate temporary vectorial force */
1208             tx               = _mm256_mul_ps(fscal,dx20);
1209             ty               = _mm256_mul_ps(fscal,dy20);
1210             tz               = _mm256_mul_ps(fscal,dz20);
1211
1212             /* Update vectorial force */
1213             fix2             = _mm256_add_ps(fix2,tx);
1214             fiy2             = _mm256_add_ps(fiy2,ty);
1215             fiz2             = _mm256_add_ps(fiz2,tz);
1216
1217             fjx0             = _mm256_add_ps(fjx0,tx);
1218             fjy0             = _mm256_add_ps(fjy0,ty);
1219             fjz0             = _mm256_add_ps(fjz0,tz);
1220
1221             }
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1228             {
1229
1230             r30              = _mm256_mul_ps(rsq30,rinv30);
1231
1232             /* Compute parameters for interactions between i and j atoms */
1233             qq30             = _mm256_mul_ps(iq3,jq0);
1234
1235             /* EWALD ELECTROSTATICS */
1236             
1237             /* Analytical PME correction */
1238             zeta2            = _mm256_mul_ps(beta2,rsq30);
1239             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1240             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1241             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1242             felec            = _mm256_mul_ps(qq30,felec);
1243             
1244             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1245
1246             fscal            = felec;
1247
1248             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1249
1250             /* Calculate temporary vectorial force */
1251             tx               = _mm256_mul_ps(fscal,dx30);
1252             ty               = _mm256_mul_ps(fscal,dy30);
1253             tz               = _mm256_mul_ps(fscal,dz30);
1254
1255             /* Update vectorial force */
1256             fix3             = _mm256_add_ps(fix3,tx);
1257             fiy3             = _mm256_add_ps(fiy3,ty);
1258             fiz3             = _mm256_add_ps(fiz3,tz);
1259
1260             fjx0             = _mm256_add_ps(fjx0,tx);
1261             fjy0             = _mm256_add_ps(fjy0,ty);
1262             fjz0             = _mm256_add_ps(fjz0,tz);
1263
1264             }
1265
1266             fjptrA             = f+j_coord_offsetA;
1267             fjptrB             = f+j_coord_offsetB;
1268             fjptrC             = f+j_coord_offsetC;
1269             fjptrD             = f+j_coord_offsetD;
1270             fjptrE             = f+j_coord_offsetE;
1271             fjptrF             = f+j_coord_offsetF;
1272             fjptrG             = f+j_coord_offsetG;
1273             fjptrH             = f+j_coord_offsetH;
1274
1275             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1276
1277             /* Inner loop uses 210 flops */
1278         }
1279
1280         if(jidx<j_index_end)
1281         {
1282
1283             /* Get j neighbor index, and coordinate index */
1284             jnrlistA         = jjnr[jidx];
1285             jnrlistB         = jjnr[jidx+1];
1286             jnrlistC         = jjnr[jidx+2];
1287             jnrlistD         = jjnr[jidx+3];
1288             jnrlistE         = jjnr[jidx+4];
1289             jnrlistF         = jjnr[jidx+5];
1290             jnrlistG         = jjnr[jidx+6];
1291             jnrlistH         = jjnr[jidx+7];
1292             /* Sign of each element will be negative for non-real atoms.
1293              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1294              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1295              */
1296             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1297                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1298                                             
1299             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1300             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1301             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1302             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1303             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1304             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1305             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1306             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1307             j_coord_offsetA  = DIM*jnrA;
1308             j_coord_offsetB  = DIM*jnrB;
1309             j_coord_offsetC  = DIM*jnrC;
1310             j_coord_offsetD  = DIM*jnrD;
1311             j_coord_offsetE  = DIM*jnrE;
1312             j_coord_offsetF  = DIM*jnrF;
1313             j_coord_offsetG  = DIM*jnrG;
1314             j_coord_offsetH  = DIM*jnrH;
1315
1316             /* load j atom coordinates */
1317             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1318                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1319                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1320                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1321                                                  &jx0,&jy0,&jz0);
1322
1323             /* Calculate displacement vector */
1324             dx00             = _mm256_sub_ps(ix0,jx0);
1325             dy00             = _mm256_sub_ps(iy0,jy0);
1326             dz00             = _mm256_sub_ps(iz0,jz0);
1327             dx10             = _mm256_sub_ps(ix1,jx0);
1328             dy10             = _mm256_sub_ps(iy1,jy0);
1329             dz10             = _mm256_sub_ps(iz1,jz0);
1330             dx20             = _mm256_sub_ps(ix2,jx0);
1331             dy20             = _mm256_sub_ps(iy2,jy0);
1332             dz20             = _mm256_sub_ps(iz2,jz0);
1333             dx30             = _mm256_sub_ps(ix3,jx0);
1334             dy30             = _mm256_sub_ps(iy3,jy0);
1335             dz30             = _mm256_sub_ps(iz3,jz0);
1336
1337             /* Calculate squared distance and things based on it */
1338             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1339             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1340             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1341             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1342
1343             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1344             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1345             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1346
1347             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1348             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1349             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1350             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1351
1352             /* Load parameters for j particles */
1353             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1354                                                                  charge+jnrC+0,charge+jnrD+0,
1355                                                                  charge+jnrE+0,charge+jnrF+0,
1356                                                                  charge+jnrG+0,charge+jnrH+0);
1357             vdwjidx0A        = 2*vdwtype[jnrA+0];
1358             vdwjidx0B        = 2*vdwtype[jnrB+0];
1359             vdwjidx0C        = 2*vdwtype[jnrC+0];
1360             vdwjidx0D        = 2*vdwtype[jnrD+0];
1361             vdwjidx0E        = 2*vdwtype[jnrE+0];
1362             vdwjidx0F        = 2*vdwtype[jnrF+0];
1363             vdwjidx0G        = 2*vdwtype[jnrG+0];
1364             vdwjidx0H        = 2*vdwtype[jnrH+0];
1365
1366             fjx0             = _mm256_setzero_ps();
1367             fjy0             = _mm256_setzero_ps();
1368             fjz0             = _mm256_setzero_ps();
1369
1370             /**************************
1371              * CALCULATE INTERACTIONS *
1372              **************************/
1373
1374             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1375             {
1376
1377             /* Compute parameters for interactions between i and j atoms */
1378             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1379                                             vdwioffsetptr0+vdwjidx0B,
1380                                             vdwioffsetptr0+vdwjidx0C,
1381                                             vdwioffsetptr0+vdwjidx0D,
1382                                             vdwioffsetptr0+vdwjidx0E,
1383                                             vdwioffsetptr0+vdwjidx0F,
1384                                             vdwioffsetptr0+vdwjidx0G,
1385                                             vdwioffsetptr0+vdwjidx0H,
1386                                             &c6_00,&c12_00);
1387
1388             /* LENNARD-JONES DISPERSION/REPULSION */
1389
1390             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1391             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1392
1393             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1394
1395             fscal            = fvdw;
1396
1397             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1398
1399             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1400
1401             /* Calculate temporary vectorial force */
1402             tx               = _mm256_mul_ps(fscal,dx00);
1403             ty               = _mm256_mul_ps(fscal,dy00);
1404             tz               = _mm256_mul_ps(fscal,dz00);
1405
1406             /* Update vectorial force */
1407             fix0             = _mm256_add_ps(fix0,tx);
1408             fiy0             = _mm256_add_ps(fiy0,ty);
1409             fiz0             = _mm256_add_ps(fiz0,tz);
1410
1411             fjx0             = _mm256_add_ps(fjx0,tx);
1412             fjy0             = _mm256_add_ps(fjy0,ty);
1413             fjz0             = _mm256_add_ps(fjz0,tz);
1414
1415             }
1416
1417             /**************************
1418              * CALCULATE INTERACTIONS *
1419              **************************/
1420
1421             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1422             {
1423
1424             r10              = _mm256_mul_ps(rsq10,rinv10);
1425             r10              = _mm256_andnot_ps(dummy_mask,r10);
1426
1427             /* Compute parameters for interactions between i and j atoms */
1428             qq10             = _mm256_mul_ps(iq1,jq0);
1429
1430             /* EWALD ELECTROSTATICS */
1431             
1432             /* Analytical PME correction */
1433             zeta2            = _mm256_mul_ps(beta2,rsq10);
1434             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1435             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1436             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1437             felec            = _mm256_mul_ps(qq10,felec);
1438             
1439             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1440
1441             fscal            = felec;
1442
1443             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1444
1445             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1446
1447             /* Calculate temporary vectorial force */
1448             tx               = _mm256_mul_ps(fscal,dx10);
1449             ty               = _mm256_mul_ps(fscal,dy10);
1450             tz               = _mm256_mul_ps(fscal,dz10);
1451
1452             /* Update vectorial force */
1453             fix1             = _mm256_add_ps(fix1,tx);
1454             fiy1             = _mm256_add_ps(fiy1,ty);
1455             fiz1             = _mm256_add_ps(fiz1,tz);
1456
1457             fjx0             = _mm256_add_ps(fjx0,tx);
1458             fjy0             = _mm256_add_ps(fjy0,ty);
1459             fjz0             = _mm256_add_ps(fjz0,tz);
1460
1461             }
1462
1463             /**************************
1464              * CALCULATE INTERACTIONS *
1465              **************************/
1466
1467             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1468             {
1469
1470             r20              = _mm256_mul_ps(rsq20,rinv20);
1471             r20              = _mm256_andnot_ps(dummy_mask,r20);
1472
1473             /* Compute parameters for interactions between i and j atoms */
1474             qq20             = _mm256_mul_ps(iq2,jq0);
1475
1476             /* EWALD ELECTROSTATICS */
1477             
1478             /* Analytical PME correction */
1479             zeta2            = _mm256_mul_ps(beta2,rsq20);
1480             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1481             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1482             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1483             felec            = _mm256_mul_ps(qq20,felec);
1484             
1485             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1486
1487             fscal            = felec;
1488
1489             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1490
1491             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1492
1493             /* Calculate temporary vectorial force */
1494             tx               = _mm256_mul_ps(fscal,dx20);
1495             ty               = _mm256_mul_ps(fscal,dy20);
1496             tz               = _mm256_mul_ps(fscal,dz20);
1497
1498             /* Update vectorial force */
1499             fix2             = _mm256_add_ps(fix2,tx);
1500             fiy2             = _mm256_add_ps(fiy2,ty);
1501             fiz2             = _mm256_add_ps(fiz2,tz);
1502
1503             fjx0             = _mm256_add_ps(fjx0,tx);
1504             fjy0             = _mm256_add_ps(fjy0,ty);
1505             fjz0             = _mm256_add_ps(fjz0,tz);
1506
1507             }
1508
1509             /**************************
1510              * CALCULATE INTERACTIONS *
1511              **************************/
1512
1513             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1514             {
1515
1516             r30              = _mm256_mul_ps(rsq30,rinv30);
1517             r30              = _mm256_andnot_ps(dummy_mask,r30);
1518
1519             /* Compute parameters for interactions between i and j atoms */
1520             qq30             = _mm256_mul_ps(iq3,jq0);
1521
1522             /* EWALD ELECTROSTATICS */
1523             
1524             /* Analytical PME correction */
1525             zeta2            = _mm256_mul_ps(beta2,rsq30);
1526             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1527             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1528             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1529             felec            = _mm256_mul_ps(qq30,felec);
1530             
1531             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1532
1533             fscal            = felec;
1534
1535             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1536
1537             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1538
1539             /* Calculate temporary vectorial force */
1540             tx               = _mm256_mul_ps(fscal,dx30);
1541             ty               = _mm256_mul_ps(fscal,dy30);
1542             tz               = _mm256_mul_ps(fscal,dz30);
1543
1544             /* Update vectorial force */
1545             fix3             = _mm256_add_ps(fix3,tx);
1546             fiy3             = _mm256_add_ps(fiy3,ty);
1547             fiz3             = _mm256_add_ps(fiz3,tz);
1548
1549             fjx0             = _mm256_add_ps(fjx0,tx);
1550             fjy0             = _mm256_add_ps(fjy0,ty);
1551             fjz0             = _mm256_add_ps(fjz0,tz);
1552
1553             }
1554
1555             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1556             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1557             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1558             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1559             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1560             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1561             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1562             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1563
1564             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1565
1566             /* Inner loop uses 213 flops */
1567         }
1568
1569         /* End of innermost loop */
1570
1571         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1572                                                  f+i_coord_offset,fshift+i_shift_offset);
1573
1574         /* Increment number of inner iterations */
1575         inneriter                  += j_index_end - j_index_start;
1576
1577         /* Outer loop uses 24 flops */
1578     }
1579
1580     /* Increment number of outer iterations */
1581     outeriter        += nri;
1582
1583     /* Update outer/inner flops */
1584
1585     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*213);
1586 }