Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
103     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
104     __m256i          ewitab;
105     __m128i          ewitab_lo,ewitab_hi;
106     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m256           dummy_mask,cutoff_mask;
110     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
111     __m256           one     = _mm256_set1_ps(1.0);
112     __m256           two     = _mm256_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_ps(fr->ic->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
131     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
132     beta2            = _mm256_mul_ps(beta,beta);
133     beta3            = _mm256_mul_ps(beta,beta2);
134
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
142     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
143     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
144     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
145
146     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
147     rcutoff_scalar   = fr->ic->rcoulomb;
148     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
149     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
150
151     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
152     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158     j_coord_offsetC = 0;
159     j_coord_offsetD = 0;
160     j_coord_offsetE = 0;
161     j_coord_offsetF = 0;
162     j_coord_offsetG = 0;
163     j_coord_offsetH = 0;
164
165     outeriter        = 0;
166     inneriter        = 0;
167
168     for(iidx=0;iidx<4*DIM;iidx++)
169     {
170         scratch[iidx] = 0.0;
171     }
172
173     /* Start outer loop over neighborlists */
174     for(iidx=0; iidx<nri; iidx++)
175     {
176         /* Load shift vector for this list */
177         i_shift_offset   = DIM*shiftidx[iidx];
178
179         /* Load limits for loop over neighbors */
180         j_index_start    = jindex[iidx];
181         j_index_end      = jindex[iidx+1];
182
183         /* Get outer coordinate index */
184         inr              = iinr[iidx];
185         i_coord_offset   = DIM*inr;
186
187         /* Load i particle coords and add shift vector */
188         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
189                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
190
191         fix0             = _mm256_setzero_ps();
192         fiy0             = _mm256_setzero_ps();
193         fiz0             = _mm256_setzero_ps();
194         fix1             = _mm256_setzero_ps();
195         fiy1             = _mm256_setzero_ps();
196         fiz1             = _mm256_setzero_ps();
197         fix2             = _mm256_setzero_ps();
198         fiy2             = _mm256_setzero_ps();
199         fiz2             = _mm256_setzero_ps();
200
201         /* Reset potential sums */
202         velecsum         = _mm256_setzero_ps();
203         vvdwsum          = _mm256_setzero_ps();
204
205         /* Start inner kernel loop */
206         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
207         {
208
209             /* Get j neighbor index, and coordinate index */
210             jnrA             = jjnr[jidx];
211             jnrB             = jjnr[jidx+1];
212             jnrC             = jjnr[jidx+2];
213             jnrD             = jjnr[jidx+3];
214             jnrE             = jjnr[jidx+4];
215             jnrF             = jjnr[jidx+5];
216             jnrG             = jjnr[jidx+6];
217             jnrH             = jjnr[jidx+7];
218             j_coord_offsetA  = DIM*jnrA;
219             j_coord_offsetB  = DIM*jnrB;
220             j_coord_offsetC  = DIM*jnrC;
221             j_coord_offsetD  = DIM*jnrD;
222             j_coord_offsetE  = DIM*jnrE;
223             j_coord_offsetF  = DIM*jnrF;
224             j_coord_offsetG  = DIM*jnrG;
225             j_coord_offsetH  = DIM*jnrH;
226
227             /* load j atom coordinates */
228             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
229                                                  x+j_coord_offsetC,x+j_coord_offsetD,
230                                                  x+j_coord_offsetE,x+j_coord_offsetF,
231                                                  x+j_coord_offsetG,x+j_coord_offsetH,
232                                                  &jx0,&jy0,&jz0);
233
234             /* Calculate displacement vector */
235             dx00             = _mm256_sub_ps(ix0,jx0);
236             dy00             = _mm256_sub_ps(iy0,jy0);
237             dz00             = _mm256_sub_ps(iz0,jz0);
238             dx10             = _mm256_sub_ps(ix1,jx0);
239             dy10             = _mm256_sub_ps(iy1,jy0);
240             dz10             = _mm256_sub_ps(iz1,jz0);
241             dx20             = _mm256_sub_ps(ix2,jx0);
242             dy20             = _mm256_sub_ps(iy2,jy0);
243             dz20             = _mm256_sub_ps(iz2,jz0);
244
245             /* Calculate squared distance and things based on it */
246             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
247             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
248             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
249
250             rinv00           = avx256_invsqrt_f(rsq00);
251             rinv10           = avx256_invsqrt_f(rsq10);
252             rinv20           = avx256_invsqrt_f(rsq20);
253
254             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
255             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
256             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
257
258             /* Load parameters for j particles */
259             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
260                                                                  charge+jnrC+0,charge+jnrD+0,
261                                                                  charge+jnrE+0,charge+jnrF+0,
262                                                                  charge+jnrG+0,charge+jnrH+0);
263             vdwjidx0A        = 2*vdwtype[jnrA+0];
264             vdwjidx0B        = 2*vdwtype[jnrB+0];
265             vdwjidx0C        = 2*vdwtype[jnrC+0];
266             vdwjidx0D        = 2*vdwtype[jnrD+0];
267             vdwjidx0E        = 2*vdwtype[jnrE+0];
268             vdwjidx0F        = 2*vdwtype[jnrF+0];
269             vdwjidx0G        = 2*vdwtype[jnrG+0];
270             vdwjidx0H        = 2*vdwtype[jnrH+0];
271
272             fjx0             = _mm256_setzero_ps();
273             fjy0             = _mm256_setzero_ps();
274             fjz0             = _mm256_setzero_ps();
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             if (gmx_mm256_any_lt(rsq00,rcutoff2))
281             {
282
283             r00              = _mm256_mul_ps(rsq00,rinv00);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq00             = _mm256_mul_ps(iq0,jq0);
287             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
288                                             vdwioffsetptr0+vdwjidx0B,
289                                             vdwioffsetptr0+vdwjidx0C,
290                                             vdwioffsetptr0+vdwjidx0D,
291                                             vdwioffsetptr0+vdwjidx0E,
292                                             vdwioffsetptr0+vdwjidx0F,
293                                             vdwioffsetptr0+vdwjidx0G,
294                                             vdwioffsetptr0+vdwjidx0H,
295                                             &c6_00,&c12_00);
296
297             /* EWALD ELECTROSTATICS */
298             
299             /* Analytical PME correction */
300             zeta2            = _mm256_mul_ps(beta2,rsq00);
301             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
302             pmecorrF         = avx256_pmecorrF_f(zeta2);
303             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
304             felec            = _mm256_mul_ps(qq00,felec);
305             pmecorrV         = avx256_pmecorrV_f(zeta2);
306             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
307             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
308             velec            = _mm256_mul_ps(qq00,velec);
309             
310             /* LENNARD-JONES DISPERSION/REPULSION */
311
312             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
313             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
314             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
315             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
316                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
317             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
318
319             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velec            = _mm256_and_ps(velec,cutoff_mask);
323             velecsum         = _mm256_add_ps(velecsum,velec);
324             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
325             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
326
327             fscal            = _mm256_add_ps(felec,fvdw);
328
329             fscal            = _mm256_and_ps(fscal,cutoff_mask);
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm256_mul_ps(fscal,dx00);
333             ty               = _mm256_mul_ps(fscal,dy00);
334             tz               = _mm256_mul_ps(fscal,dz00);
335
336             /* Update vectorial force */
337             fix0             = _mm256_add_ps(fix0,tx);
338             fiy0             = _mm256_add_ps(fiy0,ty);
339             fiz0             = _mm256_add_ps(fiz0,tz);
340
341             fjx0             = _mm256_add_ps(fjx0,tx);
342             fjy0             = _mm256_add_ps(fjy0,ty);
343             fjz0             = _mm256_add_ps(fjz0,tz);
344
345             }
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             if (gmx_mm256_any_lt(rsq10,rcutoff2))
352             {
353
354             r10              = _mm256_mul_ps(rsq10,rinv10);
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq10             = _mm256_mul_ps(iq1,jq0);
358
359             /* EWALD ELECTROSTATICS */
360             
361             /* Analytical PME correction */
362             zeta2            = _mm256_mul_ps(beta2,rsq10);
363             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
364             pmecorrF         = avx256_pmecorrF_f(zeta2);
365             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
366             felec            = _mm256_mul_ps(qq10,felec);
367             pmecorrV         = avx256_pmecorrV_f(zeta2);
368             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
369             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
370             velec            = _mm256_mul_ps(qq10,velec);
371             
372             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velec            = _mm256_and_ps(velec,cutoff_mask);
376             velecsum         = _mm256_add_ps(velecsum,velec);
377
378             fscal            = felec;
379
380             fscal            = _mm256_and_ps(fscal,cutoff_mask);
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm256_mul_ps(fscal,dx10);
384             ty               = _mm256_mul_ps(fscal,dy10);
385             tz               = _mm256_mul_ps(fscal,dz10);
386
387             /* Update vectorial force */
388             fix1             = _mm256_add_ps(fix1,tx);
389             fiy1             = _mm256_add_ps(fiy1,ty);
390             fiz1             = _mm256_add_ps(fiz1,tz);
391
392             fjx0             = _mm256_add_ps(fjx0,tx);
393             fjy0             = _mm256_add_ps(fjy0,ty);
394             fjz0             = _mm256_add_ps(fjz0,tz);
395
396             }
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             if (gmx_mm256_any_lt(rsq20,rcutoff2))
403             {
404
405             r20              = _mm256_mul_ps(rsq20,rinv20);
406
407             /* Compute parameters for interactions between i and j atoms */
408             qq20             = _mm256_mul_ps(iq2,jq0);
409
410             /* EWALD ELECTROSTATICS */
411             
412             /* Analytical PME correction */
413             zeta2            = _mm256_mul_ps(beta2,rsq20);
414             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
415             pmecorrF         = avx256_pmecorrF_f(zeta2);
416             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
417             felec            = _mm256_mul_ps(qq20,felec);
418             pmecorrV         = avx256_pmecorrV_f(zeta2);
419             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
420             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
421             velec            = _mm256_mul_ps(qq20,velec);
422             
423             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velec            = _mm256_and_ps(velec,cutoff_mask);
427             velecsum         = _mm256_add_ps(velecsum,velec);
428
429             fscal            = felec;
430
431             fscal            = _mm256_and_ps(fscal,cutoff_mask);
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm256_mul_ps(fscal,dx20);
435             ty               = _mm256_mul_ps(fscal,dy20);
436             tz               = _mm256_mul_ps(fscal,dz20);
437
438             /* Update vectorial force */
439             fix2             = _mm256_add_ps(fix2,tx);
440             fiy2             = _mm256_add_ps(fiy2,ty);
441             fiz2             = _mm256_add_ps(fiz2,tz);
442
443             fjx0             = _mm256_add_ps(fjx0,tx);
444             fjy0             = _mm256_add_ps(fjy0,ty);
445             fjz0             = _mm256_add_ps(fjz0,tz);
446
447             }
448
449             fjptrA             = f+j_coord_offsetA;
450             fjptrB             = f+j_coord_offsetB;
451             fjptrC             = f+j_coord_offsetC;
452             fjptrD             = f+j_coord_offsetD;
453             fjptrE             = f+j_coord_offsetE;
454             fjptrF             = f+j_coord_offsetF;
455             fjptrG             = f+j_coord_offsetG;
456             fjptrH             = f+j_coord_offsetH;
457
458             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
459
460             /* Inner loop uses 348 flops */
461         }
462
463         if(jidx<j_index_end)
464         {
465
466             /* Get j neighbor index, and coordinate index */
467             jnrlistA         = jjnr[jidx];
468             jnrlistB         = jjnr[jidx+1];
469             jnrlistC         = jjnr[jidx+2];
470             jnrlistD         = jjnr[jidx+3];
471             jnrlistE         = jjnr[jidx+4];
472             jnrlistF         = jjnr[jidx+5];
473             jnrlistG         = jjnr[jidx+6];
474             jnrlistH         = jjnr[jidx+7];
475             /* Sign of each element will be negative for non-real atoms.
476              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
477              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
478              */
479             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
480                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
481                                             
482             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
483             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
484             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
485             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
486             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
487             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
488             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
489             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
490             j_coord_offsetA  = DIM*jnrA;
491             j_coord_offsetB  = DIM*jnrB;
492             j_coord_offsetC  = DIM*jnrC;
493             j_coord_offsetD  = DIM*jnrD;
494             j_coord_offsetE  = DIM*jnrE;
495             j_coord_offsetF  = DIM*jnrF;
496             j_coord_offsetG  = DIM*jnrG;
497             j_coord_offsetH  = DIM*jnrH;
498
499             /* load j atom coordinates */
500             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
501                                                  x+j_coord_offsetC,x+j_coord_offsetD,
502                                                  x+j_coord_offsetE,x+j_coord_offsetF,
503                                                  x+j_coord_offsetG,x+j_coord_offsetH,
504                                                  &jx0,&jy0,&jz0);
505
506             /* Calculate displacement vector */
507             dx00             = _mm256_sub_ps(ix0,jx0);
508             dy00             = _mm256_sub_ps(iy0,jy0);
509             dz00             = _mm256_sub_ps(iz0,jz0);
510             dx10             = _mm256_sub_ps(ix1,jx0);
511             dy10             = _mm256_sub_ps(iy1,jy0);
512             dz10             = _mm256_sub_ps(iz1,jz0);
513             dx20             = _mm256_sub_ps(ix2,jx0);
514             dy20             = _mm256_sub_ps(iy2,jy0);
515             dz20             = _mm256_sub_ps(iz2,jz0);
516
517             /* Calculate squared distance and things based on it */
518             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
519             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
520             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
521
522             rinv00           = avx256_invsqrt_f(rsq00);
523             rinv10           = avx256_invsqrt_f(rsq10);
524             rinv20           = avx256_invsqrt_f(rsq20);
525
526             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
527             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
528             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
529
530             /* Load parameters for j particles */
531             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
532                                                                  charge+jnrC+0,charge+jnrD+0,
533                                                                  charge+jnrE+0,charge+jnrF+0,
534                                                                  charge+jnrG+0,charge+jnrH+0);
535             vdwjidx0A        = 2*vdwtype[jnrA+0];
536             vdwjidx0B        = 2*vdwtype[jnrB+0];
537             vdwjidx0C        = 2*vdwtype[jnrC+0];
538             vdwjidx0D        = 2*vdwtype[jnrD+0];
539             vdwjidx0E        = 2*vdwtype[jnrE+0];
540             vdwjidx0F        = 2*vdwtype[jnrF+0];
541             vdwjidx0G        = 2*vdwtype[jnrG+0];
542             vdwjidx0H        = 2*vdwtype[jnrH+0];
543
544             fjx0             = _mm256_setzero_ps();
545             fjy0             = _mm256_setzero_ps();
546             fjz0             = _mm256_setzero_ps();
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             if (gmx_mm256_any_lt(rsq00,rcutoff2))
553             {
554
555             r00              = _mm256_mul_ps(rsq00,rinv00);
556             r00              = _mm256_andnot_ps(dummy_mask,r00);
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq00             = _mm256_mul_ps(iq0,jq0);
560             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
561                                             vdwioffsetptr0+vdwjidx0B,
562                                             vdwioffsetptr0+vdwjidx0C,
563                                             vdwioffsetptr0+vdwjidx0D,
564                                             vdwioffsetptr0+vdwjidx0E,
565                                             vdwioffsetptr0+vdwjidx0F,
566                                             vdwioffsetptr0+vdwjidx0G,
567                                             vdwioffsetptr0+vdwjidx0H,
568                                             &c6_00,&c12_00);
569
570             /* EWALD ELECTROSTATICS */
571             
572             /* Analytical PME correction */
573             zeta2            = _mm256_mul_ps(beta2,rsq00);
574             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
575             pmecorrF         = avx256_pmecorrF_f(zeta2);
576             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
577             felec            = _mm256_mul_ps(qq00,felec);
578             pmecorrV         = avx256_pmecorrV_f(zeta2);
579             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
580             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
581             velec            = _mm256_mul_ps(qq00,velec);
582             
583             /* LENNARD-JONES DISPERSION/REPULSION */
584
585             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
586             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
587             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
588             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
589                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
590             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
591
592             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
593
594             /* Update potential sum for this i atom from the interaction with this j atom. */
595             velec            = _mm256_and_ps(velec,cutoff_mask);
596             velec            = _mm256_andnot_ps(dummy_mask,velec);
597             velecsum         = _mm256_add_ps(velecsum,velec);
598             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
599             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
600             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
601
602             fscal            = _mm256_add_ps(felec,fvdw);
603
604             fscal            = _mm256_and_ps(fscal,cutoff_mask);
605
606             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
607
608             /* Calculate temporary vectorial force */
609             tx               = _mm256_mul_ps(fscal,dx00);
610             ty               = _mm256_mul_ps(fscal,dy00);
611             tz               = _mm256_mul_ps(fscal,dz00);
612
613             /* Update vectorial force */
614             fix0             = _mm256_add_ps(fix0,tx);
615             fiy0             = _mm256_add_ps(fiy0,ty);
616             fiz0             = _mm256_add_ps(fiz0,tz);
617
618             fjx0             = _mm256_add_ps(fjx0,tx);
619             fjy0             = _mm256_add_ps(fjy0,ty);
620             fjz0             = _mm256_add_ps(fjz0,tz);
621
622             }
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm256_any_lt(rsq10,rcutoff2))
629             {
630
631             r10              = _mm256_mul_ps(rsq10,rinv10);
632             r10              = _mm256_andnot_ps(dummy_mask,r10);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq10             = _mm256_mul_ps(iq1,jq0);
636
637             /* EWALD ELECTROSTATICS */
638             
639             /* Analytical PME correction */
640             zeta2            = _mm256_mul_ps(beta2,rsq10);
641             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
642             pmecorrF         = avx256_pmecorrF_f(zeta2);
643             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
644             felec            = _mm256_mul_ps(qq10,felec);
645             pmecorrV         = avx256_pmecorrV_f(zeta2);
646             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
647             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
648             velec            = _mm256_mul_ps(qq10,velec);
649             
650             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
651
652             /* Update potential sum for this i atom from the interaction with this j atom. */
653             velec            = _mm256_and_ps(velec,cutoff_mask);
654             velec            = _mm256_andnot_ps(dummy_mask,velec);
655             velecsum         = _mm256_add_ps(velecsum,velec);
656
657             fscal            = felec;
658
659             fscal            = _mm256_and_ps(fscal,cutoff_mask);
660
661             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm256_mul_ps(fscal,dx10);
665             ty               = _mm256_mul_ps(fscal,dy10);
666             tz               = _mm256_mul_ps(fscal,dz10);
667
668             /* Update vectorial force */
669             fix1             = _mm256_add_ps(fix1,tx);
670             fiy1             = _mm256_add_ps(fiy1,ty);
671             fiz1             = _mm256_add_ps(fiz1,tz);
672
673             fjx0             = _mm256_add_ps(fjx0,tx);
674             fjy0             = _mm256_add_ps(fjy0,ty);
675             fjz0             = _mm256_add_ps(fjz0,tz);
676
677             }
678
679             /**************************
680              * CALCULATE INTERACTIONS *
681              **************************/
682
683             if (gmx_mm256_any_lt(rsq20,rcutoff2))
684             {
685
686             r20              = _mm256_mul_ps(rsq20,rinv20);
687             r20              = _mm256_andnot_ps(dummy_mask,r20);
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq20             = _mm256_mul_ps(iq2,jq0);
691
692             /* EWALD ELECTROSTATICS */
693             
694             /* Analytical PME correction */
695             zeta2            = _mm256_mul_ps(beta2,rsq20);
696             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
697             pmecorrF         = avx256_pmecorrF_f(zeta2);
698             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
699             felec            = _mm256_mul_ps(qq20,felec);
700             pmecorrV         = avx256_pmecorrV_f(zeta2);
701             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
702             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
703             velec            = _mm256_mul_ps(qq20,velec);
704             
705             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
706
707             /* Update potential sum for this i atom from the interaction with this j atom. */
708             velec            = _mm256_and_ps(velec,cutoff_mask);
709             velec            = _mm256_andnot_ps(dummy_mask,velec);
710             velecsum         = _mm256_add_ps(velecsum,velec);
711
712             fscal            = felec;
713
714             fscal            = _mm256_and_ps(fscal,cutoff_mask);
715
716             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
717
718             /* Calculate temporary vectorial force */
719             tx               = _mm256_mul_ps(fscal,dx20);
720             ty               = _mm256_mul_ps(fscal,dy20);
721             tz               = _mm256_mul_ps(fscal,dz20);
722
723             /* Update vectorial force */
724             fix2             = _mm256_add_ps(fix2,tx);
725             fiy2             = _mm256_add_ps(fiy2,ty);
726             fiz2             = _mm256_add_ps(fiz2,tz);
727
728             fjx0             = _mm256_add_ps(fjx0,tx);
729             fjy0             = _mm256_add_ps(fjy0,ty);
730             fjz0             = _mm256_add_ps(fjz0,tz);
731
732             }
733
734             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
735             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
736             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
737             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
738             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
739             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
740             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
741             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
742
743             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
744
745             /* Inner loop uses 351 flops */
746         }
747
748         /* End of innermost loop */
749
750         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
751                                                  f+i_coord_offset,fshift+i_shift_offset);
752
753         ggid                        = gid[iidx];
754         /* Update potential energies */
755         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
756         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
757
758         /* Increment number of inner iterations */
759         inneriter                  += j_index_end - j_index_start;
760
761         /* Outer loop uses 20 flops */
762     }
763
764     /* Increment number of outer iterations */
765     outeriter        += nri;
766
767     /* Update outer/inner flops */
768
769     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*351);
770 }
771 /*
772  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_single
773  * Electrostatics interaction: Ewald
774  * VdW interaction:            LennardJones
775  * Geometry:                   Water3-Particle
776  * Calculate force/pot:        Force
777  */
778 void
779 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_single
780                     (t_nblist                    * gmx_restrict       nlist,
781                      rvec                        * gmx_restrict          xx,
782                      rvec                        * gmx_restrict          ff,
783                      struct t_forcerec           * gmx_restrict          fr,
784                      t_mdatoms                   * gmx_restrict     mdatoms,
785                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
786                      t_nrnb                      * gmx_restrict        nrnb)
787 {
788     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
789      * just 0 for non-waters.
790      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
791      * jnr indices corresponding to data put in the four positions in the SIMD register.
792      */
793     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
794     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
795     int              jnrA,jnrB,jnrC,jnrD;
796     int              jnrE,jnrF,jnrG,jnrH;
797     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
798     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
799     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
800     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
801     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
802     real             rcutoff_scalar;
803     real             *shiftvec,*fshift,*x,*f;
804     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
805     real             scratch[4*DIM];
806     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
807     real *           vdwioffsetptr0;
808     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
809     real *           vdwioffsetptr1;
810     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
811     real *           vdwioffsetptr2;
812     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
813     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
814     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
815     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
816     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
817     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
818     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
819     real             *charge;
820     int              nvdwtype;
821     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
822     int              *vdwtype;
823     real             *vdwparam;
824     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
825     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
826     __m256i          ewitab;
827     __m128i          ewitab_lo,ewitab_hi;
828     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
829     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
830     real             *ewtab;
831     __m256           dummy_mask,cutoff_mask;
832     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
833     __m256           one     = _mm256_set1_ps(1.0);
834     __m256           two     = _mm256_set1_ps(2.0);
835     x                = xx[0];
836     f                = ff[0];
837
838     nri              = nlist->nri;
839     iinr             = nlist->iinr;
840     jindex           = nlist->jindex;
841     jjnr             = nlist->jjnr;
842     shiftidx         = nlist->shift;
843     gid              = nlist->gid;
844     shiftvec         = fr->shift_vec[0];
845     fshift           = fr->fshift[0];
846     facel            = _mm256_set1_ps(fr->ic->epsfac);
847     charge           = mdatoms->chargeA;
848     nvdwtype         = fr->ntype;
849     vdwparam         = fr->nbfp;
850     vdwtype          = mdatoms->typeA;
851
852     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
853     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
854     beta2            = _mm256_mul_ps(beta,beta);
855     beta3            = _mm256_mul_ps(beta,beta2);
856
857     ewtab            = fr->ic->tabq_coul_F;
858     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
859     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
860
861     /* Setup water-specific parameters */
862     inr              = nlist->iinr[0];
863     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
864     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
865     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
866     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
867
868     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
869     rcutoff_scalar   = fr->ic->rcoulomb;
870     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
871     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
872
873     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
874     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
875
876     /* Avoid stupid compiler warnings */
877     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
878     j_coord_offsetA = 0;
879     j_coord_offsetB = 0;
880     j_coord_offsetC = 0;
881     j_coord_offsetD = 0;
882     j_coord_offsetE = 0;
883     j_coord_offsetF = 0;
884     j_coord_offsetG = 0;
885     j_coord_offsetH = 0;
886
887     outeriter        = 0;
888     inneriter        = 0;
889
890     for(iidx=0;iidx<4*DIM;iidx++)
891     {
892         scratch[iidx] = 0.0;
893     }
894
895     /* Start outer loop over neighborlists */
896     for(iidx=0; iidx<nri; iidx++)
897     {
898         /* Load shift vector for this list */
899         i_shift_offset   = DIM*shiftidx[iidx];
900
901         /* Load limits for loop over neighbors */
902         j_index_start    = jindex[iidx];
903         j_index_end      = jindex[iidx+1];
904
905         /* Get outer coordinate index */
906         inr              = iinr[iidx];
907         i_coord_offset   = DIM*inr;
908
909         /* Load i particle coords and add shift vector */
910         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
911                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
912
913         fix0             = _mm256_setzero_ps();
914         fiy0             = _mm256_setzero_ps();
915         fiz0             = _mm256_setzero_ps();
916         fix1             = _mm256_setzero_ps();
917         fiy1             = _mm256_setzero_ps();
918         fiz1             = _mm256_setzero_ps();
919         fix2             = _mm256_setzero_ps();
920         fiy2             = _mm256_setzero_ps();
921         fiz2             = _mm256_setzero_ps();
922
923         /* Start inner kernel loop */
924         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
925         {
926
927             /* Get j neighbor index, and coordinate index */
928             jnrA             = jjnr[jidx];
929             jnrB             = jjnr[jidx+1];
930             jnrC             = jjnr[jidx+2];
931             jnrD             = jjnr[jidx+3];
932             jnrE             = jjnr[jidx+4];
933             jnrF             = jjnr[jidx+5];
934             jnrG             = jjnr[jidx+6];
935             jnrH             = jjnr[jidx+7];
936             j_coord_offsetA  = DIM*jnrA;
937             j_coord_offsetB  = DIM*jnrB;
938             j_coord_offsetC  = DIM*jnrC;
939             j_coord_offsetD  = DIM*jnrD;
940             j_coord_offsetE  = DIM*jnrE;
941             j_coord_offsetF  = DIM*jnrF;
942             j_coord_offsetG  = DIM*jnrG;
943             j_coord_offsetH  = DIM*jnrH;
944
945             /* load j atom coordinates */
946             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
947                                                  x+j_coord_offsetC,x+j_coord_offsetD,
948                                                  x+j_coord_offsetE,x+j_coord_offsetF,
949                                                  x+j_coord_offsetG,x+j_coord_offsetH,
950                                                  &jx0,&jy0,&jz0);
951
952             /* Calculate displacement vector */
953             dx00             = _mm256_sub_ps(ix0,jx0);
954             dy00             = _mm256_sub_ps(iy0,jy0);
955             dz00             = _mm256_sub_ps(iz0,jz0);
956             dx10             = _mm256_sub_ps(ix1,jx0);
957             dy10             = _mm256_sub_ps(iy1,jy0);
958             dz10             = _mm256_sub_ps(iz1,jz0);
959             dx20             = _mm256_sub_ps(ix2,jx0);
960             dy20             = _mm256_sub_ps(iy2,jy0);
961             dz20             = _mm256_sub_ps(iz2,jz0);
962
963             /* Calculate squared distance and things based on it */
964             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
965             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
966             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
967
968             rinv00           = avx256_invsqrt_f(rsq00);
969             rinv10           = avx256_invsqrt_f(rsq10);
970             rinv20           = avx256_invsqrt_f(rsq20);
971
972             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
973             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
974             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
975
976             /* Load parameters for j particles */
977             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
978                                                                  charge+jnrC+0,charge+jnrD+0,
979                                                                  charge+jnrE+0,charge+jnrF+0,
980                                                                  charge+jnrG+0,charge+jnrH+0);
981             vdwjidx0A        = 2*vdwtype[jnrA+0];
982             vdwjidx0B        = 2*vdwtype[jnrB+0];
983             vdwjidx0C        = 2*vdwtype[jnrC+0];
984             vdwjidx0D        = 2*vdwtype[jnrD+0];
985             vdwjidx0E        = 2*vdwtype[jnrE+0];
986             vdwjidx0F        = 2*vdwtype[jnrF+0];
987             vdwjidx0G        = 2*vdwtype[jnrG+0];
988             vdwjidx0H        = 2*vdwtype[jnrH+0];
989
990             fjx0             = _mm256_setzero_ps();
991             fjy0             = _mm256_setzero_ps();
992             fjz0             = _mm256_setzero_ps();
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             if (gmx_mm256_any_lt(rsq00,rcutoff2))
999             {
1000
1001             r00              = _mm256_mul_ps(rsq00,rinv00);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq00             = _mm256_mul_ps(iq0,jq0);
1005             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1006                                             vdwioffsetptr0+vdwjidx0B,
1007                                             vdwioffsetptr0+vdwjidx0C,
1008                                             vdwioffsetptr0+vdwjidx0D,
1009                                             vdwioffsetptr0+vdwjidx0E,
1010                                             vdwioffsetptr0+vdwjidx0F,
1011                                             vdwioffsetptr0+vdwjidx0G,
1012                                             vdwioffsetptr0+vdwjidx0H,
1013                                             &c6_00,&c12_00);
1014
1015             /* EWALD ELECTROSTATICS */
1016             
1017             /* Analytical PME correction */
1018             zeta2            = _mm256_mul_ps(beta2,rsq00);
1019             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1020             pmecorrF         = avx256_pmecorrF_f(zeta2);
1021             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1022             felec            = _mm256_mul_ps(qq00,felec);
1023             
1024             /* LENNARD-JONES DISPERSION/REPULSION */
1025
1026             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1027             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1028
1029             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1030
1031             fscal            = _mm256_add_ps(felec,fvdw);
1032
1033             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1034
1035             /* Calculate temporary vectorial force */
1036             tx               = _mm256_mul_ps(fscal,dx00);
1037             ty               = _mm256_mul_ps(fscal,dy00);
1038             tz               = _mm256_mul_ps(fscal,dz00);
1039
1040             /* Update vectorial force */
1041             fix0             = _mm256_add_ps(fix0,tx);
1042             fiy0             = _mm256_add_ps(fiy0,ty);
1043             fiz0             = _mm256_add_ps(fiz0,tz);
1044
1045             fjx0             = _mm256_add_ps(fjx0,tx);
1046             fjy0             = _mm256_add_ps(fjy0,ty);
1047             fjz0             = _mm256_add_ps(fjz0,tz);
1048
1049             }
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1056             {
1057
1058             r10              = _mm256_mul_ps(rsq10,rinv10);
1059
1060             /* Compute parameters for interactions between i and j atoms */
1061             qq10             = _mm256_mul_ps(iq1,jq0);
1062
1063             /* EWALD ELECTROSTATICS */
1064             
1065             /* Analytical PME correction */
1066             zeta2            = _mm256_mul_ps(beta2,rsq10);
1067             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1068             pmecorrF         = avx256_pmecorrF_f(zeta2);
1069             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1070             felec            = _mm256_mul_ps(qq10,felec);
1071             
1072             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1073
1074             fscal            = felec;
1075
1076             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1077
1078             /* Calculate temporary vectorial force */
1079             tx               = _mm256_mul_ps(fscal,dx10);
1080             ty               = _mm256_mul_ps(fscal,dy10);
1081             tz               = _mm256_mul_ps(fscal,dz10);
1082
1083             /* Update vectorial force */
1084             fix1             = _mm256_add_ps(fix1,tx);
1085             fiy1             = _mm256_add_ps(fiy1,ty);
1086             fiz1             = _mm256_add_ps(fiz1,tz);
1087
1088             fjx0             = _mm256_add_ps(fjx0,tx);
1089             fjy0             = _mm256_add_ps(fjy0,ty);
1090             fjz0             = _mm256_add_ps(fjz0,tz);
1091
1092             }
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1099             {
1100
1101             r20              = _mm256_mul_ps(rsq20,rinv20);
1102
1103             /* Compute parameters for interactions between i and j atoms */
1104             qq20             = _mm256_mul_ps(iq2,jq0);
1105
1106             /* EWALD ELECTROSTATICS */
1107             
1108             /* Analytical PME correction */
1109             zeta2            = _mm256_mul_ps(beta2,rsq20);
1110             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1111             pmecorrF         = avx256_pmecorrF_f(zeta2);
1112             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1113             felec            = _mm256_mul_ps(qq20,felec);
1114             
1115             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1116
1117             fscal            = felec;
1118
1119             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1120
1121             /* Calculate temporary vectorial force */
1122             tx               = _mm256_mul_ps(fscal,dx20);
1123             ty               = _mm256_mul_ps(fscal,dy20);
1124             tz               = _mm256_mul_ps(fscal,dz20);
1125
1126             /* Update vectorial force */
1127             fix2             = _mm256_add_ps(fix2,tx);
1128             fiy2             = _mm256_add_ps(fiy2,ty);
1129             fiz2             = _mm256_add_ps(fiz2,tz);
1130
1131             fjx0             = _mm256_add_ps(fjx0,tx);
1132             fjy0             = _mm256_add_ps(fjy0,ty);
1133             fjz0             = _mm256_add_ps(fjz0,tz);
1134
1135             }
1136
1137             fjptrA             = f+j_coord_offsetA;
1138             fjptrB             = f+j_coord_offsetB;
1139             fjptrC             = f+j_coord_offsetC;
1140             fjptrD             = f+j_coord_offsetD;
1141             fjptrE             = f+j_coord_offsetE;
1142             fjptrF             = f+j_coord_offsetF;
1143             fjptrG             = f+j_coord_offsetG;
1144             fjptrH             = f+j_coord_offsetH;
1145
1146             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1147
1148             /* Inner loop uses 187 flops */
1149         }
1150
1151         if(jidx<j_index_end)
1152         {
1153
1154             /* Get j neighbor index, and coordinate index */
1155             jnrlistA         = jjnr[jidx];
1156             jnrlistB         = jjnr[jidx+1];
1157             jnrlistC         = jjnr[jidx+2];
1158             jnrlistD         = jjnr[jidx+3];
1159             jnrlistE         = jjnr[jidx+4];
1160             jnrlistF         = jjnr[jidx+5];
1161             jnrlistG         = jjnr[jidx+6];
1162             jnrlistH         = jjnr[jidx+7];
1163             /* Sign of each element will be negative for non-real atoms.
1164              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1165              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1166              */
1167             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1168                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1169                                             
1170             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1171             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1172             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1173             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1174             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1175             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1176             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1177             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1178             j_coord_offsetA  = DIM*jnrA;
1179             j_coord_offsetB  = DIM*jnrB;
1180             j_coord_offsetC  = DIM*jnrC;
1181             j_coord_offsetD  = DIM*jnrD;
1182             j_coord_offsetE  = DIM*jnrE;
1183             j_coord_offsetF  = DIM*jnrF;
1184             j_coord_offsetG  = DIM*jnrG;
1185             j_coord_offsetH  = DIM*jnrH;
1186
1187             /* load j atom coordinates */
1188             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1189                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1190                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1191                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1192                                                  &jx0,&jy0,&jz0);
1193
1194             /* Calculate displacement vector */
1195             dx00             = _mm256_sub_ps(ix0,jx0);
1196             dy00             = _mm256_sub_ps(iy0,jy0);
1197             dz00             = _mm256_sub_ps(iz0,jz0);
1198             dx10             = _mm256_sub_ps(ix1,jx0);
1199             dy10             = _mm256_sub_ps(iy1,jy0);
1200             dz10             = _mm256_sub_ps(iz1,jz0);
1201             dx20             = _mm256_sub_ps(ix2,jx0);
1202             dy20             = _mm256_sub_ps(iy2,jy0);
1203             dz20             = _mm256_sub_ps(iz2,jz0);
1204
1205             /* Calculate squared distance and things based on it */
1206             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1207             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1208             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1209
1210             rinv00           = avx256_invsqrt_f(rsq00);
1211             rinv10           = avx256_invsqrt_f(rsq10);
1212             rinv20           = avx256_invsqrt_f(rsq20);
1213
1214             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1215             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1216             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1217
1218             /* Load parameters for j particles */
1219             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1220                                                                  charge+jnrC+0,charge+jnrD+0,
1221                                                                  charge+jnrE+0,charge+jnrF+0,
1222                                                                  charge+jnrG+0,charge+jnrH+0);
1223             vdwjidx0A        = 2*vdwtype[jnrA+0];
1224             vdwjidx0B        = 2*vdwtype[jnrB+0];
1225             vdwjidx0C        = 2*vdwtype[jnrC+0];
1226             vdwjidx0D        = 2*vdwtype[jnrD+0];
1227             vdwjidx0E        = 2*vdwtype[jnrE+0];
1228             vdwjidx0F        = 2*vdwtype[jnrF+0];
1229             vdwjidx0G        = 2*vdwtype[jnrG+0];
1230             vdwjidx0H        = 2*vdwtype[jnrH+0];
1231
1232             fjx0             = _mm256_setzero_ps();
1233             fjy0             = _mm256_setzero_ps();
1234             fjz0             = _mm256_setzero_ps();
1235
1236             /**************************
1237              * CALCULATE INTERACTIONS *
1238              **************************/
1239
1240             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1241             {
1242
1243             r00              = _mm256_mul_ps(rsq00,rinv00);
1244             r00              = _mm256_andnot_ps(dummy_mask,r00);
1245
1246             /* Compute parameters for interactions between i and j atoms */
1247             qq00             = _mm256_mul_ps(iq0,jq0);
1248             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1249                                             vdwioffsetptr0+vdwjidx0B,
1250                                             vdwioffsetptr0+vdwjidx0C,
1251                                             vdwioffsetptr0+vdwjidx0D,
1252                                             vdwioffsetptr0+vdwjidx0E,
1253                                             vdwioffsetptr0+vdwjidx0F,
1254                                             vdwioffsetptr0+vdwjidx0G,
1255                                             vdwioffsetptr0+vdwjidx0H,
1256                                             &c6_00,&c12_00);
1257
1258             /* EWALD ELECTROSTATICS */
1259             
1260             /* Analytical PME correction */
1261             zeta2            = _mm256_mul_ps(beta2,rsq00);
1262             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1263             pmecorrF         = avx256_pmecorrF_f(zeta2);
1264             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1265             felec            = _mm256_mul_ps(qq00,felec);
1266             
1267             /* LENNARD-JONES DISPERSION/REPULSION */
1268
1269             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1270             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1271
1272             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1273
1274             fscal            = _mm256_add_ps(felec,fvdw);
1275
1276             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1277
1278             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1279
1280             /* Calculate temporary vectorial force */
1281             tx               = _mm256_mul_ps(fscal,dx00);
1282             ty               = _mm256_mul_ps(fscal,dy00);
1283             tz               = _mm256_mul_ps(fscal,dz00);
1284
1285             /* Update vectorial force */
1286             fix0             = _mm256_add_ps(fix0,tx);
1287             fiy0             = _mm256_add_ps(fiy0,ty);
1288             fiz0             = _mm256_add_ps(fiz0,tz);
1289
1290             fjx0             = _mm256_add_ps(fjx0,tx);
1291             fjy0             = _mm256_add_ps(fjy0,ty);
1292             fjz0             = _mm256_add_ps(fjz0,tz);
1293
1294             }
1295
1296             /**************************
1297              * CALCULATE INTERACTIONS *
1298              **************************/
1299
1300             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1301             {
1302
1303             r10              = _mm256_mul_ps(rsq10,rinv10);
1304             r10              = _mm256_andnot_ps(dummy_mask,r10);
1305
1306             /* Compute parameters for interactions between i and j atoms */
1307             qq10             = _mm256_mul_ps(iq1,jq0);
1308
1309             /* EWALD ELECTROSTATICS */
1310             
1311             /* Analytical PME correction */
1312             zeta2            = _mm256_mul_ps(beta2,rsq10);
1313             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1314             pmecorrF         = avx256_pmecorrF_f(zeta2);
1315             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1316             felec            = _mm256_mul_ps(qq10,felec);
1317             
1318             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1319
1320             fscal            = felec;
1321
1322             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1323
1324             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1325
1326             /* Calculate temporary vectorial force */
1327             tx               = _mm256_mul_ps(fscal,dx10);
1328             ty               = _mm256_mul_ps(fscal,dy10);
1329             tz               = _mm256_mul_ps(fscal,dz10);
1330
1331             /* Update vectorial force */
1332             fix1             = _mm256_add_ps(fix1,tx);
1333             fiy1             = _mm256_add_ps(fiy1,ty);
1334             fiz1             = _mm256_add_ps(fiz1,tz);
1335
1336             fjx0             = _mm256_add_ps(fjx0,tx);
1337             fjy0             = _mm256_add_ps(fjy0,ty);
1338             fjz0             = _mm256_add_ps(fjz0,tz);
1339
1340             }
1341
1342             /**************************
1343              * CALCULATE INTERACTIONS *
1344              **************************/
1345
1346             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1347             {
1348
1349             r20              = _mm256_mul_ps(rsq20,rinv20);
1350             r20              = _mm256_andnot_ps(dummy_mask,r20);
1351
1352             /* Compute parameters for interactions between i and j atoms */
1353             qq20             = _mm256_mul_ps(iq2,jq0);
1354
1355             /* EWALD ELECTROSTATICS */
1356             
1357             /* Analytical PME correction */
1358             zeta2            = _mm256_mul_ps(beta2,rsq20);
1359             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1360             pmecorrF         = avx256_pmecorrF_f(zeta2);
1361             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1362             felec            = _mm256_mul_ps(qq20,felec);
1363             
1364             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1365
1366             fscal            = felec;
1367
1368             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1369
1370             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1371
1372             /* Calculate temporary vectorial force */
1373             tx               = _mm256_mul_ps(fscal,dx20);
1374             ty               = _mm256_mul_ps(fscal,dy20);
1375             tz               = _mm256_mul_ps(fscal,dz20);
1376
1377             /* Update vectorial force */
1378             fix2             = _mm256_add_ps(fix2,tx);
1379             fiy2             = _mm256_add_ps(fiy2,ty);
1380             fiz2             = _mm256_add_ps(fiz2,tz);
1381
1382             fjx0             = _mm256_add_ps(fjx0,tx);
1383             fjy0             = _mm256_add_ps(fjy0,ty);
1384             fjz0             = _mm256_add_ps(fjz0,tz);
1385
1386             }
1387
1388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1392             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1393             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1394             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1395             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1396
1397             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1398
1399             /* Inner loop uses 190 flops */
1400         }
1401
1402         /* End of innermost loop */
1403
1404         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1405                                                  f+i_coord_offset,fshift+i_shift_offset);
1406
1407         /* Increment number of inner iterations */
1408         inneriter                  += j_index_end - j_index_start;
1409
1410         /* Outer loop uses 18 flops */
1411     }
1412
1413     /* Increment number of outer iterations */
1414     outeriter        += nri;
1415
1416     /* Update outer/inner flops */
1417
1418     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*190);
1419 }