Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
90     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
91     __m256i          ewitab;
92     __m128i          ewitab_lo,ewitab_hi;
93     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
95     real             *ewtab;
96     __m256           dummy_mask,cutoff_mask;
97     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
98     __m256           one     = _mm256_set1_ps(1.0);
99     __m256           two     = _mm256_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm256_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
118     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
119     beta2            = _mm256_mul_ps(beta,beta);
120     beta3            = _mm256_mul_ps(beta,beta2);
121
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
129     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
130     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
131     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
136     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
139     rvdw             = _mm256_set1_ps(fr->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147     j_coord_offsetE = 0;
148     j_coord_offsetF = 0;
149     j_coord_offsetG = 0;
150     j_coord_offsetH = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm256_setzero_ps();
179         fiy0             = _mm256_setzero_ps();
180         fiz0             = _mm256_setzero_ps();
181         fix1             = _mm256_setzero_ps();
182         fiy1             = _mm256_setzero_ps();
183         fiz1             = _mm256_setzero_ps();
184         fix2             = _mm256_setzero_ps();
185         fiy2             = _mm256_setzero_ps();
186         fiz2             = _mm256_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_ps();
190         vvdwsum          = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225             dx10             = _mm256_sub_ps(ix1,jx0);
226             dy10             = _mm256_sub_ps(iy1,jy0);
227             dz10             = _mm256_sub_ps(iz1,jz0);
228             dx20             = _mm256_sub_ps(ix2,jx0);
229             dy20             = _mm256_sub_ps(iy2,jy0);
230             dz20             = _mm256_sub_ps(iz2,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
234             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
235             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
236
237             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
240
241             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
242             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0,
248                                                                  charge+jnrE+0,charge+jnrF+0,
249                                                                  charge+jnrG+0,charge+jnrH+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251             vdwjidx0B        = 2*vdwtype[jnrB+0];
252             vdwjidx0C        = 2*vdwtype[jnrC+0];
253             vdwjidx0D        = 2*vdwtype[jnrD+0];
254             vdwjidx0E        = 2*vdwtype[jnrE+0];
255             vdwjidx0F        = 2*vdwtype[jnrF+0];
256             vdwjidx0G        = 2*vdwtype[jnrG+0];
257             vdwjidx0H        = 2*vdwtype[jnrH+0];
258
259             fjx0             = _mm256_setzero_ps();
260             fjy0             = _mm256_setzero_ps();
261             fjz0             = _mm256_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             if (gmx_mm256_any_lt(rsq00,rcutoff2))
268             {
269
270             r00              = _mm256_mul_ps(rsq00,rinv00);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq00             = _mm256_mul_ps(iq0,jq0);
274             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
275                                             vdwioffsetptr0+vdwjidx0B,
276                                             vdwioffsetptr0+vdwjidx0C,
277                                             vdwioffsetptr0+vdwjidx0D,
278                                             vdwioffsetptr0+vdwjidx0E,
279                                             vdwioffsetptr0+vdwjidx0F,
280                                             vdwioffsetptr0+vdwjidx0G,
281                                             vdwioffsetptr0+vdwjidx0H,
282                                             &c6_00,&c12_00);
283
284             /* EWALD ELECTROSTATICS */
285             
286             /* Analytical PME correction */
287             zeta2            = _mm256_mul_ps(beta2,rsq00);
288             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
289             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
290             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
291             felec            = _mm256_mul_ps(qq00,felec);
292             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
293             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
294             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
295             velec            = _mm256_mul_ps(qq00,velec);
296             
297             /* LENNARD-JONES DISPERSION/REPULSION */
298
299             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
300             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
301             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
302             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
303                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
304             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
305
306             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velec            = _mm256_and_ps(velec,cutoff_mask);
310             velecsum         = _mm256_add_ps(velecsum,velec);
311             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
312             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
313
314             fscal            = _mm256_add_ps(felec,fvdw);
315
316             fscal            = _mm256_and_ps(fscal,cutoff_mask);
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm256_mul_ps(fscal,dx00);
320             ty               = _mm256_mul_ps(fscal,dy00);
321             tz               = _mm256_mul_ps(fscal,dz00);
322
323             /* Update vectorial force */
324             fix0             = _mm256_add_ps(fix0,tx);
325             fiy0             = _mm256_add_ps(fiy0,ty);
326             fiz0             = _mm256_add_ps(fiz0,tz);
327
328             fjx0             = _mm256_add_ps(fjx0,tx);
329             fjy0             = _mm256_add_ps(fjy0,ty);
330             fjz0             = _mm256_add_ps(fjz0,tz);
331
332             }
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             if (gmx_mm256_any_lt(rsq10,rcutoff2))
339             {
340
341             r10              = _mm256_mul_ps(rsq10,rinv10);
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq10             = _mm256_mul_ps(iq1,jq0);
345
346             /* EWALD ELECTROSTATICS */
347             
348             /* Analytical PME correction */
349             zeta2            = _mm256_mul_ps(beta2,rsq10);
350             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
351             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
352             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
353             felec            = _mm256_mul_ps(qq10,felec);
354             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
355             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
356             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
357             velec            = _mm256_mul_ps(qq10,velec);
358             
359             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm256_and_ps(velec,cutoff_mask);
363             velecsum         = _mm256_add_ps(velecsum,velec);
364
365             fscal            = felec;
366
367             fscal            = _mm256_and_ps(fscal,cutoff_mask);
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm256_mul_ps(fscal,dx10);
371             ty               = _mm256_mul_ps(fscal,dy10);
372             tz               = _mm256_mul_ps(fscal,dz10);
373
374             /* Update vectorial force */
375             fix1             = _mm256_add_ps(fix1,tx);
376             fiy1             = _mm256_add_ps(fiy1,ty);
377             fiz1             = _mm256_add_ps(fiz1,tz);
378
379             fjx0             = _mm256_add_ps(fjx0,tx);
380             fjy0             = _mm256_add_ps(fjy0,ty);
381             fjz0             = _mm256_add_ps(fjz0,tz);
382
383             }
384
385             /**************************
386              * CALCULATE INTERACTIONS *
387              **************************/
388
389             if (gmx_mm256_any_lt(rsq20,rcutoff2))
390             {
391
392             r20              = _mm256_mul_ps(rsq20,rinv20);
393
394             /* Compute parameters for interactions between i and j atoms */
395             qq20             = _mm256_mul_ps(iq2,jq0);
396
397             /* EWALD ELECTROSTATICS */
398             
399             /* Analytical PME correction */
400             zeta2            = _mm256_mul_ps(beta2,rsq20);
401             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
402             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
403             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
404             felec            = _mm256_mul_ps(qq20,felec);
405             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
406             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
407             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
408             velec            = _mm256_mul_ps(qq20,velec);
409             
410             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velec            = _mm256_and_ps(velec,cutoff_mask);
414             velecsum         = _mm256_add_ps(velecsum,velec);
415
416             fscal            = felec;
417
418             fscal            = _mm256_and_ps(fscal,cutoff_mask);
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm256_mul_ps(fscal,dx20);
422             ty               = _mm256_mul_ps(fscal,dy20);
423             tz               = _mm256_mul_ps(fscal,dz20);
424
425             /* Update vectorial force */
426             fix2             = _mm256_add_ps(fix2,tx);
427             fiy2             = _mm256_add_ps(fiy2,ty);
428             fiz2             = _mm256_add_ps(fiz2,tz);
429
430             fjx0             = _mm256_add_ps(fjx0,tx);
431             fjy0             = _mm256_add_ps(fjy0,ty);
432             fjz0             = _mm256_add_ps(fjz0,tz);
433
434             }
435
436             fjptrA             = f+j_coord_offsetA;
437             fjptrB             = f+j_coord_offsetB;
438             fjptrC             = f+j_coord_offsetC;
439             fjptrD             = f+j_coord_offsetD;
440             fjptrE             = f+j_coord_offsetE;
441             fjptrF             = f+j_coord_offsetF;
442             fjptrG             = f+j_coord_offsetG;
443             fjptrH             = f+j_coord_offsetH;
444
445             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
446
447             /* Inner loop uses 348 flops */
448         }
449
450         if(jidx<j_index_end)
451         {
452
453             /* Get j neighbor index, and coordinate index */
454             jnrlistA         = jjnr[jidx];
455             jnrlistB         = jjnr[jidx+1];
456             jnrlistC         = jjnr[jidx+2];
457             jnrlistD         = jjnr[jidx+3];
458             jnrlistE         = jjnr[jidx+4];
459             jnrlistF         = jjnr[jidx+5];
460             jnrlistG         = jjnr[jidx+6];
461             jnrlistH         = jjnr[jidx+7];
462             /* Sign of each element will be negative for non-real atoms.
463              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
464              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
465              */
466             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
467                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
468                                             
469             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
470             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
471             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
472             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
473             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
474             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
475             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
476             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
477             j_coord_offsetA  = DIM*jnrA;
478             j_coord_offsetB  = DIM*jnrB;
479             j_coord_offsetC  = DIM*jnrC;
480             j_coord_offsetD  = DIM*jnrD;
481             j_coord_offsetE  = DIM*jnrE;
482             j_coord_offsetF  = DIM*jnrF;
483             j_coord_offsetG  = DIM*jnrG;
484             j_coord_offsetH  = DIM*jnrH;
485
486             /* load j atom coordinates */
487             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
488                                                  x+j_coord_offsetC,x+j_coord_offsetD,
489                                                  x+j_coord_offsetE,x+j_coord_offsetF,
490                                                  x+j_coord_offsetG,x+j_coord_offsetH,
491                                                  &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm256_sub_ps(ix0,jx0);
495             dy00             = _mm256_sub_ps(iy0,jy0);
496             dz00             = _mm256_sub_ps(iz0,jz0);
497             dx10             = _mm256_sub_ps(ix1,jx0);
498             dy10             = _mm256_sub_ps(iy1,jy0);
499             dz10             = _mm256_sub_ps(iz1,jz0);
500             dx20             = _mm256_sub_ps(ix2,jx0);
501             dy20             = _mm256_sub_ps(iy2,jy0);
502             dz20             = _mm256_sub_ps(iz2,jz0);
503
504             /* Calculate squared distance and things based on it */
505             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
506             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
507             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
508
509             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
510             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
511             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
512
513             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
514             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
515             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
516
517             /* Load parameters for j particles */
518             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
519                                                                  charge+jnrC+0,charge+jnrD+0,
520                                                                  charge+jnrE+0,charge+jnrF+0,
521                                                                  charge+jnrG+0,charge+jnrH+0);
522             vdwjidx0A        = 2*vdwtype[jnrA+0];
523             vdwjidx0B        = 2*vdwtype[jnrB+0];
524             vdwjidx0C        = 2*vdwtype[jnrC+0];
525             vdwjidx0D        = 2*vdwtype[jnrD+0];
526             vdwjidx0E        = 2*vdwtype[jnrE+0];
527             vdwjidx0F        = 2*vdwtype[jnrF+0];
528             vdwjidx0G        = 2*vdwtype[jnrG+0];
529             vdwjidx0H        = 2*vdwtype[jnrH+0];
530
531             fjx0             = _mm256_setzero_ps();
532             fjy0             = _mm256_setzero_ps();
533             fjz0             = _mm256_setzero_ps();
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             if (gmx_mm256_any_lt(rsq00,rcutoff2))
540             {
541
542             r00              = _mm256_mul_ps(rsq00,rinv00);
543             r00              = _mm256_andnot_ps(dummy_mask,r00);
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq00             = _mm256_mul_ps(iq0,jq0);
547             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
548                                             vdwioffsetptr0+vdwjidx0B,
549                                             vdwioffsetptr0+vdwjidx0C,
550                                             vdwioffsetptr0+vdwjidx0D,
551                                             vdwioffsetptr0+vdwjidx0E,
552                                             vdwioffsetptr0+vdwjidx0F,
553                                             vdwioffsetptr0+vdwjidx0G,
554                                             vdwioffsetptr0+vdwjidx0H,
555                                             &c6_00,&c12_00);
556
557             /* EWALD ELECTROSTATICS */
558             
559             /* Analytical PME correction */
560             zeta2            = _mm256_mul_ps(beta2,rsq00);
561             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
562             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
563             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
564             felec            = _mm256_mul_ps(qq00,felec);
565             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
566             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
567             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
568             velec            = _mm256_mul_ps(qq00,velec);
569             
570             /* LENNARD-JONES DISPERSION/REPULSION */
571
572             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
573             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
574             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
575             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
576                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
577             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
578
579             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm256_and_ps(velec,cutoff_mask);
583             velec            = _mm256_andnot_ps(dummy_mask,velec);
584             velecsum         = _mm256_add_ps(velecsum,velec);
585             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
586             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
587             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
588
589             fscal            = _mm256_add_ps(felec,fvdw);
590
591             fscal            = _mm256_and_ps(fscal,cutoff_mask);
592
593             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm256_mul_ps(fscal,dx00);
597             ty               = _mm256_mul_ps(fscal,dy00);
598             tz               = _mm256_mul_ps(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm256_add_ps(fix0,tx);
602             fiy0             = _mm256_add_ps(fiy0,ty);
603             fiz0             = _mm256_add_ps(fiz0,tz);
604
605             fjx0             = _mm256_add_ps(fjx0,tx);
606             fjy0             = _mm256_add_ps(fjy0,ty);
607             fjz0             = _mm256_add_ps(fjz0,tz);
608
609             }
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (gmx_mm256_any_lt(rsq10,rcutoff2))
616             {
617
618             r10              = _mm256_mul_ps(rsq10,rinv10);
619             r10              = _mm256_andnot_ps(dummy_mask,r10);
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq10             = _mm256_mul_ps(iq1,jq0);
623
624             /* EWALD ELECTROSTATICS */
625             
626             /* Analytical PME correction */
627             zeta2            = _mm256_mul_ps(beta2,rsq10);
628             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
629             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
630             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
631             felec            = _mm256_mul_ps(qq10,felec);
632             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
633             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
634             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
635             velec            = _mm256_mul_ps(qq10,velec);
636             
637             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm256_and_ps(velec,cutoff_mask);
641             velec            = _mm256_andnot_ps(dummy_mask,velec);
642             velecsum         = _mm256_add_ps(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm256_and_ps(fscal,cutoff_mask);
647
648             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm256_mul_ps(fscal,dx10);
652             ty               = _mm256_mul_ps(fscal,dy10);
653             tz               = _mm256_mul_ps(fscal,dz10);
654
655             /* Update vectorial force */
656             fix1             = _mm256_add_ps(fix1,tx);
657             fiy1             = _mm256_add_ps(fiy1,ty);
658             fiz1             = _mm256_add_ps(fiz1,tz);
659
660             fjx0             = _mm256_add_ps(fjx0,tx);
661             fjy0             = _mm256_add_ps(fjy0,ty);
662             fjz0             = _mm256_add_ps(fjz0,tz);
663
664             }
665
666             /**************************
667              * CALCULATE INTERACTIONS *
668              **************************/
669
670             if (gmx_mm256_any_lt(rsq20,rcutoff2))
671             {
672
673             r20              = _mm256_mul_ps(rsq20,rinv20);
674             r20              = _mm256_andnot_ps(dummy_mask,r20);
675
676             /* Compute parameters for interactions between i and j atoms */
677             qq20             = _mm256_mul_ps(iq2,jq0);
678
679             /* EWALD ELECTROSTATICS */
680             
681             /* Analytical PME correction */
682             zeta2            = _mm256_mul_ps(beta2,rsq20);
683             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
684             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
685             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
686             felec            = _mm256_mul_ps(qq20,felec);
687             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
688             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
689             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
690             velec            = _mm256_mul_ps(qq20,velec);
691             
692             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
693
694             /* Update potential sum for this i atom from the interaction with this j atom. */
695             velec            = _mm256_and_ps(velec,cutoff_mask);
696             velec            = _mm256_andnot_ps(dummy_mask,velec);
697             velecsum         = _mm256_add_ps(velecsum,velec);
698
699             fscal            = felec;
700
701             fscal            = _mm256_and_ps(fscal,cutoff_mask);
702
703             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
704
705             /* Calculate temporary vectorial force */
706             tx               = _mm256_mul_ps(fscal,dx20);
707             ty               = _mm256_mul_ps(fscal,dy20);
708             tz               = _mm256_mul_ps(fscal,dz20);
709
710             /* Update vectorial force */
711             fix2             = _mm256_add_ps(fix2,tx);
712             fiy2             = _mm256_add_ps(fiy2,ty);
713             fiz2             = _mm256_add_ps(fiz2,tz);
714
715             fjx0             = _mm256_add_ps(fjx0,tx);
716             fjy0             = _mm256_add_ps(fjy0,ty);
717             fjz0             = _mm256_add_ps(fjz0,tz);
718
719             }
720
721             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
722             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
723             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
724             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
725             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
726             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
727             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
728             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
729
730             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
731
732             /* Inner loop uses 351 flops */
733         }
734
735         /* End of innermost loop */
736
737         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
738                                                  f+i_coord_offset,fshift+i_shift_offset);
739
740         ggid                        = gid[iidx];
741         /* Update potential energies */
742         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
743         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
744
745         /* Increment number of inner iterations */
746         inneriter                  += j_index_end - j_index_start;
747
748         /* Outer loop uses 20 flops */
749     }
750
751     /* Increment number of outer iterations */
752     outeriter        += nri;
753
754     /* Update outer/inner flops */
755
756     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*351);
757 }
758 /*
759  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_single
760  * Electrostatics interaction: Ewald
761  * VdW interaction:            LennardJones
762  * Geometry:                   Water3-Particle
763  * Calculate force/pot:        Force
764  */
765 void
766 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_single
767                     (t_nblist * gmx_restrict                nlist,
768                      rvec * gmx_restrict                    xx,
769                      rvec * gmx_restrict                    ff,
770                      t_forcerec * gmx_restrict              fr,
771                      t_mdatoms * gmx_restrict               mdatoms,
772                      nb_kernel_data_t * gmx_restrict        kernel_data,
773                      t_nrnb * gmx_restrict                  nrnb)
774 {
775     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
776      * just 0 for non-waters.
777      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
778      * jnr indices corresponding to data put in the four positions in the SIMD register.
779      */
780     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
781     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
782     int              jnrA,jnrB,jnrC,jnrD;
783     int              jnrE,jnrF,jnrG,jnrH;
784     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
785     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
786     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
787     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
788     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
789     real             rcutoff_scalar;
790     real             *shiftvec,*fshift,*x,*f;
791     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
792     real             scratch[4*DIM];
793     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
794     real *           vdwioffsetptr0;
795     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
796     real *           vdwioffsetptr1;
797     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
798     real *           vdwioffsetptr2;
799     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
800     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
801     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
802     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
803     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
804     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
805     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
806     real             *charge;
807     int              nvdwtype;
808     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
809     int              *vdwtype;
810     real             *vdwparam;
811     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
812     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
813     __m256i          ewitab;
814     __m128i          ewitab_lo,ewitab_hi;
815     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
816     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
817     real             *ewtab;
818     __m256           dummy_mask,cutoff_mask;
819     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
820     __m256           one     = _mm256_set1_ps(1.0);
821     __m256           two     = _mm256_set1_ps(2.0);
822     x                = xx[0];
823     f                = ff[0];
824
825     nri              = nlist->nri;
826     iinr             = nlist->iinr;
827     jindex           = nlist->jindex;
828     jjnr             = nlist->jjnr;
829     shiftidx         = nlist->shift;
830     gid              = nlist->gid;
831     shiftvec         = fr->shift_vec[0];
832     fshift           = fr->fshift[0];
833     facel            = _mm256_set1_ps(fr->epsfac);
834     charge           = mdatoms->chargeA;
835     nvdwtype         = fr->ntype;
836     vdwparam         = fr->nbfp;
837     vdwtype          = mdatoms->typeA;
838
839     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
840     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
841     beta2            = _mm256_mul_ps(beta,beta);
842     beta3            = _mm256_mul_ps(beta,beta2);
843
844     ewtab            = fr->ic->tabq_coul_F;
845     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
846     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
847
848     /* Setup water-specific parameters */
849     inr              = nlist->iinr[0];
850     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
851     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
852     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
853     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
854
855     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
856     rcutoff_scalar   = fr->rcoulomb;
857     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
858     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
859
860     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
861     rvdw             = _mm256_set1_ps(fr->rvdw);
862
863     /* Avoid stupid compiler warnings */
864     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
865     j_coord_offsetA = 0;
866     j_coord_offsetB = 0;
867     j_coord_offsetC = 0;
868     j_coord_offsetD = 0;
869     j_coord_offsetE = 0;
870     j_coord_offsetF = 0;
871     j_coord_offsetG = 0;
872     j_coord_offsetH = 0;
873
874     outeriter        = 0;
875     inneriter        = 0;
876
877     for(iidx=0;iidx<4*DIM;iidx++)
878     {
879         scratch[iidx] = 0.0;
880     }
881
882     /* Start outer loop over neighborlists */
883     for(iidx=0; iidx<nri; iidx++)
884     {
885         /* Load shift vector for this list */
886         i_shift_offset   = DIM*shiftidx[iidx];
887
888         /* Load limits for loop over neighbors */
889         j_index_start    = jindex[iidx];
890         j_index_end      = jindex[iidx+1];
891
892         /* Get outer coordinate index */
893         inr              = iinr[iidx];
894         i_coord_offset   = DIM*inr;
895
896         /* Load i particle coords and add shift vector */
897         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
898                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
899
900         fix0             = _mm256_setzero_ps();
901         fiy0             = _mm256_setzero_ps();
902         fiz0             = _mm256_setzero_ps();
903         fix1             = _mm256_setzero_ps();
904         fiy1             = _mm256_setzero_ps();
905         fiz1             = _mm256_setzero_ps();
906         fix2             = _mm256_setzero_ps();
907         fiy2             = _mm256_setzero_ps();
908         fiz2             = _mm256_setzero_ps();
909
910         /* Start inner kernel loop */
911         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
912         {
913
914             /* Get j neighbor index, and coordinate index */
915             jnrA             = jjnr[jidx];
916             jnrB             = jjnr[jidx+1];
917             jnrC             = jjnr[jidx+2];
918             jnrD             = jjnr[jidx+3];
919             jnrE             = jjnr[jidx+4];
920             jnrF             = jjnr[jidx+5];
921             jnrG             = jjnr[jidx+6];
922             jnrH             = jjnr[jidx+7];
923             j_coord_offsetA  = DIM*jnrA;
924             j_coord_offsetB  = DIM*jnrB;
925             j_coord_offsetC  = DIM*jnrC;
926             j_coord_offsetD  = DIM*jnrD;
927             j_coord_offsetE  = DIM*jnrE;
928             j_coord_offsetF  = DIM*jnrF;
929             j_coord_offsetG  = DIM*jnrG;
930             j_coord_offsetH  = DIM*jnrH;
931
932             /* load j atom coordinates */
933             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
934                                                  x+j_coord_offsetC,x+j_coord_offsetD,
935                                                  x+j_coord_offsetE,x+j_coord_offsetF,
936                                                  x+j_coord_offsetG,x+j_coord_offsetH,
937                                                  &jx0,&jy0,&jz0);
938
939             /* Calculate displacement vector */
940             dx00             = _mm256_sub_ps(ix0,jx0);
941             dy00             = _mm256_sub_ps(iy0,jy0);
942             dz00             = _mm256_sub_ps(iz0,jz0);
943             dx10             = _mm256_sub_ps(ix1,jx0);
944             dy10             = _mm256_sub_ps(iy1,jy0);
945             dz10             = _mm256_sub_ps(iz1,jz0);
946             dx20             = _mm256_sub_ps(ix2,jx0);
947             dy20             = _mm256_sub_ps(iy2,jy0);
948             dz20             = _mm256_sub_ps(iz2,jz0);
949
950             /* Calculate squared distance and things based on it */
951             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
952             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
953             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
954
955             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
956             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
957             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
958
959             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
960             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
961             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
962
963             /* Load parameters for j particles */
964             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
965                                                                  charge+jnrC+0,charge+jnrD+0,
966                                                                  charge+jnrE+0,charge+jnrF+0,
967                                                                  charge+jnrG+0,charge+jnrH+0);
968             vdwjidx0A        = 2*vdwtype[jnrA+0];
969             vdwjidx0B        = 2*vdwtype[jnrB+0];
970             vdwjidx0C        = 2*vdwtype[jnrC+0];
971             vdwjidx0D        = 2*vdwtype[jnrD+0];
972             vdwjidx0E        = 2*vdwtype[jnrE+0];
973             vdwjidx0F        = 2*vdwtype[jnrF+0];
974             vdwjidx0G        = 2*vdwtype[jnrG+0];
975             vdwjidx0H        = 2*vdwtype[jnrH+0];
976
977             fjx0             = _mm256_setzero_ps();
978             fjy0             = _mm256_setzero_ps();
979             fjz0             = _mm256_setzero_ps();
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             if (gmx_mm256_any_lt(rsq00,rcutoff2))
986             {
987
988             r00              = _mm256_mul_ps(rsq00,rinv00);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq00             = _mm256_mul_ps(iq0,jq0);
992             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
993                                             vdwioffsetptr0+vdwjidx0B,
994                                             vdwioffsetptr0+vdwjidx0C,
995                                             vdwioffsetptr0+vdwjidx0D,
996                                             vdwioffsetptr0+vdwjidx0E,
997                                             vdwioffsetptr0+vdwjidx0F,
998                                             vdwioffsetptr0+vdwjidx0G,
999                                             vdwioffsetptr0+vdwjidx0H,
1000                                             &c6_00,&c12_00);
1001
1002             /* EWALD ELECTROSTATICS */
1003             
1004             /* Analytical PME correction */
1005             zeta2            = _mm256_mul_ps(beta2,rsq00);
1006             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1007             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1008             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1009             felec            = _mm256_mul_ps(qq00,felec);
1010             
1011             /* LENNARD-JONES DISPERSION/REPULSION */
1012
1013             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1014             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1015
1016             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1017
1018             fscal            = _mm256_add_ps(felec,fvdw);
1019
1020             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1021
1022             /* Calculate temporary vectorial force */
1023             tx               = _mm256_mul_ps(fscal,dx00);
1024             ty               = _mm256_mul_ps(fscal,dy00);
1025             tz               = _mm256_mul_ps(fscal,dz00);
1026
1027             /* Update vectorial force */
1028             fix0             = _mm256_add_ps(fix0,tx);
1029             fiy0             = _mm256_add_ps(fiy0,ty);
1030             fiz0             = _mm256_add_ps(fiz0,tz);
1031
1032             fjx0             = _mm256_add_ps(fjx0,tx);
1033             fjy0             = _mm256_add_ps(fjy0,ty);
1034             fjz0             = _mm256_add_ps(fjz0,tz);
1035
1036             }
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1043             {
1044
1045             r10              = _mm256_mul_ps(rsq10,rinv10);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq10             = _mm256_mul_ps(iq1,jq0);
1049
1050             /* EWALD ELECTROSTATICS */
1051             
1052             /* Analytical PME correction */
1053             zeta2            = _mm256_mul_ps(beta2,rsq10);
1054             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1055             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1056             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1057             felec            = _mm256_mul_ps(qq10,felec);
1058             
1059             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1064
1065             /* Calculate temporary vectorial force */
1066             tx               = _mm256_mul_ps(fscal,dx10);
1067             ty               = _mm256_mul_ps(fscal,dy10);
1068             tz               = _mm256_mul_ps(fscal,dz10);
1069
1070             /* Update vectorial force */
1071             fix1             = _mm256_add_ps(fix1,tx);
1072             fiy1             = _mm256_add_ps(fiy1,ty);
1073             fiz1             = _mm256_add_ps(fiz1,tz);
1074
1075             fjx0             = _mm256_add_ps(fjx0,tx);
1076             fjy0             = _mm256_add_ps(fjy0,ty);
1077             fjz0             = _mm256_add_ps(fjz0,tz);
1078
1079             }
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1086             {
1087
1088             r20              = _mm256_mul_ps(rsq20,rinv20);
1089
1090             /* Compute parameters for interactions between i and j atoms */
1091             qq20             = _mm256_mul_ps(iq2,jq0);
1092
1093             /* EWALD ELECTROSTATICS */
1094             
1095             /* Analytical PME correction */
1096             zeta2            = _mm256_mul_ps(beta2,rsq20);
1097             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1098             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1099             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1100             felec            = _mm256_mul_ps(qq20,felec);
1101             
1102             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1103
1104             fscal            = felec;
1105
1106             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1107
1108             /* Calculate temporary vectorial force */
1109             tx               = _mm256_mul_ps(fscal,dx20);
1110             ty               = _mm256_mul_ps(fscal,dy20);
1111             tz               = _mm256_mul_ps(fscal,dz20);
1112
1113             /* Update vectorial force */
1114             fix2             = _mm256_add_ps(fix2,tx);
1115             fiy2             = _mm256_add_ps(fiy2,ty);
1116             fiz2             = _mm256_add_ps(fiz2,tz);
1117
1118             fjx0             = _mm256_add_ps(fjx0,tx);
1119             fjy0             = _mm256_add_ps(fjy0,ty);
1120             fjz0             = _mm256_add_ps(fjz0,tz);
1121
1122             }
1123
1124             fjptrA             = f+j_coord_offsetA;
1125             fjptrB             = f+j_coord_offsetB;
1126             fjptrC             = f+j_coord_offsetC;
1127             fjptrD             = f+j_coord_offsetD;
1128             fjptrE             = f+j_coord_offsetE;
1129             fjptrF             = f+j_coord_offsetF;
1130             fjptrG             = f+j_coord_offsetG;
1131             fjptrH             = f+j_coord_offsetH;
1132
1133             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1134
1135             /* Inner loop uses 187 flops */
1136         }
1137
1138         if(jidx<j_index_end)
1139         {
1140
1141             /* Get j neighbor index, and coordinate index */
1142             jnrlistA         = jjnr[jidx];
1143             jnrlistB         = jjnr[jidx+1];
1144             jnrlistC         = jjnr[jidx+2];
1145             jnrlistD         = jjnr[jidx+3];
1146             jnrlistE         = jjnr[jidx+4];
1147             jnrlistF         = jjnr[jidx+5];
1148             jnrlistG         = jjnr[jidx+6];
1149             jnrlistH         = jjnr[jidx+7];
1150             /* Sign of each element will be negative for non-real atoms.
1151              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1152              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1153              */
1154             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1155                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1156                                             
1157             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1158             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1159             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1160             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1161             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1162             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1163             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1164             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1165             j_coord_offsetA  = DIM*jnrA;
1166             j_coord_offsetB  = DIM*jnrB;
1167             j_coord_offsetC  = DIM*jnrC;
1168             j_coord_offsetD  = DIM*jnrD;
1169             j_coord_offsetE  = DIM*jnrE;
1170             j_coord_offsetF  = DIM*jnrF;
1171             j_coord_offsetG  = DIM*jnrG;
1172             j_coord_offsetH  = DIM*jnrH;
1173
1174             /* load j atom coordinates */
1175             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1176                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1177                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1178                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1179                                                  &jx0,&jy0,&jz0);
1180
1181             /* Calculate displacement vector */
1182             dx00             = _mm256_sub_ps(ix0,jx0);
1183             dy00             = _mm256_sub_ps(iy0,jy0);
1184             dz00             = _mm256_sub_ps(iz0,jz0);
1185             dx10             = _mm256_sub_ps(ix1,jx0);
1186             dy10             = _mm256_sub_ps(iy1,jy0);
1187             dz10             = _mm256_sub_ps(iz1,jz0);
1188             dx20             = _mm256_sub_ps(ix2,jx0);
1189             dy20             = _mm256_sub_ps(iy2,jy0);
1190             dz20             = _mm256_sub_ps(iz2,jz0);
1191
1192             /* Calculate squared distance and things based on it */
1193             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1194             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1195             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1196
1197             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1198             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1199             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1200
1201             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1202             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1203             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1204
1205             /* Load parameters for j particles */
1206             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1207                                                                  charge+jnrC+0,charge+jnrD+0,
1208                                                                  charge+jnrE+0,charge+jnrF+0,
1209                                                                  charge+jnrG+0,charge+jnrH+0);
1210             vdwjidx0A        = 2*vdwtype[jnrA+0];
1211             vdwjidx0B        = 2*vdwtype[jnrB+0];
1212             vdwjidx0C        = 2*vdwtype[jnrC+0];
1213             vdwjidx0D        = 2*vdwtype[jnrD+0];
1214             vdwjidx0E        = 2*vdwtype[jnrE+0];
1215             vdwjidx0F        = 2*vdwtype[jnrF+0];
1216             vdwjidx0G        = 2*vdwtype[jnrG+0];
1217             vdwjidx0H        = 2*vdwtype[jnrH+0];
1218
1219             fjx0             = _mm256_setzero_ps();
1220             fjy0             = _mm256_setzero_ps();
1221             fjz0             = _mm256_setzero_ps();
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1228             {
1229
1230             r00              = _mm256_mul_ps(rsq00,rinv00);
1231             r00              = _mm256_andnot_ps(dummy_mask,r00);
1232
1233             /* Compute parameters for interactions between i and j atoms */
1234             qq00             = _mm256_mul_ps(iq0,jq0);
1235             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1236                                             vdwioffsetptr0+vdwjidx0B,
1237                                             vdwioffsetptr0+vdwjidx0C,
1238                                             vdwioffsetptr0+vdwjidx0D,
1239                                             vdwioffsetptr0+vdwjidx0E,
1240                                             vdwioffsetptr0+vdwjidx0F,
1241                                             vdwioffsetptr0+vdwjidx0G,
1242                                             vdwioffsetptr0+vdwjidx0H,
1243                                             &c6_00,&c12_00);
1244
1245             /* EWALD ELECTROSTATICS */
1246             
1247             /* Analytical PME correction */
1248             zeta2            = _mm256_mul_ps(beta2,rsq00);
1249             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1250             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1251             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1252             felec            = _mm256_mul_ps(qq00,felec);
1253             
1254             /* LENNARD-JONES DISPERSION/REPULSION */
1255
1256             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1257             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1258
1259             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1260
1261             fscal            = _mm256_add_ps(felec,fvdw);
1262
1263             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1264
1265             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1266
1267             /* Calculate temporary vectorial force */
1268             tx               = _mm256_mul_ps(fscal,dx00);
1269             ty               = _mm256_mul_ps(fscal,dy00);
1270             tz               = _mm256_mul_ps(fscal,dz00);
1271
1272             /* Update vectorial force */
1273             fix0             = _mm256_add_ps(fix0,tx);
1274             fiy0             = _mm256_add_ps(fiy0,ty);
1275             fiz0             = _mm256_add_ps(fiz0,tz);
1276
1277             fjx0             = _mm256_add_ps(fjx0,tx);
1278             fjy0             = _mm256_add_ps(fjy0,ty);
1279             fjz0             = _mm256_add_ps(fjz0,tz);
1280
1281             }
1282
1283             /**************************
1284              * CALCULATE INTERACTIONS *
1285              **************************/
1286
1287             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1288             {
1289
1290             r10              = _mm256_mul_ps(rsq10,rinv10);
1291             r10              = _mm256_andnot_ps(dummy_mask,r10);
1292
1293             /* Compute parameters for interactions between i and j atoms */
1294             qq10             = _mm256_mul_ps(iq1,jq0);
1295
1296             /* EWALD ELECTROSTATICS */
1297             
1298             /* Analytical PME correction */
1299             zeta2            = _mm256_mul_ps(beta2,rsq10);
1300             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1301             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1302             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1303             felec            = _mm256_mul_ps(qq10,felec);
1304             
1305             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1306
1307             fscal            = felec;
1308
1309             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1310
1311             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1312
1313             /* Calculate temporary vectorial force */
1314             tx               = _mm256_mul_ps(fscal,dx10);
1315             ty               = _mm256_mul_ps(fscal,dy10);
1316             tz               = _mm256_mul_ps(fscal,dz10);
1317
1318             /* Update vectorial force */
1319             fix1             = _mm256_add_ps(fix1,tx);
1320             fiy1             = _mm256_add_ps(fiy1,ty);
1321             fiz1             = _mm256_add_ps(fiz1,tz);
1322
1323             fjx0             = _mm256_add_ps(fjx0,tx);
1324             fjy0             = _mm256_add_ps(fjy0,ty);
1325             fjz0             = _mm256_add_ps(fjz0,tz);
1326
1327             }
1328
1329             /**************************
1330              * CALCULATE INTERACTIONS *
1331              **************************/
1332
1333             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1334             {
1335
1336             r20              = _mm256_mul_ps(rsq20,rinv20);
1337             r20              = _mm256_andnot_ps(dummy_mask,r20);
1338
1339             /* Compute parameters for interactions between i and j atoms */
1340             qq20             = _mm256_mul_ps(iq2,jq0);
1341
1342             /* EWALD ELECTROSTATICS */
1343             
1344             /* Analytical PME correction */
1345             zeta2            = _mm256_mul_ps(beta2,rsq20);
1346             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1347             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1348             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1349             felec            = _mm256_mul_ps(qq20,felec);
1350             
1351             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1352
1353             fscal            = felec;
1354
1355             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1356
1357             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1358
1359             /* Calculate temporary vectorial force */
1360             tx               = _mm256_mul_ps(fscal,dx20);
1361             ty               = _mm256_mul_ps(fscal,dy20);
1362             tz               = _mm256_mul_ps(fscal,dz20);
1363
1364             /* Update vectorial force */
1365             fix2             = _mm256_add_ps(fix2,tx);
1366             fiy2             = _mm256_add_ps(fiy2,ty);
1367             fiz2             = _mm256_add_ps(fiz2,tz);
1368
1369             fjx0             = _mm256_add_ps(fjx0,tx);
1370             fjy0             = _mm256_add_ps(fjy0,ty);
1371             fjz0             = _mm256_add_ps(fjz0,tz);
1372
1373             }
1374
1375             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1376             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1377             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1378             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1379             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1380             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1381             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1382             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1383
1384             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1385
1386             /* Inner loop uses 190 flops */
1387         }
1388
1389         /* End of innermost loop */
1390
1391         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1392                                                  f+i_coord_offset,fshift+i_shift_offset);
1393
1394         /* Increment number of inner iterations */
1395         inneriter                  += j_index_end - j_index_start;
1396
1397         /* Outer loop uses 18 flops */
1398     }
1399
1400     /* Increment number of outer iterations */
1401     outeriter        += nri;
1402
1403     /* Update outer/inner flops */
1404
1405     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*190);
1406 }